Galaxy clusters

G.W. Pratt CEA Saclay

Hierarchical structure formation

- Universe becomes more structured with time
- Clusters: lighthouses of the cosmic web
- Cosmological tools: formation & evolution depend on underlying cosmology
- Representative of the Universe as a whole: 90% dark matter; 9% hot gas; 1% galaxies
- Statistical properties allow us to understand the physics of structure formation

Total mass: 10^{14} - 10^{15} M_{\odot} (~ 10^{48} g) Size: ~1-2 Mpc (~ 10^{24} cm)

Stars < 5%

Gas ~ 10%

Dark matter ~ 85%

- Galaxies (Herschel 1785)
- Dark matter (Zwicky 1933)

• Gas in ICM (X-rays 1960s-1970s; SZ 1970s) $T \sim 10^{6} - 10^{8} K$ (1 - 15 keV) $n_{e} \sim 10^{-4} - 10^{-2} \text{ cm}^{-3}$ $Z \sim 0.3 Z_{\odot}$

Mass: 10^{14} - $10^{15} M_{\odot}$

Stars < 5%

Gas 10%

Dark matter 85%

CHANDRA/WFI/MAGELLAN MARKEVITCH, CLOWE ET AL

Observing a cluster

lensing

✓ Projected mass spectro-imagery √Temperature

✓Abundances

✓Mass

✓ distanceindependent ✓very small mass contribution
 ✓dynamical indicator

AI689 by HST

A2218 by HST

Probing the ICM

NB: No z dimming

Blind SZ surveys

X-ray information

Thermal emission from the ICM

 Fully ionised H+He plasma with highly-ionised heavy elements

Bremsstrahlung emission
 (continuum) + lines

 Imagery: gas density distribution

Spectral shape: kT, Z
Need sensitivity > 10 keV

 $\frac{dN(e)}{dE} \sim n_e n_i V \left[g(E,T) T^{-1/2} e^{-E/kT} + \text{lines} \right]$

Operating X-ray observatories

XMM

- ▶ 3 telescopes
- FoV 30'
- ► FWHM ~ 10"

Chandra

1 telescope
FoV 17' X 17'
FWHM < 0.5"

Spatially-resolved spectroscopy ∆E/E ~150 eV + high-resolution dispersive spectroscopy

Detection of new clusters in X-rays

COMPILATION BY M. ARNAUD, AFTER PIFFARETTI ET AL 2011, MERTHENS ET AL 2012, FASSBENDER ET AL 2012, PIERRE ET AL 2016

 Clusters are the only extragalactic extended X-ray sources but need large sky coverage to maximise number of detections

 About 2000 clusters found in ROSAT All-Sky Survey (1990), ROSAT serendipitous surveys

 Several hundred more found in XMM surveys

 X-ray emission subject to redshift dimming

 $S_{\rm X} \propto (1+z)^{-4}$

Serendipitous detection of new clusters

FIELD CENTRED ON PLCK G226.65+28.43, PI M. ARNAUD

X-ray information from distant clusters Chandra observation of XDCP J0044.0-2033 at z=1.579

TOZZI ET AL 2015

- Morphology: first indication of dynamical state
- Surface brightness: gas density, L_X
- Global temperature: mass

X-ray observational tools for low-z objects

ARNAUD ET AL 2001 (ABELL 1795)

POINTECOUTEAU ET AL 2004 (ABELL 478)

X-ray mass measurement

Assume spherical symmetry

Hydrostatic equation:

 $\frac{1}{\rho}\frac{dP}{dr} = -\frac{GM(r)}{r^2}$

Ideal gas:

$$P = nkT = \frac{\rho}{\mu m_p} kT$$

$$M(r) = -\frac{kT}{\mu m_p} \frac{r}{G} \left[\frac{d\ln\rho}{d\ln r} + \frac{d\ln T}{d\ln r} \right]$$

Clusters in formation

Clusters in formation

Clusters in formation

Shocks

 Rankine-Hugonoit jump conditions for 1D shock LANDAU & LIFSHITZ 1959

$$\frac{1}{C} = \left[4\left(\frac{T_2}{T_1} - 1\right)^2 + \frac{T_2}{T_1}\right]^{1/2} -2\left(\frac{T_2}{T_1} - 1\right)$$

- Mach number $\mathcal{M}^2 = \frac{3C}{4-C}$
- Typical shock Mach numbers ~1-4

Cold fronts

MARKEVITCH & VIKHLININ 2007

Cold fronts

• Abrupt kT, n_e jumps but no pressure jump \Rightarrow not a shock

- Dense subcluster cores moving at near sonic velocity
- Gas sloshing in dark matter potential

Cold fronts

MARKEVITCH & VIKHLININ 2007

Cooling cores (before 1999)

 In a cluster in equilibrium, the cooling time of the central gas is very short

- $n_{e,0} \sim 10^{-3} \text{ cm}^{-3}$
- $t_{\rm cool} \sim 8.5 \times 10^{10} \text{ yr} (n_e/10^{-3} \text{ cm}^{-3})^{-1} (kT/8.6 \text{ keV})^{1/2} < t_{\rm H}$

• The gas cools:

- $P = n_e kT$
- Density increases, the gas flows towards centre
- The gas continues to cool, star formation begins

But

- $\dot{M}_X \sim 10 1000 \, M_{\odot} \, \mathrm{yr}^{-1}$ • $\dot{M}_* \sim 1\% \, \dot{M}_X$
- Problem for the model?

Key new observations - I

XMM-RGS observation of Abell 1835; XMM-EPIC observation of M87

- Gas does not cool as much as previously thought
- ► In general, T_{min} ~ T_{vir}/3

PETERSEN ET AL. 2001, 2003 Böhringer et al 2001

ROSAT observation of NGC 1275 (Perseus)

1 arcmin

BÖHRINGER ET AL 1993 (ROSAT)

Key new observations - II

MS0735.6+7421 AT Z=0.22; NASA, ESA, AND B. MCNAMARA M84 AT Z=0.0034 C. Jones

 High-resolution Chandra observations of interaction between AGN and ICM in many systems at all scales

NGC 5813 (Virgo)

RANDALL ET AL 2011 (CHANDRA)

NGC 5813 (Virgo)

RANDALL ET AL 2011 (CHANDRA)

Evidence for several eruptions
 Constraints on eruption timescales (10⁶ - 10⁸ yr)

Bubbles in M87

M87 OPTICAL, RADIO, X-RAY: FORMAN ET AL

PERSEUS, X-RAY, Hlpha: FABIAN ET AL
Heating mechanisms

IDEA FROM PRESENTATION BY E. CHURAZOV

BUBBLES Isothermal

 $\frac{\delta T}{T} \sim 0 \times \frac{\delta n}{n}$

SUBSONIC DISPLACEMENT Isobaric **SOUND WAVES** Adiabatic

 $\frac{\delta T}{T} \sim -1 \times \frac{\delta n}{n}$

 $\frac{\delta T}{T} \sim \frac{2}{3} \times \frac{\delta n}{n}$

Energetics

1. pV work due to expansion $E_{\rm cav} = H = E + pV = \frac{\Gamma}{\Gamma - 1} \, pV$ H = 4pVrelativistic particles H=2.5 pV non-relativistic particles $t_{\rm cav} \sim r_{
m nuc}/v$ 2. Energy of weak shock $E_{\rm shock} \sim \Delta \, pV$ $t_{\rm shock} \sim r_{\rm shock}/c_s$ 3. Total energy $E_{\text{tot}} = E_{\text{cav}} + E_{\text{shock}} + (E_{\text{photon}})$ $\sim 10^{55} - 10^{62} \mathrm{erg}$

Energetic equilibrium

Cooling luminosity RAFFERTY ET AL 2008

<heating> ~ cooling

Consequences for central galaxies

Cooling luminosity

<heating> ~ cooling

Consequences for central galaxies

CROTON ET AL 2006

Feedback necessary to reproduce observed galaxy luminosity fn

Enrichment

Consequences for metal distribution

MCNAMARA ET AL 2011, KIRKPATRICK ET AL 2011

Entrainment of metals to larger radius

Correlation with jet power

Metallicity distribution and evolution

- Cool cores have central abundance peaks
- Central abundance evolves with redshift
- Abundance outside core constant to z>1
- Consistent with early enrichment scenario

Enrichment

DE PLAA 2013

- Can measure (central) abundance ratios using CCD spectroscopy
- O-Si mainly generated in SNII; Si-Ni generated in SNIa
- Core: production by cD (SNIa+SNII)
- Outside core: higher contribution from SNII
- Compare these to supernova detonation models to give yields

Enrichment

Accreting substructure in A2142

ECKERT ET AL 2014

Statistical properties

Galaxy clusters

Are individually complex...

...but globally simple

MARKEVITCH ET AL 2002, 2004

VIKHLININ ET AL 2009

Scaling laws

Virial theorem:

- X-ray temperature reflects depth of potential
- Constant gas mass fraction:

 Clusters are essentially closed boxes

 Evolution via mean dark matter (gas) density

 $\Rightarrow \text{Scaling laws for global properties:}$ $T_{\delta} \propto M\delta/R_{\delta} \propto E(z)R_{\delta}^2 \propto E(z)M_{\delta}^{2/3}$ $L_{\delta} \propto E(z)T_{\delta}^2 \quad ; \quad L_{\delta} \propto M_{\delta}^{4/3}$ $+ \text{optical richness, } Y_{\text{SZ}} \text{ etc}$

 $\frac{GM_{\delta}}{R_{\delta}} \propto kT$ $f_{gas} = \frac{M_{gas,\delta}}{M_{\delta}} = \text{const}$

$$\overline{
ho_{
m gas}} \propto \overline{
ho_{
m DM}} \propto
ho_{
m c}(z) \propto E^2(z)$$

(assuming Bremsstrahlung)

CDM haloes are structurally (self-)similar

Universal density profile of CDM haloes:

$$\delta_{c} = \frac{200}{3} \frac{c^{3}}{\left[\ln(1+c) - c/(1+c)\right]} \quad ; \quad r_{\delta} = c_{\delta} r_{s}$$

 $\frac{\rho_c(z)\delta_c}{(r/r_s)(1+r/r_s)^2}$

CDM halo concentration

BHATTACHARYA ET AL 2013 ALSO E.G., DOLAG ET AL 2004 AND MANY OTHERS

Dark matter distribution

PRATT & ARNAUD 2002 (XMM OBSERVATIONS)

DÉMOCLÈS, PRATT ET AL 2010

Mass distributions are similar

And agree with NFW

POINTECOUTEAU, ARNAUD & PRATT 2005 (XMM OBSERVATIONS)

UMETSU ET AL 2016 (HST+SUBARU OBSERVATIONS)

Concentration behaves as expected

POINTECOUTEAU, ARNAUD & PRATT 2005 (XMM OBSERVATIONS) UMETSU ET AL 2016 (HST+SUBARU OBSERVATIONS)

Scaling law "Theory"

Similar internal structure

 Power-law relations
 between observables Q and mass (and redshift)

log M

"Theoretical reality"

Dispersion

Dispersion due to differences in:

Internal structure

Orientation

Large-scale environment

Projection effects

These deviations are ~lognormal (Central Limit Theorem)

Observational reality

Additional sources of dispersion

Additional dispersion due to:

 Non-gravitational astrophysics

Evolutionary effects

Observational error

These deviations are *not* lognormal

Effect of non-gravitational processes

log Q₁

Dispersion Normalisation Slope

Converging local X-ray scaling relations

Huge improvement in recent years

Converging agreement with simulations

ARNAUD ET AL 2007 ; SEE ALSO PLANELLES ET AL 2014

Improved modelling of non-gravitational processes in simulations
 Use of synthetic X-ray analyses (e.g., to measure T_{spec} and M_{HSE})

SUN ET AL 2009, VIKHLININ ET AL 2009, PRATT ET AL 2009

fgas varies substantially with mass

SUN 2012, COMPILING DATA FROM SUN ET AL 2009, VIKHLININ ET AL 2006, DÉMOCLÈS ET AL 2010, RASMUSSEN ET AL 2009

Effect of feedback on scaling relations

 In local systems, the trend is mass-dependent

- The scatter comes mostly from cool cores
- No evidence for 'catastrophic' AGN feedback in local population
 Gas was pushed beyond R₅₀₀ some time ago, or had a higher entropy when accreted

Cosmology with clusters

EVRARD ET AL. 2002

• N(M, z) depends on Ω_m , $\sigma_8 [\Omega_b, n, h, \Omega_\Lambda]$ • Evolution strongly depends on Ω_m

Cosmology with the cluster mass function

Sensitivity to cosmological parameters

CHANDRA/ROSAT OBSERVATIONS VIKHLININ ET AL 2009

- $L_X \rightarrow M_{500}$ + selection function, i.e. scaling laws + scatter
- Compare to mass function N(z, M) from simulations
- High-mass systems most sensitive to cosmology
- High redshift needed to probe growth of structure

Cosmology with fgas

CHANDRA/ROSAT OBSERVATIONS ALLEN ET AL 2008

- Assumes $f_{gas}(z, M) = const$, but $f_{gas} = f_{gas}(M)$, so high mass only
- $f_{\rm gas} \propto \Omega_{\rm b}/\Omega_{\rm m}; \ f_{\rm gas}(z) \propto d_{\rm A}(z)^{3/2}$
- Needs only the most relaxed clusters

X-ray perspectives

Overall context: evolution

Redshift

- Growth of structure, BH
- AGN feedback
- Enrichment of IGM and ICM

... and their evolution

What's needed

1. More throughput (photons)

 Higher spatial resolution (microphysics, distant objects)

3. Higher spectral resolution (the third dimension)

The Advanced Telescope for High ENergy Astrophysics

E2E simulations

COURTESY A. RAU T. DAUSER / J. WILMS / T. BRAND
XMM-Newton EPIC EMOS

Typical current CCD resolution (~ 150 ev)

Abell 1795 (300 ks) 1000 Fe–L Ο Mg Si С Ne Na 100 Fe–K S Counts/s/keV Ρ CI Ca 10 Athena X-IFU Ni Cr 0.1 0.5 2 5 10 1 Energy (keV)

TES sensor array / 2.5 eV resolution / 5' diameter FoV

Interaction of jets with ICM, heating and cooling

CROSTON, SANDERS ET AL. 2013

Perseus

- 50 ks observation of core
- One spectrum per 5" x 5" pixel

The halo-turbulence connection

BROWN & RUDNICK 2010

Thermodynamics of the outskirts

ICM chemistry

- Much higher precision on yields
- Detection of rare elements

Fe XXV Ka as a kinematic tracer

Simulated Athena image of Perseus

HEINZ ET AL. 2010

Take-home messages

1. Clusters are cosmic laboratories

2. X-ray observations hold the key to understanding many aspects of their formation and evolution