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What COBE’s DMR saw.

• Temperature map: T (θ, φ) ≈ To = 2.725K,

• Very isotropic (good!)

• Shows a ×1000 expansion since recombination.

• T (θ, φ)− To ≈ 〈~d, ~u(θ, φ)〉: dipole anisotropy.

• Quite weak: ‖~d‖/To = O(10−3).

• Measures COBE’s velocity in the CMB sea.

• δT (θ, φ) = T (θ, φ)− To − 〈~d, ~u(θ, φ)〉
• Finally reveals cosmological CMB anisotropies

• A very delicate measure: ‖δT‖ ≈ 10−4K



What W-MAP saw.

4 W-MAP channels after subtraction of the monopole and dipole components.

23 GHz 33 GHz 41 GHz 94 GHz

Foreground emissions clearly dominate the low Galactic latitude regions.

Homogeneous extra-Galactic foregrounds are also expected everywhere.

The diversity offered by multi-frequency observations allows for CMB cleaning.

WMAP ILC map looks pretty good:



What Planck may see (according to the Blue Book)
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CHAPTER 5

GALACTIC AND SOLAR SYSTEM SCIENCE

5.1 OVERVIEW

Once the monopole and dipole terms of the cosmic microwave background (CMB) are
removed from the Planck maps, emission from the Milky Way will be the dominant feature
(Figure 5.1). This emission, which must be further subtracted to obtain the higher order
anisotropies of the CMB, will offer a complete portrait of the Galaxy in a virtually unexplored
astronomical observing window ranging from the submillimetre at 350µm to the microwave
at 1 cm. At the longest wavelengths, Planck will greatly improve on the only comparable
product so far (from WMAP), while at wavelengths shorter than 3 mm, Planck will provide the
first full-sky images. Planck therefore enables new and fundamental research on our Galaxy
with unprecedented observational advantages: broad spectral coverage; the ability to measure
polarised emission; high sensitivity; high photometric accuracy; high spatial resolution (5′) at
the shortest wavelengths; and full-sky coverage.

FIG 5.1.— False colour images of the simulated sky in the nine frequency channels of Planck, after subtraction
of the monopole and dipole CMB components. From top left to bottom right: 30, 44, 70, 100, 143, 217, 353, 545,
and 857 GHz channels.

The Planck full-sky maps will not only trace the spatial structure of the interstellar medium
(ISM) of the Galaxy, but also probe specific conditions such as densities and temperatures.
The emission in the Planck bands comes mainly from thermal radiation from interstellar dust,
synchrotron radiation from high energy particles, and free-free radiation associated with ionized
interstellar gas. The ability of Planck to measure polarisation will provide unprecedented maps
of the magnetic fields in the Galaxy. The broad frequency range gives Planck very powerful
leverage in this respect, since it will probe simultaneously two different mechanisms coupling
the magnetic field to the emission. Since the interstellar gas and dust respond to a variety of
physical mechanisms such as gravity, magnetic fields, and hydrodynamical phenomena, we can
investigate not only individual objects in the Galaxy, but also the physical processes which act
at a global Galactic level. In addition, improved understanding of Galactic foregrounds will
lead to significantly better CMB maps.

The spectral coverage of Planck will allow separation of the emission components of the
ISM based largely on the specific spectral signature of each component. The all-sky coverage

LFI looks at 30, 44, 70 GHz with radiometers

while HFI looks at 100, 143, 217, 353, 545, 857 GHz with bolometers.



Planck information path and some jargon

1. From the sky to detectors; from a spinning satellite to time-lines.

Planck has TOI problems (pun).

2. From time lines to ‘phase binned rings’.

3. From rings to spherical maps: map making.

4. From multi-channel spherical maps to a CMB map

5. From a CMB map to its angular spectrum: CMB cleaning or component

separation.

6. From the spectrum to the likelihood of cosmological model.

7. From likelihood to (probabilty distribution of) the cosmo. parameters.

The divide and conquer stratgey of steps 4,5,6,7 would be optimal for full sky

observations in simple models (nice noise, nice foregrounds).

Otherwise, the ‘optimal’ processing forbids such a factorization.

Still needs to trade off statistical efficiency for simplicity and CPU cycles.



Foregrounds

The Cosmic Microwave Background is the backgroundest thing there is.

Therefore, any other emission must be a foreground. Such as:

• The Cosmic Infrared Background (CIB) is a backgroundish foreground due

to distant, unresolved, dusty Galaxies.

• Galaxy clusters seen via the Sunyaev-Zeldovitch (SZ) effect.

• Point sources: radio galaxies, . . .

• Galactic (Milky Way) dust emission.

• Galactic (Milky Way) synchrotron emission.

• Galactic (Milky Way) free-free emission.

→ Component separation: sort out all those emissions.

→ CMB cleaning: get the cleanest (in some sense) CMB map, do cosmol-

ogy with it. Pass CMB-free maps to anyone interested (in CIB, Galaxy, SZ

clusters,. . . ).



Tactics for dealing with foregrounds

If one wants to do CMB, foregrounds are the ennemies.

Some tactics to minimize foreground annoyances:

1. Observe at frequencies where CMB anisotropies are stronger than the

foregrounds

2. Look at regions of the sky where (Galactic) foregrounds are the weakest.

3. Mask out point sources (if at reasonable area loss)

4. Model contribution from diffuse foregrounds

5. Do component separation/CMB extraction:

predict foregrounds using multi-channel observations

i.e. exploit foreground coherence across frequency, hoping

1) to overcome the limitations of the above approaches and

2) to combine ‘optimally’ infi from all of the sky and all frequencies.



Distribution of Galactic foregrounds. 1) Spatial distribution

Spatial distribution: see page 5 for some ideas about it. Roughly controlled

on average by a co-secant law in a simple parallel slab Galactic model.

Estimates by WMAP:

for synchrotron and free-free at 22 GHz and for dust at 90 GHz.



Distribution of Galactic foregrounds. 2) Frequency distribution

A rough estimate for the 5 WMAP frequencies, with ‘uncertainties’.



Joint distribution in frequency/multipole space for W-MAP

An observing window through the galactic foregrounds as a function of both

frequency and angular scale.

Contours: relative strength of CMB wrt foreground signals.



A more optimistic figure from Planck’s Blue Book
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FIG 4.1.— Spectra of sources in “brightness temperature” (in which a Rayleigh-Jeans ν2 spectrum is flat),
superimposed on the Planck frequency bands. Spectra of the Galaxy (as measured by WMAP, see Fig. 1.3) and
M82, a star-forming galaxy, are shown. For the Galaxy, the components contributing to the over-all spectrum are
identified. Also shown are the expected level of CMB fluctuations on a 1◦ scale, and, as a light dashed line (EG),
the expected level of fluctuations introduced by all foreground radio sources on a 10′ scale.

total output power is emitted in the mid and far infrared. For starburst galaxies the fraction
can be as large as 99%. Star forming galaxies thus present a double peaked spectral energy
distribution (SED) with a highly variable ratio between the two components. At the source, the
infrared part of the SED peaks around 100µm. For starburst galaxies at redshifts 2 or larger,
this peak of the SED is shifted beyond 300µm, into the Planck range.

Infrared starburst galaxies are often associated with mergers and interacting galaxies.
Planck will be able to detect the rare high redshift, ultra-luminous, infrared galaxies in the
tail of the luminosity function. Furthermore, the cosmic far infrared background (CFIRB)
in the submillimetre/millimetre range, made up of the unresolved weaker sources, potentially
contains original information on the spatial distribution of mergers, and thus on the galaxy
formation process. Only recently have the galactic and the extragalactic components of the far-
infrared background been separated in the data of the COBE FIRAS and DIRBE instruments.
This background contains power comparable to its optical/UV counterpart. This surprising
result (locally, as mentioned above, the integrated infrared emission of galaxies is only one third
of the optical) has resulted in a strong interest in the population of sources responsible for this
background, but progress has been slow due to the difficulty of observations in this wavelength
range. Planck will be an important tool for studying the CFIRB.

In §§ 4.3–4.4, we describe some of the science goals to be met using Planck observations of
extragalactic sources, as well as complementary ground-based observations that will be made.
We expect substantial gains in our understanding of extreme radio sources and of star formation
processes that drive the thermal re-emission by dusty galaxies.

Planck will provide important and novel data on extragalactic sources; however, from the
standpoint of the CMB, discrete sources (and the CFIRB) are a foreground contaminant. Hence
in § 4.5 we briefly describe how extragalactic sources can be removed from Planck images to
limit the foreground noise they contribute to CMB images. Proper control of this potential
source of error in Planck’s cosmological results will require careful pre-launch modeling and
observations as well as component separation from the CMB images Planck produces.

Extensive frequency coverage: good for component separation.

The plot is ‘optimistic’ because it does not show the uncertainties in spectral

scaling.



The mixing model for rigid components

The ith map, observed at frequency νi, is a noisy superposition of components:

Xi(θ, φ) =
C∑

c=1

Xc
i (θ, φ) + Ni(θ, φ). c = cmb, dust, SZ, . . .

If the emission of component c changes with νi while keeping the same spatial

pattern, then that component is said to ‘scale rigidly’ and we have

Xc
i (θ, φ) = Ac

i Sc(θ, φ)

If all components scale rigidly or, i.o.w. are fully coherent, then stacking the

sky maps seen at all F observation frequencies:

X(θ, φ) =

 X1(θ, φ)
...

XF (θ, φ)

 = AS(θ, φ)+N(θ, φ) A : the F × C mixing matrix.

In these lectures, we focus on that simple model and consider the statistial

aspects of component separation, that is, the best recovery of S given X and

various amounts of prior information.

This is a simplified setting, complications may be introduced later. . .



The component separation problem may not be what you think

• If the beams have been perfectly corrected and

• if there are no more foreground emissions than channels and

• if each foreground is fully coherent so that an accurate model is

X(θ, φ) =

 X1(θ, φ)
...

Xd(θ, φ)

 = AS(θ, φ) + N(θ, φ)

• if there is no noise: N(θ, φ) = 0 and

• if the mixing matrix A is known perfectly,

then, there is no component separation problem since

S(θ, φ) = BX(θ, φ) for any C × F matrix B such that BA = IC

The problem is not the separation itself but dealing with the uncertainties and

the approximations in the above statement.



Maximal uncertainty: Blind component separation (a.k.a. ICA)



=


A11 · · ·
· · · ·
· · · ·
· · · ·
· · · A54

×



?

?

?

CMB!



+


N1
N2
N3
N4
N5



JADE finds uncorrelated, maximally non Gaussian components.

Here, results on 5 W-MAP channels degraded to common resolution.

See also AltICA (based on FastICA) by Baccigalupi, Maino et al.



Pixel space versus harmonic space

Ideally, we should work jointly on big data matrices X of size Nchan ×Npixels.

In practice, our processors rather work on Nchan × 1 vectors X(t)

where t is an index for:

a direction in the sky t = (θ, φ)

a spherical harmonic coefficient t = (l, m)

a wavelet coefficient t = (j, k) (to be discussed later).

In theory, one can move freely from ‘pixel space’ to harmonic space (and back):

a`m =
∫

X(θ, φ)Y?
`m(θ, φ) ↔ X(θ, φ) =

∑
`

∑
m

a`mY`m(θ, φ)

The basic mixture model

X(θ, φ) = AS(θ, φ) + N(θ, φ)

retains the same structure in harmonic space:

X`m = AS`m + N`m

but the statistical properties are dramatically different.



HEALPix (Gorski, Hivon et al.)

1. Hierarchical structure.

Essential for large data bases, neighbor-

hood search, multi-resolution analysis,. . .

2. Equal pixel area.

Preserves white noise, among other things.

3. Iso-latitude distribution.

Recall Y`m(θ, φ) = P`m(cos θ) eimφ.

θ direction: Associated Legendre func-

tions are evaluated via slow recursions.

φ direction: FFT possible.

The HEALPix grid at resolution r has Npix = 12N2
side = 12 · 22r pixels.

It offers synthesis and (approximate) analysis up to `max ≈ 3×Nside:

X(θp, φp) =
∑

`≤`max

∑
|m|≤`

a`mY`m(θp, φp)
4π

Npix

∑
p

X(θp, φp)Y?
`m(θp, φp) ≈ a`m

Jargon: WMAP delivers at Nside = 512, Planck at Nside = 2048.



Wiener filters and friends

In the next slides, we focus in the generic problem of estimating the C × 1

‘component vector’ s from F noisy mixtures available on a vector x:

x = As + n The ‘mixing matrix’ A has size F × C

Ask to yourself (or to me): when is it critical that F ≥ C ?

Often, but not necessarily always, we consider the case of redundant observa-

tions: matrix A is ‘tall’ with linearly independent columns.



Some notations, basic properties

1. The n× n identity matrix In. Also denoted I if clear from context.

2. Transpose: [A†]ij = Aji; trace: tr A =
∑

i Aii;
Scalar product 〈A|B〉 =

∑
i
∑

j AijBij = tr AB†;
Euclidian norm ‖A‖2 =

∑
i
∑

j A2
ij = tr AA† (works for vectors and matrices).

3. Column space of a matrix A denoted Span(A).

4. Moore-Penrose pseudo inverse A#.
For a full-column-rank A, it is A# = (A†A)−1A†.
It is one of these matrices such that A#A = I and
the unique matrix such that AA# is the orthogonal projector onto Span(A).

5. Square root of a non-negative matrix R:
any matrix W such that R = WW †.

6. Expectation E(X) of a random variable.
E(X|Y ): expectation of X conditonned on observing Y .

7. Covariance matrix of a random vector X: Cov(X) = EXX† − EX EX†.
Cross-covariance for vectors X and Y : Cov(X, Y ) = EXY † − EX EY †.



The best MSE predictor

Try to predict a vector X based on the observation of a vector Y .

Assume a probablistic relation between X and Y , represented by their joint

probability distribution p(X, Y ).

Problem: What the best predictor in the MSE, that is, what is the function

f(Y ) giving the minimum mean squared error:

min
f

E ‖X − f(Y )‖2

The solution is the conditional expectation of X given Y

f?(Y ) = E(X|Y ).

Often called ‘the Wiener filter’.

Proof:



The best linear filter

Best (in the MSE sense) linear predictor W of X given Y :

min
W

E ‖X −WY ‖2

Depends on Rxx = Cov(X) and on Rxy = Cov(X, Y ), and only on that:

W ? = RxyR−1
yy

regardless of the distribution of (X, Y ) (finite variance)

For (jointly!) Gaussian vectors X and Y , the Wiener filter boils down to:

E(X|Y ) = RxyR−1
yy Y

This is linear in Y !



Statistical efficiency versus simplicity

For non Gaussian observations, the best processor (in terms of mean squqred

error) is non linear. BUT,

1. In order to implement the best non linear processor on non Gaussian vari-

ables, one needs to know or to estimate the non Gaussian part of their

distribution.

2. The best non linear filtering may be significantly (or immensely) more

difficult to implement.

3. Non-linear filtering may induce non Gaussianities !

4. The characterization and propagation of errors is much harder for non

linear processing.

5. The CMB is Gaussian-distributed in a first very good approximation.



A quick look at the Gaussian scalar Wiener filter

Scalar Gaussian signal in uncorrelated Gaussian noise:

y = x + n

Then Rxy = σ2
x and Ryy = σ2

x + σ2
n and we find a simple downweighting:

x̂ = W?y = RxyR−1
yy y =

σ2
x

σ2
x + σ2

n
y =

1

1 + SNR−1 y SNR =
σ2

x

σ2
n

The relative reconstruction error

E(x̂− x)2

σ2
x

= · · · =
1

1 + SNR
≤ 1

If you’re smart, you never make more than 100% error. ;-)

1. ‘Better safe than sorry’ or ‘If SNR is bad, don’t even try’.

2. Not ‘unbiased’ (what a poor choice of words!)

3. No information gain (or loss, for that matter).

4. The story becomes interesting only for vector processing.



Wiener filter for stationary processes

Consider a noisy pixelized CMB map: xp = sp + np

where E s2p = σ2
cmb and E s2p = σ2

n is the variance of the noise in each pixel.

A pixel-wise Wiener filter produces an estimated CMB: ŝp = xp
σ2

CMB
σ2

CMB+σ2
n
.

That is excessively boring and useless. Cannot we use the inter-pixel corre-

lation of the CMB which is ignored in the pixel-wise processor? Maybe some

kind of local averaging ?

Yes! Do it in harmonic space where the model becomes x`m = s`m + n`m with

E(s`ms`′m′) = C(`) δ``′ δmm′ E(n`mn`′m′) ≈ Ωσ2
n δ``′ δmm′ Ω =

4π

Npix

It exposes the SNR contrast and justifies mode-wise processing, namely:

ŝ`m = x`m
C(`)

C(`) + Ωσ2
n

The ‘Wiener beam’

That does correspond to smoothing (the MSE-optimal one).



A (double) example from Gosh et al.

1) Total emission in WMAP K band
2) After subtracting a Wiener filtered version of (an estimated) CMB map.
3) After applying the Wiener to the previous result.

Note: We are not seeing stationary processes here.
But recall that we are applying the best linear filter.
Doing better is vastly more complicated and hard to characterize.



Wiener filter for Gaussian vectors

Things get interesting with vector observations. Assume F noisy mixtures of

C components (in pixel space, harmonic space,. . . ):

x = As + n with an F × C mixing matrix A

and with Cov(s) = S and Cov(n) = N. The Gaussian Wiener estimate is

ŝ = W ?x with W ? = RsxR−1
xx .

Now, Rsx = SA† and Rxx = Cov(As + n) = ASA† + N so

W ? = SA†(ASA† + N)−1

So the best reconstruction of the observations is

Aŝ = (ASA†)(ASA† + N)−1x = Cov(signal) Cov(signal + noise)−1 x

Compare to the scalar case.



The alternate form of Wiener and the high SNR limit

Pepole with really tall matrices love the second form of the Wiener filter:

W? = SA†(ASA† + N)−1 = (A†N−1A + S−1)−1A†N−1.

The second form makes it clear that, in the high SNR limit, thats is when

A†N−1A � S−1, the Wiener filter becomes

W? → W∞ = (A†N−1A)−1A†N−1

The global reconstruction of AS is by the filter AW∞

AW∞ = A(A†N−1A)−1A†N−1

1) AW∞ does not depend on the signal covariance S and

2) AW∞ depends on A only via Span(A), i.e. is invariant under A → AT .

3) It also reads

AW∞ = N
1
2 ΠN−1

2

where Π is the orthogonal projector onto Span(N−1
2A).

Geometric interpretation: see AW∞ as an oblique projector.

Statistical interpretation: leaves out uncorrelated noise.



What do we get out of the BLUE?

Best linear unbiased estimate (BLUE):

If x = As + n, then find matrix W such that E ‖Wx − s‖2 is minimum under

the ‘unbiasedness’ constraint, that is, WA = I.

That is a pure, no compromise, noise-fighting device.

Solution: form the Lagrangian:

L(W,Λ) = E ‖Wx− s‖2 + trΛ†(WA− I)

and solve to find:

Wu = (A†X−1A)−1A†X−1 with X = Cov(x).

Notes:

1) Wu needs only X which can be replaced by a plain sample estimate!

2) AWu is an oblique projector, just as AW∞ = A(A†N−1A)−1A†N−1.



High SNR Wiener and the BLUE

For x = As + n, with X = Cov(x) = ASA† + N, etc, two forms of Wiener

W? = SA†(ASA† + N)−1 = (A†N−1A + S−1)−1A†N−1. (1)

and two limits: the BLUE Wu (enforcing unbiasedness) and the high SNR

Wiener W∞:

Wu = (A†X−1A)−1A†X−1 W∞ = (A†N−1A)−1A†N−1.

Both clearly are left inverses of A since WuA = W∞A = IC.

Because of eq. (1), AWu and AW∞ must be identical projectors. See why?

Therefore

Wu = W∞

that is, the Wiener filter converges to the BLUE at high SNR.



Wiener and the BLUE

For x = As + n, we can connect the ‘true Wiener’ and the BLUE:

W? = SA†(ASA† + N)−1 = SA†X−1 = (A†N−1A + S−1)−1A†N−1

Wu = W∞ = (A†N−1A)−1A†N−1 = (A†X−1A)−1A†X−1

because the share the same row space Span(N−1A) = Span(X−1A).

Then, let’s rephrase in terms of BLUE output. Define

su = Wux = s + nu with Nu = Cov(nu) = (A†N−1A)−1.

We find the C × F Wiener W is the concatenation of

1) C × F compression by Wu without ‘bias’ or information loss followed by

2) C × C reversible reshaping (biasing) by 1/(1 + SNR−1):

W? = (I + NuS
−1)−1︸ ︷︷ ︸

reshape

Wu︸︷︷︸
project



Internal linear combination (ILC)
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Fig. 9.— The weights wT
! with which the 5 unpolarized MAP

channels are combined into a single map are plotted as a function of
angular scale ! for the case of no foregrounds. Similar plots for the
Wiener filtering method can be found in AAO (1998) and BG99.

Fig. 10.— Same as Figure 9, but for the MID foreground scenario.

synchrotron, free-free and spinning dust emission). The
greater the assumed amplitudes are for the foregrounds,
the more aggressively the cleaning method tries to subtract
them out with large positive and negative weights. The
price for this is of course that the residual detector noise
becomes larger than for the minimum-variance weighting
of Figure 9.

4.3. The three cleaned maps and their power spectra

Transforming the cleaned multipoles ã!m back into real
space, the final result of this foreground subtraction proce-
dure is three cleaned maps of the CMB: one intensity map
T and two polarization maps E and B. Equation (29)

gives a 3× 3 covariance matrix of the form

Σ! = [AtN−1
! A]−1 =Wt

!N!W! =






ÑT
! ÑX

! 0

ÑX
! ÑE

! 0

0 0 ÑB
!




 ,

(40)
where ÑT

! , ÑE
! and ÑB

! are the cleaned power spectra of
the non-cosmic signals in the T , E and B maps, and ÑX

! is
the cross-correlation between T and E. These four power
spectra are plotted in the rightmost panels of figures 1–6
for the cleaned Boomerang, MAP and Planck maps.

Note that although the CMB power spectrum emerges
unscathed from the map merging process (since the weights
were always normalized to add up to unity), the input
power spectra of the various foregrounds generally get
their shape distorted (NP

! "= ÑP
! ). This is because the

weighting is different for each !-value, typically suppress-
ing foregrounds by a greater factor on those angular scales
where they are large and damaging than on scales where
they are fairly negligible. Indeed, the rightmost 3 panels
of Figures 1–6 show that rather complex power spectrum
features can become imprinted on the least important fore-
grounds, as the need to subtract out more important fore-
grounds shifts the relative channel weights around.

4.4. Power spectrum error bars

How accurately can we measure the four CMB power
spectra from these three cleaned maps? If we parameter-
ize our cosmological model directly in terms of the CMB
power spectrum coefficients, i.e.,

p! ≡ (CT
!(CMB), C

E
!(CMB), C

B
!(CMB), C

X
!(CMB)), (41)

we can answer this question by computing the correspond-
ing 4× 4 Fisher matrix F!. Our measurement x̃!m of the
3-dimensional multipole vector x!m from equation (33) has
a covariance matrix

C̃! = 〈x̃∗!mx̃t
!m〉 =






C̃T
! C̃X

! 0

C̃X
! C̃E

! 0

0 0 C̃B
!




 . (42)

Here C̃T
! , C̃E

! , C̃B
! and C̃X

! are the total power spectra in
the cleaned maps, combining the contributions from CMB,
detector noise and foregrounds, e.g., C̃P

! = CP
!(CMB) + ÑP

! .
Since x̃!m is by assumption Gaussian-distributed, our
sought-for 4× 4 Fisher matrix F! is given by

F!PP ′ =
1

2
tr

[

C̃−1 ∂C̃

∂CP
!(CMB)

C̃−1 ∂C̃

∂CP ′

!(CMB)

]

, (43)

which after some algebra reduces to

F! =
1

D2
!






1
2E2

!
1
2X2

! 0 −E!X!
1
2X2

!
1
2T 2

! 0 −T!X!

0 0
D2

!

2B2
!

0

−E!X! −T!X! 0 T!E! + X2
!






,

(44)
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Fig. 9.— The weights wT
! with which the 5 unpolarized MAP

channels are combined into a single map are plotted as a function of
angular scale ! for the case of no foregrounds. Similar plots for the
Wiener filtering method can be found in AAO (1998) and BG99.

Fig. 10.— Same as Figure 9, but for the MID foreground scenario.

synchrotron, free-free and spinning dust emission). The
greater the assumed amplitudes are for the foregrounds,
the more aggressively the cleaning method tries to subtract
them out with large positive and negative weights. The
price for this is of course that the residual detector noise
becomes larger than for the minimum-variance weighting
of Figure 9.

4.3. The three cleaned maps and their power spectra

Transforming the cleaned multipoles ã!m back into real
space, the final result of this foreground subtraction proce-
dure is three cleaned maps of the CMB: one intensity map
T and two polarization maps E and B. Equation (29)

gives a 3× 3 covariance matrix of the form

Σ! = [AtN−1
! A]−1 =Wt

!N!W! =






ÑT
! ÑX

! 0

ÑX
! ÑE

! 0

0 0 ÑB
!




 ,

(40)
where ÑT

! , ÑE
! and ÑB

! are the cleaned power spectra of
the non-cosmic signals in the T , E and B maps, and ÑX

! is
the cross-correlation between T and E. These four power
spectra are plotted in the rightmost panels of figures 1–6
for the cleaned Boomerang, MAP and Planck maps.

Note that although the CMB power spectrum emerges
unscathed from the map merging process (since the weights
were always normalized to add up to unity), the input
power spectra of the various foregrounds generally get
their shape distorted (NP

! "= ÑP
! ). This is because the

weighting is different for each !-value, typically suppress-
ing foregrounds by a greater factor on those angular scales
where they are large and damaging than on scales where
they are fairly negligible. Indeed, the rightmost 3 panels
of Figures 1–6 show that rather complex power spectrum
features can become imprinted on the least important fore-
grounds, as the need to subtract out more important fore-
grounds shifts the relative channel weights around.

4.4. Power spectrum error bars

How accurately can we measure the four CMB power
spectra from these three cleaned maps? If we parameter-
ize our cosmological model directly in terms of the CMB
power spectrum coefficients, i.e.,

p! ≡ (CT
!(CMB), C

E
!(CMB), C

B
!(CMB), C

X
!(CMB)), (41)

we can answer this question by computing the correspond-
ing 4× 4 Fisher matrix F!. Our measurement x̃!m of the
3-dimensional multipole vector x!m from equation (33) has
a covariance matrix

C̃! = 〈x̃∗!mx̃t
!m〉 =






C̃T
! C̃X

! 0

C̃X
! C̃E

! 0

0 0 C̃B
!




 . (42)

Here C̃T
! , C̃E

! , C̃B
! and C̃X

! are the total power spectra in
the cleaned maps, combining the contributions from CMB,
detector noise and foregrounds, e.g., C̃P

! = CP
!(CMB) + ÑP

! .
Since x̃!m is by assumption Gaussian-distributed, our
sought-for 4× 4 Fisher matrix F! is given by

F!PP ′ =
1

2
tr

[

C̃−1 ∂C̃

∂CP
!(CMB)

C̃−1 ∂C̃

∂CP ′

!(CMB)

]

, (43)

which after some algebra reduces to

F! =
1

D2
!






1
2E2

!
1
2X2

! 0 −E!X!
1
2X2

!
1
2T 2

! 0 −T!X!

0 0
D2

!

2B2
!

0

−E!X! −T!X! 0 T!E! + X2
!






,
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From Tegmark ’99

Linear ‘unbiased’ combination of the frequency channels in harmonic space:

ŝcmb
`m =

5∑
i=1

wi
`x

i
`m

Figure assumes CMB units

Left: fighting only (homogeneous) white noise (see the beam effect).

Right: fighting everything, noise and foregrounds.



The ILC and its Wiener version

1. For x = As + n, recall the BLUE estimator:

ŝ = Wux = (A†X−1A)−1A†X−1 x with X = Cov(x).

2. Assume we look for a single component: the CMB. Matrix A reduces to a

single column vector A = [a] (and a = 1 in CMB units).

The BLUE in any domain reduces to

ŝ = Wux =
a†X−1 x

a†X−1a
‘Internal’ linear combination.

3. Optionnally Wienerize the ILC map i.e. impose the Wiener beam:

̂̂s`m = ŝ`m
C`

C` + N`
Reversible smoothing minimizing overall MSE

4. Estimation of missing quantities.

• BLUE: X estimated by a sample average X̂ in the appropriate domain.

• Wiener: What about C`,N`? Estimation using Planck jackknives (woohoo!)



ILC and localization

• Pixel-based ILC (bad!)

ŝ(θ, φ) =
a†X̂−1x(θ, φ)

a†X̂−1a
X̂ =

1

Npix

∑
pix

x(θp, φp)x(θp, φp)
†

with the data covariance matrix estimated globally over the sky.

• Localize by working on sky domains and stitching.

• Localize in harmonic space (remember Tegmark’s figure)

ŝ`m =
a†X̂−1

` x`m

a†X̂−1
` a

X̂` = Smooth
[

1

2` + 1

∑
m

x`mx
†
`m

]

• Localize in both space and multipole using wavelets. Needlet ILC.

‘Optimally’ expose the local SNR condition.



And now for something different

Blind component separation

a.k.a. ICA: Independent component analysis.


