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Overview 

Ø  Some definitions 

Ø Bremsstrahlung 

Ø Synchrotron radiation  

Ø Compton scattering 

Ø Electron-positron pairs 

Ø Blackbody  

Ø Hadronic processes 

Ø Line emission and transition in atoms and molecules 

Ø …. 
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Basic definitions 

 
  Flux      [dE/dA dt dν] 

Energy density  u(ν) = dE/c dt dA dν 

Emissivity      j(ν)= dE/dV dt dΩ dν   

 
 

Chapter 1

Some Fundamental

definitions

1.1 Luminosity

By luminosity we mean the quantity of energy irradiated per second [erg s−1].
The luminosity is not defined per unit of solid angle. The monochromatic
luminosity L(ν) is the luminosity per unit of frequency ν (i.e. per Hz). The
bolometric luminosity is integrated over fequency:

L =

∫ ∞

0
L(ν) dν (1.1)

Often we can define a luminosity integrated in a given energy (or frequency)
range, as, for instance, the 2–10 keV luminosity. In general we have:

L[ν1−ν2] =

∫ ν2

ν1

L(ν) dν (1.2)

Examples:

• Sun Luminosity: L⊙ = 4× 1033 erg s−1

• Luminosity of a typical galaxy: Lgal ∼ 1011L⊙

• Luminosity of the human body, assuming that we emit as a black–
body at a temperature of (273+36) K and that our skin has a surface
of approximately S = 2 m2:

Lbody = SσT 4 ∼ 1010 erg/s ∼ 103 W (1.3)

This is not what we loose, since we absorb from the ambient a power
L = SσT 4

amb ∼ 8.3 × 109 erg/s if the ambient temperature is 20 C
(=273+20 K).
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Luminosity     [dE/dt dν] 
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1.2 Flux

The flux [erg cm−2 s−1] is the energy passing a surface of 1 cm2 in one
second. If a body emits a luminosity L and is located at a distance R, the
flux is

F =
L

4πR2
; F (ν) =

L(ν)

4πR2
; F =

∫ ∞

0
F (ν)dν (1.4)

1.3 Intensity

The intensity I is the energy per unit time passing through a unit surface
located perpendicularly to the arrival direction of photons, per unit of solid
angle. The solid angle appears: [erg cm−2 s−1 sterad−1]. The monochro-
matic intensity I(ν) has units [erg cm−2 s−1 Hz−1 sterad−1]. It always obeys
the Lorentz transformation:

I(ν)

ν3
=

I ′(ν ′)

(ν ′)3
= invariant (1.5)

where primed and unprimed quantities refer to two different reference frames.
The intensity does not depend upon distance. It is the measure of the irra-
diated energy along a light ray.

1.4 Emissivity

The emissivity j is the quantity of energy emitted by a unit volume, in one
unit of time, for a unit solid angle

j =
erg

dV dt dΩ
(1.6)

If the source is transparent, there is a simple relation between j and I:

I = jR (optically thin source) (1.7)

1.5 Radiative energy density

We can define it as the energy per unit volume produced by a luminous
source, but we have to specify if it is per unit solid angle or not. For
simplicity consider the bolometric intensity I. Along the light ray, construct
the volume dV = cdtdA where dA (i.e. one cm2) is the base of the little
cylinder of height cdt. The energy contained in this cylinder is

dE = IcdtdAdΩ (1.8)

Intensity        [dE/dA dt dΩ dν]          I(ν) /ν3 = I’(ν’) /v’3 
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Radiative transport: basics 

 
 

Absorption coefficient   α(ν)

  

Radiative Processes in Astrophysics

A. Lapi (SISSA/ISAS) Lectures Ph.D. 2007/2008

Radiative Transfer

In presence of emission or absorption, intensity is no longer conserved, and

For pure emission,

hence the brightness increase is equal to the integrated emissivity along the line of sight.

For pure absorption,

the intensity decreases exponentially with the optical depth.

Equation of radiative transfer
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Figure 1.2: This figure illustrates the fact that each element dA of the surface
is seen under a different angle with respect to the normal n⃗.

1.7.1 Flux from a thick spherical source

If we see only the surface of a sphere, namely the source is optically thick,
and if the intensity is constant along the surface we have symmetry along
the φ directions and the solid angle dΩ = 2π sin θdθ. See Fig. 1.3. We get:

F =

∫

I cos θdΩ = 2πI

∫ θc

0
sin θ cos θdθ (1.16)

Here R = r sin θc. Therefore we have

F = 2πI

[

cos2 θ

2

]1

cos θc

= πI sin θc = πI

(

R

r

)2

(1.17)

At the surface, R = r, and we have F = πI.
Very far away, r ≫ R, and we have F = πθ2cI = IΩsource.

1.8 Radiative transport: basics

Once the radiation is produced in a given location inside the source, we have
to see how much of this can leave the source and reach the observer. To
calculate that, we must introduce the absorption coefficient αν , whose
dimension is [length−1]. It is defined by the following equation, describing
the decrement of Iν when passing trough an infinitesimal path of length ds:

dIν = −ανIνds (1.18)
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Figure 1.3: The observer P sees the spherical source as a disk of angular
radius θc. Each element of the sphere has a different projection.

The absorption coefficient can be thought as the product of a density of
“absorbers” times the cross section of the absorbing process:

αν = nσν (1.19)

But inside a source, besides absorption, there is a contribution to Iν coming
from the emitters distributed along ds. The increment of Iν is

dIν = jνds (1.20)

Therefore, combining emission and absorption, we have the basic equation
of radiative transport:

dIν
ds

= −ανIν + jν (1.21)

We solve it in some specific cases:

1. Emission only:

dIν
ds

= jν → Iν = Iν,0 +

∫ S

0
jνds (1.22)

where S is the total emitting path.

2. Absorption only:

dIν
ds

= −ανIν →
dIν
Iν

= −ανds (1.23)

Note that the form of this relation immediately implies that an expo-
nential is involved:

Iν(s) = Iν(s0) e
−

∫ s
s0

αν(s′)ds′ (1.24)

Before passing the layer, the intensity was Iν,0. While passing the layer
of length s, the intensity decreases exponentially.
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Intensity emission
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3. Emission plus absorption: In this case it is convenient to introduce
the optical depth τν :

dτν = ανds = nσνds (1.25)

The transport equation then becomes:

dIν
ανds

= −Iν +
jν
αν

→
dIν
dτν

= −Iν +
jν
αν

(1.26)

We can call source function the quantity Sν defined as

Sν =
jν
αν

source function (1.27)

Then the formal solution of Eq. 1.26 is

Iν(τν) = Iν,0 e
−τν +

∫ τν

0
e−(τν−τ ′ν)Sν(τ

′
ν)dτ

′
ν (1.28)

here τν is the final value of τ ′ν (i.e. when the intensity has travelled
the entire distance s). If Sν is constant:

Iν(τν) = Iν,0 e
−τν + Sν

(

1− e−τν
)

(1.29)

If Iν,0 = 0:

Iν(τν) =
jν
αν

(

1− e−τν
)

(1.30)

Now, a trick: multiply and divide the RHS by s = R (the dimension
of the source) to obtain:

Iν(τν) =
jνR

ανR

(

1− e−τν
)

= jνR

(

1− e−τν

τν

)

(1.31)

In this form it is immediately clear that when the source is optically
thin (and τν ≪ 1), we have 1− e−τν → 1− 1 + τν and therefore

Iν(τν) = jνR, (τν ≪ 1) (1.32)

When instead the source becomes optically thick, and τν ≫ 1, then;

Iν(τν) =
jνR

τν
, (τν ≫ 1) (1.33)

Usually, this happens at low frequencies. The above equation explicitly
shows that the intensity we see from a thick source comes from a layer
of width R/τν , i.e. the layer that is optically thin. In other words we
always collect radiation from a layer of the source, down to the depth
at which the radiation can escape without being absorbed (τlayer = 1).

1.8. RADIATIVE TRANSPORT: BASICS 13

3. Emission plus absorption: In this case it is convenient to introduce
the optical depth τν :

dτν = ανds = nσνds (1.25)

The transport equation then becomes:

dIν
ανds

= −Iν +
jν
αν

→
dIν
dτν

= −Iν +
jν
αν

(1.26)

We can call source function the quantity Sν defined as

Sν =
jν
αν

source function (1.27)

Then the formal solution of Eq. 1.26 is

Iν(τν) = Iν,0 e
−τν +

∫ τν

0
e−(τν−τ ′ν)Sν(τ

′
ν)dτ

′
ν (1.28)

here τν is the final value of τ ′ν (i.e. when the intensity has travelled
the entire distance s). If Sν is constant:

Iν(τν) = Iν,0 e
−τν + Sν

(

1− e−τν
)

(1.29)

If Iν,0 = 0:

Iν(τν) =
jν
αν

(

1− e−τν
)

(1.30)

Now, a trick: multiply and divide the RHS by s = R (the dimension
of the source) to obtain:

Iν(τν) =
jνR

ανR

(

1− e−τν
)

= jνR

(

1− e−τν

τν

)

(1.31)

In this form it is immediately clear that when the source is optically
thin (and τν ≪ 1), we have 1− e−τν → 1− 1 + τν and therefore

Iν(τν) = jνR, (τν ≪ 1) (1.32)

When instead the source becomes optically thick, and τν ≫ 1, then;

Iν(τν) =
jνR

τν
, (τν ≫ 1) (1.33)

Usually, this happens at low frequencies. The above equation explicitly
shows that the intensity we see from a thick source comes from a layer
of width R/τν , i.e. the layer that is optically thin. In other words we
always collect radiation from a layer of the source, down to the depth
at which the radiation can escape without being absorbed (τlayer = 1).



5 

Thermal and non-thermal plasma (1) 

 
 

Thermal distribution (=Maxwellian) 
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1.11 Thermal and non thermal plasmas

By definition, a thermal plasma is characterized by a Maxwellian distribution
of particles. Therefore a non thermal plasma is anything else. The non
relativistic Maxwellian distribution is:

F (v)dv = 4πv2
( m

2πkT

)3/2
e−mv2/2kTdv (1.50)

In this form, F (v) is normalized, i.e.
∫∞
0 F (v)dv = 1. This can be seen

changing variable of integration, from v to x = mv2/(2kT ), and remember-
ing that

∫∞
0

√
xe−xdx =

√
π/2.

It is worth to stress that the physics is in the exponential term, while
the 4πv2dv term is simply equal to dvxdvydvz (in three dimensions). This
then suggests the questions: it is possible to have a “Maxwellian–like” dis-
tribution in 2 dimensions? And in one dimension?

Instead of the velocities we may consider the momenta p of the particles.
If we write

p ≡ γβmc (1.51)

where γ = 1/(1−β2)1/2, the above relation is valid both for non–relativistic
and for relativistic velocities. The Maxwellian momenta distribution be-
comes (setting Θ ≡ mc2):

F (p)dp =
p2e−γ/Θ

Θm3c3K2(1/Θ)
dp (1.52)

where K2(1/Θ) is the modified Bessel function of the second kind.
Note the following:

• To define a temperature, the distribution of velocities must be isotropic.

• Written in terms of momenta, the Maxwellian distribution has the
same form in the relativistic limit.

• The Maxwellian distribution is very general, it is a result of statistical
mechanics. But to achieve this distribution, it is necessary that the
particles exchange energy between themselves.

• If competing processes are present (i.e. cooling) it is possible that
one has a Maxwellian distribution only in some interval of veloci-
ties/momenta (for instance for low velocities).

• The exponential term e−E/kT contains the physics, the term p2 is
simply due to dpxdpydpz = 4πp2dp.
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-  Velocities have to be isotropic 
-  Valid for non relat and relativistic 
-  Requires particle energy exchange 
-  
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• Written in terms of momenta, the Maxwellian distribution has the
same form in the relativistic limit.

• The Maxwellian distribution is very general, it is a result of statistical
mechanics. But to achieve this distribution, it is necessary that the
particles exchange energy between themselves.

• If competing processes are present (i.e. cooling) it is possible that
one has a Maxwellian distribution only in some interval of veloci-
ties/momenta (for instance for low velocities).

• The exponential term e−E/kT contains the physics, the term p2 is
simply due to dpxdpydpz = 4πp2dp.

1.11. THERMAL AND NON THERMAL PLASMAS 19

1.11 Thermal and non thermal plasmas
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√
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p ≡ γβmc (1.51)

where γ = 1/(1−β2)1/2, the above relation is valid both for non–relativistic
and for relativistic velocities. The Maxwellian momenta distribution be-
comes (setting Θ ≡ mc2):

F (p)dp =
p2e−γ/Θ

Θm3c3K2(1/Θ)
dp (1.52)

where K2(1/Θ) is the modified Bessel function of the second kind.
Note the following:

• To define a temperature, the distribution of velocities must be isotropic.

• Written in terms of momenta, the Maxwellian distribution has the
same form in the relativistic limit.

• The Maxwellian distribution is very general, it is a result of statistical
mechanics. But to achieve this distribution, it is necessary that the
particles exchange energy between themselves.

• If competing processes are present (i.e. cooling) it is possible that
one has a Maxwellian distribution only in some interval of veloci-
ties/momenta (for instance for low velocities).

• The exponential term e−E/kT contains the physics, the term p2 is
simply due to dpxdpydpz = 4πp2dp.

Modified Bessel 
function of the 
second type 
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Thermal and non-thermal plasma (2) 

 
 

Energy exchange 

1.8. RADIATIVE TRANSPORT: BASICS 11

Figure 1.2: This figure illustrates the fact that each element dA of the surface
is seen under a different angle with respect to the normal n⃗.

1.7.1 Flux from a thick spherical source

If we see only the surface of a sphere, namely the source is optically thick,
and if the intensity is constant along the surface we have symmetry along
the φ directions and the solid angle dΩ = 2π sin θdθ. See Fig. 1.3. We get:

F =

∫

I cos θdΩ = 2πI

∫ θc

0
sin θ cos θdθ (1.16)

Here R = r sin θc. Therefore we have

F = 2πI

[

cos2 θ

2

]1

cos θc

= πI sin θc = πI

(

R

r

)2

(1.17)

At the surface, R = r, and we have F = πI.
Very far away, r ≫ R, and we have F = πθ2cI = IΩsource.

1.8 Radiative transport: basics

Once the radiation is produced in a given location inside the source, we have
to see how much of this can leave the source and reach the observer. To
calculate that, we must introduce the absorption coefficient αν , whose
dimension is [length−1]. It is defined by the following equation, describing
the decrement of Iν when passing trough an infinitesimal path of length ds:

dIν = −ανIνds (1.18)

Cross section decreases with particle energy 
 è difficult to have a Maxwellian in low density, 
hot plasma  

* Collisions 
* Exchange of photons 

20 CHAPTER 1. SOME FUNDAMENTAL DEFINITIONS

1.11.1 Energy exchange and thermal plasmas

There are two main ways in which particles can exchange energy among
themselves:

1. Collisions

2. Exchange of photons (emission and absorption; scattering)

Traditionally, one thinks to collisions as the main driver, and to Coulomb
collisions as the main mechanism. Of course, the more the collisions, the
faster the energy exchange and the faster the relaxation towards the thermal
equilibrium. We have

#of collisions of a single particle

time
∝ density n

total# of collisions

time
∝ n2 (1.53)

However, the density n is not the only factor. The other factor is the energy
of the particle: the cross section decreases with the velocity of the particle
(and then with its energy, or the temperature of the plasma). This means
that it is difficult to have a Maxwellian in hot and rarefied plasmas.

Ask yourselves: what does it happen if I put particles all of the same
energy in a box with reflecting and elastic walls? Why should the energy of
a single particle change?

1.11.2 Non–thermal plasmas

In rarefied and hot plasmas, the relaxation time required to go to equi-
librium, and allow for sufficient energy exchange among particles is long,
compared to the typical timescales of other processes, as acceleration, cool-
ing and escape. The particle distribution responsible for the radiation we
see is then shaped by these other, more efficient, processes.

The queen of the non–thermal particle distribution is a power law:

N(E) = N0E
−p (1.54)

When all particles are relativistic we can equivalently write

N(γ) = Kγ−p (1.55)

Usually, N is the density [cm−3] of the particles, but sometimes it can in-
dicate the total number. Furthermore, one can also specify if N(γ) is per
unit of solid angle (when one has a distribution that is not isotropic), or
not. One must also specify in what energy range N(γ) is valid, so in general
N(γ) has a low and an high energy cutoff (γmin and γmax). Within these



7 

Thermal and non-thermal plasma (3) 

 
 

Rarefied, hot plasma è trel >> tacc, tcool, tesc 

1.8. RADIATIVE TRANSPORT: BASICS 11

Figure 1.2: This figure illustrates the fact that each element dA of the surface
is seen under a different angle with respect to the normal n⃗.

1.7.1 Flux from a thick spherical source

If we see only the surface of a sphere, namely the source is optically thick,
and if the intensity is constant along the surface we have symmetry along
the φ directions and the solid angle dΩ = 2π sin θdθ. See Fig. 1.3. We get:

F =

∫

I cos θdΩ = 2πI

∫ θc

0
sin θ cos θdθ (1.16)

Here R = r sin θc. Therefore we have

F = 2πI

[

cos2 θ

2

]1

cos θc

= πI sin θc = πI

(

R

r

)2

(1.17)

At the surface, R = r, and we have F = πI.
Very far away, r ≫ R, and we have F = πθ2cI = IΩsource.

1.8 Radiative transport: basics

Once the radiation is produced in a given location inside the source, we have
to see how much of this can leave the source and reach the observer. To
calculate that, we must introduce the absorption coefficient αν , whose
dimension is [length−1]. It is defined by the following equation, describing
the decrement of Iν when passing trough an infinitesimal path of length ds:

dIν = −ανIνds (1.18)

Usually non-thermal particle distribution described by 
power-law è no preferred energy 
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1.11.1 Energy exchange and thermal plasmas

There are two main ways in which particles can exchange energy among
themselves:

1. Collisions

2. Exchange of photons (emission and absorption; scattering)

Traditionally, one thinks to collisions as the main driver, and to Coulomb
collisions as the main mechanism. Of course, the more the collisions, the
faster the energy exchange and the faster the relaxation towards the thermal
equilibrium. We have

#of collisions of a single particle

time
∝ density n

total# of collisions

time
∝ n2 (1.53)

However, the density n is not the only factor. The other factor is the energy
of the particle: the cross section decreases with the velocity of the particle
(and then with its energy, or the temperature of the plasma). This means
that it is difficult to have a Maxwellian in hot and rarefied plasmas.

Ask yourselves: what does it happen if I put particles all of the same
energy in a box with reflecting and elastic walls? Why should the energy of
a single particle change?

1.11.2 Non–thermal plasmas

In rarefied and hot plasmas, the relaxation time required to go to equi-
librium, and allow for sufficient energy exchange among particles is long,
compared to the typical timescales of other processes, as acceleration, cool-
ing and escape. The particle distribution responsible for the radiation we
see is then shaped by these other, more efficient, processes.

The queen of the non–thermal particle distribution is a power law:

N(E) = N0E
−p (1.54)

When all particles are relativistic we can equivalently write

N(γ) = Kγ−p (1.55)

Usually, N is the density [cm−3] of the particles, but sometimes it can in-
dicate the total number. Furthermore, one can also specify if N(γ) is per
unit of solid angle (when one has a distribution that is not isotropic), or
not. One must also specify in what energy range N(γ) is valid, so in general
N(γ) has a low and an high energy cutoff (γmin and γmax). Within these

Usually non-thermal particle distribution described by 
power-law è no preferred energy 

Or broken power law  p1, p2, γbreak  

Particle accelerator: shock wave, reconnection?... 

γmin << γ << γmax 

Can be anisotropic 

Log N(γ)  

Log γγmim γmax 
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Total emitted power: the Larmor formula 

 
 

Electric and magnetic field from a moving  charge at 
retarded time 
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Figure 1.2: This figure illustrates the fact that each element dA of the surface
is seen under a different angle with respect to the normal n⃗.

1.7.1 Flux from a thick spherical source

If we see only the surface of a sphere, namely the source is optically thick,
and if the intensity is constant along the surface we have symmetry along
the φ directions and the solid angle dΩ = 2π sin θdθ. See Fig. 1.3. We get:

F =

∫

I cos θdΩ = 2πI

∫ θc

0
sin θ cos θdθ (1.16)

Here R = r sin θc. Therefore we have

F = 2πI

[

cos2 θ

2

]1

cos θc

= πI sin θc = πI

(

R

r

)2

(1.17)

At the surface, R = r, and we have F = πI.
Very far away, r ≫ R, and we have F = πθ2cI = IΩsource.

1.8 Radiative transport: basics

Once the radiation is produced in a given location inside the source, we have
to see how much of this can leave the source and reach the observer. To
calculate that, we must introduce the absorption coefficient αν , whose
dimension is [length−1]. It is defined by the following equation, describing
the decrement of Iν when passing trough an infinitesimal path of length ds:

dIν = −ανIνds (1.18)

Non-relativistic case  
Power per unit solid angle 

1.13. THE ELECTRIC FIELD OF A MOVING CHARGE 27

Therefore

dP

dΩ
=

q2

4πc

∣

∣

∣
n⃗× (n⃗× ⃗̇β)

∣

∣

∣

2

tret

=
q2

4πc
β̇2 sin2 θ

=
q2

4πc3
a2 sin2 θ (1.71)

This is the Larmor formula for non relativistic particles. The angle θ is
the angle between n⃗ and the acceleration. The power is null along the
acceleration, it is maximum perpendicularly to it. Integrating over the entire
solid angle we have the total power:

P =

∫

dP

dΩ
dΩ =

2π

4πc3

∫ 1

−1
sin2 θ d(cos θ) =

2q2

3c3
a2 (1.72)

1.13.2 Pattern

Figure 1.10: The pattern of the radiation emitted by a charge with its
acceleration parallel to the velocity (top) and acceleration perpendicular to
the velocity (bottom).

Eq. 1.71 shows that the pattern of the emitted radiation has a maximum
perpendicular to the acceleration, and vanishes in the directions parallel to
it. Fig. 4.2 shows two examples: in the top part the particle has β̇ ∥ β while
in the bottom part β̇ ⊥ β. The particle is non relativistic.
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Eq. 1.71 shows that the pattern of the emitted radiation has a maximum
perpendicular to the acceleration, and vanishes in the directions parallel to
it. Fig. 4.2 shows two examples: in the top part the particle has β̇ ∥ β while
in the bottom part β̇ ⊥ β. The particle is non relativistic.

a= acceleration 
q= electric charge 
θ= n^a 
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Bremsstrahlung (1) 

 
 

Interaction for t~ b/v, i.e. ω ~ 1/ t, with acceleration ~ constant 
 
 
 
The Larmor formula gives:  

30 CHAPTER 2. BREMSSTRAHLUNG AND BLACK BODY

3. From the Larmor formula we get

P =
2e2a2

3c3
≈

e2

c3
e4

m2
ec3b4

=
e6

m2
ec3b4

(2.3)

Note that we have dropped the 2/3 factor, since in this simplified
treatment we neglect all the numerical factors of order unity. Later
we will give the exact result.

4. Since there is a characteristic time, there is also a characteristic fre-
quency, namely τ−1:

ω ≈
1

τ
=

v

b
(2.4)

5. Therefore

P (ω) ≈
P

ω
=

e6

m2
ec

3vb3
(2.5)

6. We can estimate the impact factor b from the density of protons:

b ≈ n−1/3
p → b3 =

1

np
(2.6)

7. The emissivity j(ω) will be the power emitted by a single electron mul-
tiplied by the number density of electrons. If the emission is isotropic
we have also to divide by 4π, since the emissivity is for unit solid angle:

j(ω) ≈
nenp

4π

e6

m2
ec

3

(me

kT

)1/2
(2.7)

8. We integrate j(ω) over frequency. The integral will depend upon ωmax.
What should we use for ωmax? One possibility is to set !ωmax = kT .
This would mean that an electron cannot emit a photon of energy
larger than the typical energy of the electron. Seems reasonable, but
we are forgetting all the electrons (and the frequencies) that have
energies larger than kT . In this way:

j =

∫ ωmax

0
j(ω)dω ∼

nenp

4π

e6

m2
ec

3

(me

kT

)1/2 kT

!

=
nenpe6

4πm2
ec

3

(mekT )1/2

!
(2.8)

We suspect that in the exact results there will be the contribution
of electrons with energy larger than kT : since they belong to the
exponential part of the Maxwellian, we suspect that in the exact result
there will be an exponential...

Charged particles: assume electron-proton plasma ne, np 
Impact parameter      b ~ np

-1/3 
Velocity of electrons  v  
Plasma temperature    kT ~ mv2 
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Bremsstrahlung (2) 

 
 

Characteristic frequency ω ~ 1/ t  è 
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Note that we have dropped the 2/3 factor, since in this simplified
treatment we neglect all the numerical factors of order unity. Later
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v
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(2.4)

5. Therefore
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P
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6. We can estimate the impact factor b from the density of protons:
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7. The emissivity j(ω) will be the power emitted by a single electron mul-
tiplied by the number density of electrons. If the emission is isotropic
we have also to divide by 4π, since the emissivity is for unit solid angle:

j(ω) ≈
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)1/2
(2.7)

8. We integrate j(ω) over frequency. The integral will depend upon ωmax.
What should we use for ωmax? One possibility is to set !ωmax = kT .
This would mean that an electron cannot emit a photon of energy
larger than the typical energy of the electron. Seems reasonable, but
we are forgetting all the electrons (and the frequencies) that have
energies larger than kT . In this way:

j =

∫ ωmax

0
j(ω)dω ∼

nenp

4π

e6

m2
ec

3

(me

kT

)1/2 kT

!

=
nenpe6

4πm2
ec

3

(mekT )1/2

!
(2.8)

We suspect that in the exact results there will be the contribution
of electrons with energy larger than kT : since they belong to the
exponential part of the Maxwellian, we suspect that in the exact result
there will be an exponential...

Emissivity 
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treatment we neglect all the numerical factors of order unity. Later
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(2.6)

7. The emissivity j(ω) will be the power emitted by a single electron mul-
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we have also to divide by 4π, since the emissivity is for unit solid angle:

j(ω) ≈
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8. We integrate j(ω) over frequency. The integral will depend upon ωmax.
What should we use for ωmax? One possibility is to set !ωmax = kT .
This would mean that an electron cannot emit a photon of energy
larger than the typical energy of the electron. Seems reasonable, but
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We suspect that in the exact results there will be the contribution
of electrons with energy larger than kT : since they belong to the
exponential part of the Maxwellian, we suspect that in the exact result
there will be an exponential...

Introducing the Gaunt factor gff   (minimum impact factor), the 
contribution of the exponential part of a Maxwellian distribution 
the exact treatment gives:  
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9. The exact result, considering also that ν = ω/(2π), is

j(ν) =
8

3

(

2π

3

)1/2 nenpe6

m2
ec

3

(me

kT

)1/2
e−hν/kT ḡff

j =
4

3π

(

2π

3

)1/2 nenpe6

m2
ec

3

(mekT )1/2

!
ḡff (2.9)

The Gaunt factor ḡff depends on the minimum impact factor which in
turn determines the maximum frequency. Details are complicated, but see
Rybicki & Lightman (p. 158–161) for a more detailed discussion.

We have treated the case of an electron–proton plasma. In the more
general case, the plasma will be composed by nuclei with atomic number
Z and number density n. The emissivity will then be proportional to Z2.
This is because the acceleration of the electron will be a = Ze2/(meb2) (see
point 2), and we have to square the acceleration to get the power from the
Larmor formula. In cgs units we have:

j(ν) = 5.4 × 10−39 Z2neniT
−1/2e−hν/kT ḡ

j = 1.13 × 10−28 Z2neniT
1/2ḡ (2.10)

2.1.1 Free–free absorption

If the underlying particle distribution is a Maxwellian, we can use the Kir-
choff law to find out the absorption coefficient. If Bν is the intensity of black
body emission, we must have

Sν ≡
jν
αν

= Bν =
2hν3

c2
1

ehν/kT − 1
(2.11)

In these cases it is very simple to find αν once we know jν . Remember: this
can be done only if we have a Maxwellian. If the particle distribution is
non–thermal, we cannot use the Kirchoff law and we have to go back to a
more fundamental level, namely to the Einstein coefficients. Using Eg. 2.11
we have:

αff
ν =

jν
Bν

=
4

3

(

2π

3

)1/2 Z2nenie6

hm2
ec

2

(

mec2

kT

)1/2
1− e−hν/kT

ν3
ḡff (2.12)

In cgs units [cm−1] we have

αff
ν = 3.7 × 108

Z2neni

T 1/2

1− e−hν/kT

ν3
ḡff (2.13)

When hν ≪ kT (Raleigh–Jeans regime) this simplifies to

αff
ν = 0.018

Z2neni

T 3/2ν2
ḡff (2.14)
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αff
ν = 0.018

Z2neni

T 3/2ν2
ḡff (2.14)

Absorption 
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Blackbody emission (1) 

 
 

Increase in density until all spectrum is absorbed  
And for Maxwellian particle distributionè blackbody 
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Blackbody emission (2) 
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2.2 Black body

A black body occurs when “the body is black”: it is the perfect absorber.
But this means that it is also the “perfect” emitter, since absorption and
emission are linked. The black body intensity is given by

Bν(T ) =
2

c2
hν3

ehν/kT − 1
(2.16)

Expressed in terms of the wavelength λ this is equivalent to:

Bλ(T ) =
2hc2

λ5
1

ehc/λkT − 1
(2.17)

Note the following:

• The black body intensity has a peak. The value of it is different if we
ask for the peak of Bν or the peak of νBν.
The first is at hνpeak = 2.82 kT .
The second is at hνpeak = 3.93 kT .

• If T2 > T1, then: Bν(T2) > Bν(T1) for all frequencies.

• When hν ≪ kT we can expand the exponential term: ehν/kT → 1 +
hν/kT..., and therefor we obtain the Raleigh–Jeans law:

IRJ
ν =

2ν2

c2
kT (2.18)

• When hν ≫ kT we have ehν/kT −1 → ehν/kT and we obtain the Wien
law:

IWν =
2hν3

c2
e−hν/kT (2.19)

• The integral over frequencies is:
∫ ∞

0
Bνdν =

σMB

π
T 4, σMB =

2π5k4

15c2h3
(2.20)

The constant σMB is called Maxwell–Boltzmann constant.

• The energy density u of black body radiation is

u =
4π

c

∫ ∞

0
Bνdν = aT 4, a =

4σMB

c
(2.21)

The two constants (σMB and a) have the values:

σMB = 5.67× 10−5 erg cm−2 deg−4 s−1

a = 7.65× 10−15 erg cm−3 deg−4 (2.22)
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Figure 2.3: The black body intensity compared with the Raleigh–Jeans
and the Wien law.

• The brightness temperature is defined using the Raleigh–Jeans law,
since IRJ

ν = (2ν2/c2)kT we have

Tb =
c2IRJ

ν

2kν2
(2.23)

• A black body is the most efficient radiator, for thermal plasmas and
incoherent radiation (we can have coherent processes that are even
more efficient). For a given surface and temperature, it is not possible
to overtake the luminosity of the black body, at any frequency, for any
emission process.

• Let us try to find the temperature of the surface of the Sun. We
know its radius (700,000 km) and luminosity (L⊙ = 4× 1033 erg s−1).
Therefore, from

L⊙ = π 4πR2
∫ ∞

0
Bνdν = 4πR2σMBT

4 (2.24)

we get:

T⊙ =

(

L⊙

4πR2σMB

)1/4

∼ 5800 K (2.25)
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If T2> T1 è Bν(T2) > Bν(T1) 
Ghisellini 2015 
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Bremsstrahlung (3) 
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Figure 2.1: The bremsstrahlung intensity from a source of radius R = 1015

cm, density ne = np = 1010 cm−3 and varying temperature. The Gaunt
factor is set to unity for simplicity. At smaller temperatures the thin part of
Iν is larger (∝ T−1/2), even if the frequency integrated I is smaller (∝ T 1/2).

Fig. 2.1 shows the bremsstrahlung intensity from a source of radius R =
1015 cm and ne = np = 1010 cm−3. The three spectra correspond to different
temperatures. Note that for smaller temperatures the thin part of Iν is larger
(Iν ∝ T−1/2). On the other hand, at larger T the spectrum extends to larger
frequencies, making the frequency integrated intensity to be larger for larger
T (I ∝ T 1/2). Note also the self–absorbed part, whose slope is proportional
to ν2. This part ends when the optical depth τ = ανR ∼ 1.

2.1.2 From bremsstrahlung to black body

As any other radiation process, the bremsstrahlung emission has a self–
absorbed part, clearly visible in Fig. 2.1. This corresponds to optical depths
τν ≫ 1. The term ν−3 in the absorption coefficient αν ensures that the ab-
sorption takes place preferentially at low frequencies. By increasing the den-
sity of the emitting (and absorbing) particles, the spectrum is self–absorbed
up to larger and larger frequencies. When all the spectrum is self absorbed
(i.e. τν > 1 for all ν), and the particles belong to a Maxwellian, then we
have a black–body. This is illustrated in Fig. 2.2: all spectra are calculated
for the same source size (R = 1015 cm), same temperature (T = 107 K),
and what varies is the density of electrons and protons (by a factor 10) from

Temperature behavior 
Ghisellini 2015 
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Synchrotron emission: single particle  (1) 

B field  
Lorentz force: no work 

helical motion 

Non-relativistic particle               à cyclotron  

Relativistic particle (γ sin α)3 >> 1 à synchrotron         

charged 
particle 

|v|, vpar, |vperp|  constant,  

aperp = ωL vperp à radiation 

Larmor radius       rL= (v sinα) mc γ/eB 

Larmor frequency          ωL =e B/ γ m c 

Pitch angle α 
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Synchrotron emission: single particle  (2) 

aberration 

β

1/Γ

sin θ = sin θ’ /Γ (1 + β cos θ’) 

θ’ = π /2 
cos θ = β                                    
sin θ = 1/Γ 

cos θ  = (cos θ’ + β)/(1 + β cos θ’) 

For a perp to  v  à emission pattern  
a 

v 

dP/dΩ=(e2a2/4π c3) sin2Θ
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Synchrotron emission: single particle (3) 

Relativistic beaming  

Characteristic frequency 

νs = (e/2πmc) B γ2 sin α

γ >> 1 

rL 

rL = (m c2 /e)  γ/Bperp  

Δ t  ~ 2 rL / c γ  

Δ tobs ~ Δ t /γ2 

2/γ

Bperp  ~ const over rL 

average over pitch angles 

<νs> = (4/3) (e/mc) B γ2     
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Synchrotron emission: single particle (4) 

Emitted power 

γ >> 1 

      = P /mc2 = - (2 e2 /3 m c3) β2 γ2 ωL
2 sin2α  γs  

<     > = - (4/3) (σT c / m c2) γ2 UB    

             UB = B2 / 8 π  magnetic energy density  
γs 

Isotropic distribution pitch angles α

Relativistic dipole emission – frame v=0  

P = P’= (2e2/3c3) (a’perp
2 + a’par

2)= (2e2/3c3) γ4 (aperp
2+γ2 apar

2) 

apar small               aperpà γ=const, but Δv can be large 

~ γ2 ~ E2     γ >> 1   
~ β2 ~ E      γ ~ 1        

 

Cooling time      ts~ (γ-1)/    ~ 7.8 108 / B2 γ     s γ
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Synchrotron emission: single particle (5) 

Emitted spectrum  

(‘sum’ of harmonics) 

Spectrum: P(ω): Fourier transform  of E(t) 

t ω/ωB 

E(t) P(ω) 
cyclotron 

synchrotron 

P(ν,γ,α)=31/2 (e3/mc2) sinα F(ν/νc)            F(ν/νc)= (ν/νc)  K5/3(x)dx 
νc=(3/2) (eB/2πmc) γ2 sin α

(ν/νc)-1/3
exp-ν/νc 

ν/νc ~0.29 

F(ν/νc) 
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Synchrotron: non-thermal particle distribution (1) 

N(γ) = No γ-p ;     γmin< γ < γmax
 

 

      for p ~2.5:        number density at γmin 

                    pressure at γmin    

         emission at γmax 

Non-thermal : out of thermodynamic equilibrium 

Log N(γ)  

Log γγmin γmax 
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Synchrotron: non-thermal particle distribution (6) 

Particle spectrum  
νs  ~  B γ2 

L(ν) ~ ν-αN(γ)       γ-p 

Log N(γ)  

Log γ8

Photon spectrum 

Log L(ν)

Log ν
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Synchrotron: non-thermal particle distribution (7) 

N(γ) = No γ-p        γmin< γ < γmax             isotropic 
 

Linear polarization     Π = (p+1)/(p+7/3) ~  70 %  (p=2) 

γmin
2 << ν/νc << γmax

2 

α = (p – 1)/2  

L (ν) =  N(γ)     d γ γ

8

ν-α

js(ν) = (1/4π)   N(γ) P(ν,γ) dγ = C (α) No B1+a v-α

Emissivity 

C(a)= π1/2e2/4c (e/2πmc)1+α A(p) 3p/2   
A(p): product of Γ functions       A(2)~0.597 

ν/νc~ γmax
2 

ν-α

[erg s-1 cm-3 sr-1 ] 
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Synchrotron: non-thermal particle distribution (4) 

k Tb  ~ mc2  (νt/νB)1/2 ~ γ mc2 

Self-absorption:  absorption coefficient αν ∼  ν -(p+4)/2  è 

  I(ν) = (2mf(p)/31/2) νB
-1/2 ν5/2  

Brightness temperature k Tb(ν) = (c2/2)  I(ν)/ν2       

f(p),g(p): products of Γ functions  f(2)~0.5, g(2)~ 1.213  

  and   

  τs ~ 1   @   νt= (4/3) γt
2 νB 

             νt=[2-(p+8)(3/π)p+1 g2(p) ep+6]1/(p+4) (mc)-1 (NoR)1/(p+4) B(p+2)/(p+4) 

NOTE: If θ known, I(νt) & νt  è B, No 
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Synchrotron: non-thermal particle distribution (5) 

ν5/2 
ν-α

Optically thin 

ν/νc~ γmax
2 

Log I(ν) α < 1 
Log ν I(ν) 

Log ν νt νB γmax
2

 

ν-α+1

Optically 
thick  

   νt/νc 
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Compton emission (1) 

me c2 >> h ν 

electron at rest 

θ

cross section  

σT = (8π/3) (e/mc2)2 ~ 6.7 x 10-25 cm2 

dσ/dΩ = (3/16π) σT (1+cos2 θ)    
 

elastic scattering ν’=ν 
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Compton emission (2) 

me c2 << h ν 

cross section  

electron at rest 

θ

ν’=ν/[1+(hν/mc2)(1-cosθ)] recoil 

σT Klein-Nishina  Thomson 

          1 

σKN~3σT/8 [ln(2x)+0.5]/x 

x~1    σ~0.43 σT 

x = hν/mec2 

x>>1 
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Inverse Compton emission (3) 

“inverse” Compton  hν < mc2  : transfer of energy to photon  

direct Compton     hν > mc2      ;  e- recoil ν1< ν0 

hν << mc2 

ν’ = ν γ (1-β cosθ)  
ν’c = ν’  
νc = ν’c γ (1+β cos θ’c) = ν (1-βcos θ)/(1-βcos θc) 

θ
θ ‘ 

νc = γ2 ν (1-β cos θ) θ’c =90o       sin θc~1/γ  
max  θ=180o  θc=0o          νc ~ 4γ2 ν
min   θ=0o    θc=180o        νc ~ ν/4γ2    

< νc > =(4/3) γ2νο

e- frame 
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Inverse Compton emission (4) 

Isotropic distribution angles θ

<    > = - (4/3) (σT c / m c2) β2 γ2 Ur                 γc  

Ur   seed photon energy density  

Emitted power = initial power – scattered power 

                   [# collisions/s]  x  [average energy  
     after scattering]  

                
           [ σT c Ur /< h ν > ]  x [4/3 < hν> β2γ2] 
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Inverse Compton emission (5) 

<νc> =  (4/3) ν0 γ2   average over angles 

Emitted spectrum: single e-                   
       in isotropic, monochromatic ν0 radiation field    

photons within 1/γ ~ 75 % of power Log j(νc) 

Log (νc/νc,max) 

P(νc,γ)=   mc2 δ(ν - 4γ2νo/3) γc  
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Inverse Compton emission (6) 

     = (1/4π) [(4/3)α /2] [σT c No Ur / νo] (νc/νo) -a 

 j(εc) = (1/4π) [(4/3)α /2] (τc /(R/c))  (Ur / εo) (εc/εo) –a         [cm-3 s-1 sr-1] 

tesc average gain/
scattering 

photon density which 
contribute at εc         
and  hν γ < mc2 

Emissivity 

τc=σT No R 

 j(νc) = (1/4π)  N(γ) P(νc,γ) dγ =  
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Log ν I(ν) 

Log ν 

 

ν-α+1

Inverse Compton emission (7) 

νoγmin
2 

νoγmax
2 
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Inverse Compton emission (8) 

Ur  seed photon energy density:  
 

 -“internal” photon field, synchrotron radiation   
    (Synchrotron Self-Compton, SSC)  

  isotropy in source frame 

 - “external” photon field, e.g.                                                    
     Broad Line Region photons,                                                  
     Cosmic Microwave Background…   
  isotropy in observer frame  
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Inverse Compton vs synchrotron emission (1) 

< νc> =  (4/3) ν0 γ2   

<    > = - (4/3) (σT c / m c2) β2 γ2 Ur 
 

γc  

analogous processes 

γs <     > = - (4/3) (σTc / m c2) β2 γ2 UB  

< νs  > = (4/3) (e/mc) B γ2 

Unless:  self-absorption 

   KN regime:  γ hν .> mc2 

Lc/Ls = Ur/UB 
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SSC  Ur=Us    

Lc/Ls = Us/UB 

Lc < Ls è  Tb < 1012 (1-α)4/5 vmax,9 
(α-1)/5 νt,9

-α/5 K α<1 

Inverse Compton vs synchrotron emission (2) 

Tb> 1012 K è “Compton catastrophe”: higher Compton orders 

     è runaway cooling  

         BUT Klein-Nishina  when  γ hν ~ mc2  

if Ur >UB è second inverse Compton order important  etc… 

As Us/UB ~Tb νt
3/B2 ~ Tb

5 νt 
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SSC  

Ur(ε)=Us(ε) ~ 4π (3R/4c) js(ε)     

Inverse Compton vs synchrotron emission (2) 

Λ = ε2/ε1

jssc(εc)= (4/3)α-1 τc js(εc)     ε-1 dε = (4/3)α-1 τc js(εc) ln Λ

 

            ~ R No
2 B1+α ln Λ ν-α

ε1

ε2
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Inverse Compton vs synchrotron emission (3) 

Log ν

Log ν L(ν)

~ τc lnΛ

ν-α+1

νt γmin
2 νB γmax

4 

SSC 

ν-α+1

νt νB γmax
2 

synchrotron 

ν-3/2
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Inverse Compton vs synchrotron emission (4) 

Typical parameters 

UB ~ Ur è B ~ 103 M9
-1/2 G 

γ ~ 103  

νs ~ 2.8 106 B γ2 Hz ~ 5.5 1015 Hz 

νc ~ νs γ2 ~ 7.3 1021 Hz ~ 30 MeV 

tcool ~0.4 s     è injection or reacceleration 

R ~ 10 Rs ~ 3 1015 M9 cm  L~LEdd = 1.3 1047 M9 erg s-1 
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 Thermal Comptonization (1) 

Multiple scattering due to a thermal (or quasi thermal) 
electron distribution 

Comptonization parameter y =  

[average # scatter]x[average fraction energy gain per scatt] 

y>1 Comptonization important 

Δx/x= 16Θ2 +4Θx-x 

<x1>=4/3 <γ2> x0 = 16Θ2x0      relativ 

x = hν/mec2 

Θ= kT/mec2 
 

Δx/x= 4Θx                    non  relativ 

τT 
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 Thermal Comptonization (2) 

Differential (neglecting downscattering) è 

xf = x0 exp{[16Θ2 +4Θx]x[max(τT, τ 
2)]}è xf = x0ey 

 

y = max(τT, τT 
2)x[16Θ2 +4Θx-x] 

y>1 Comptonization important 

Lf- Lo / Lo = ey -1  
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 Thermal Comptonization (3) 

Spectrum = superposition of Compton scattering spectra 

Different spectra depending on τT and T 98 CHAPTER 5. COMPTON SCATTERING

Figure 5.10: Multiple Compton scatterings when τT < 1. A fraction τT of
the photons of the previous scattering order undergoes another scattering,
and amplifying the frequency by the gain factor A, until the typical photon
frequency equals the electron temperature Θ. Then further scatterings leave
the photon frequency unchanged.

When y ∼ 1, its logarithm is close to zero, and we have α ∼ 1. When
y > 1, then α < 1 (i.e. flat, or hard), and vice–versa, when y < 1, then its
logarithm will be negative, as the logarithm of τT, and α > 1 (i.e. steep, or
soft).

Attention! when τT ≪ 1 and A is large (i.e. big frequency jumps be-
tween one scattering and the next), then the superposition of all scattering
orders (by the way, there are fewer, in this case) will not guarantee a perfect
power–law. In the total spectrum we can see the “bumps” corresponding to
individual scattering orders.

The case τT∼>1

This is the most difficult case, as we should solve a famous equation, the
equation of Kompaneet. The result is still a power law, whose spectral index

τT < 1         α(τT ,T) 

100 CHAPTER 5. COMPTON SCATTERING

Figure 5.11: Multiple Compton scatterings when τT > 1 and y ≫ 1. For the
first scattering orders, nearly all photons are scattered: only a fraction 1/τT
can escape. Therefore the number of photons escaping at each scattering
order is the same. This is the reason of the flat part, where F (x) ∝ x0.
When the photon frequency is of the order of Θ, photons and electrons are
in equilibrium, and even if only a small fraction of photons can escape at
each scattering order, they do not change frequency any longer, and therefore
they form the Wien bump, with the slope F (x) ∝ x3e−x/Θ. If we increase
τT, the flux with slope x0 decreases, while the Wien bump stays the same.
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Hadronic processes  

p+p requires high np       Lpic/Lssc ~ Up/Ur 

p+B proton synchrotron: requires high B  

p+γ proton induced cascade: pions è e+, e-, γ
synchrotron from e+ e-   
 external photons  

+ efficiency acceleration processes 

- timescales: fast variability?                       
- overall efficiency ?                                     
- pair cascade: flat X-ray spectra?  
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