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What COBE’'s DMR saw.

e Temperature map: T(0,¢) ~ T, = 2.725K,
e Very isotropic (good!)
e Shows a x1000 expansion since recombination.

e T(0,¢) — T, ~ (d,@(6,¢)): dipole anisotropy.
e Quite weak: ||d||/T» = O(1073).
e Measures COBE’s velocity in the CMB sea.

o 5T(0,¢) =T(0,9) — To — (d, (0, 9))
e Finally reveals cosmological CMB anisotropies
e A very delicate measure: ||67| ~ 104K




What W-MAP saw.

4 W-MAP channels after subtraction of the monopole and dipole components.

Foreground emissions clearly dominate the low Galactic latitude regions.
Homogeneous extra-Galactic foregrounds are also expected everywhere.

T he diversity offered by multi-frequency observations allows for CMB cleaning.
WMAP ILC map looks pretty good:




What Planck may see (according to the Blue Book)

LFI looks at 30, 44, 70 GHz with radiometers
while HFI looks at 100, 143, 217, 353, 545, 857 GHz with bolometers.



Planck information path and some jargon

1. From the sky to detectors; from a spinning satellite to time-lines.
Planck has TOI problems (pun).

From time lines to ‘phase binned rings’.

From rings to spherical maps: map making.
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From multi-channel spherical maps to a CMB map

5. From a CMB map to its angular spectrum: CMB cleaning or component
separation.

6. From the spectrum to the likelihood of cosmological model.

7. From likelihood to (probabilty distribution of) the cosmo. parameters.

T he divide and conquer stratgey of steps 4,5,6,7 would be optimal for full sky
observations in simple models (nice noise, nice foregrounds).

Otherwise, the ‘optimal’ processing forbids such a factorization.

Still needs to trade off statistical efficiency for simplicity and CPU cycles.



Foregrounds

The Cosmic Microwave Background is the backgroundest thing there is.
Therefore, any other emission must be a foreground. Such as:

e The Cosmic Infrared Background (CIB) is a backgroundish foreground due
to distant, unresolved, dusty Galaxies.

e Galaxy clusters seen via the Sunyaev-Zeldovitch (SZ) effect.
e Point sources: radio galaxies, ...

e Galactic (Milky Way) dust emission.

e Galactic (Milky Way) synchrotron emission.

e Galactic (Milky Way) free-free emission.

— Component separation: sort out all those emissions.

— CMB cleaning: get the cleanest (in some sense) CMB map, do cosmol-
ogy with it. Pass CMB-free maps to anyone interested (in CIB, Galaxy, SZ
clusters,...).



Tactics for dealing with foregrounds

If one wants to do CMB, foregrounds are the ennemies.

Some tactics to minimize foreground annoyances:
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. Observe at frequencies where CMB anisotropies are stronger than the

foregrounds
Look at regions of the sky where (Galactic) foregrounds are the weakest.
Mask out point sources (if at reasonable area 10ss)

Model contribution from diffuse foregrounds

. Do component separation/CMB extraction:

predict foregrounds using multi-channel observations

i.e. exploit foreground coherence across frequency, hoping

1) to overcome the limitations of the above approaches and

2) to combine ‘optimally’ infi from all of the sky and all frequencies.



Distribution of Galactic foregrounds. 1) Spatial distribution

Spatial distribution: see page 5 for some ideas about it. Roughly controlled
OoNn average by a co-secant law in a simple parallel slab Galactic model.
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Estimates by WMARP:
for synchrotron and free-free at 22 GHz and for dust at 90 GHz.



Distribution of Galactic foregrounds. 2) Frequency distribution
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A rough estimate for the 5 WMAP frequencies, with ‘uncertainties’.



Joint distribution in frequency/multipole space for W-MAP
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An observing window through the galactic foregrounds as a function of both
frequency and angular scale.
Contours: relative strength of CMB wrt foreground signals.



A more optimistic figure from Planck’s Blue Book
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Extensive frequency coverage: good for component separation.

The plot is ‘optimistic’ because it does not show the uncertainties in spectral
scaling.



T he mixing model for rigid components

The tth map, observed at frequency v;, is a noisy superposition of components:

C
X;(0,0) = S X£(0,8) + N;(0, ). ¢ = cmb, dust, SZ, . ..

c=1
If the emission of component ¢ changes with v; while keeping the same spatial
pattern, then that component is said to ‘scale rigidly’ and we have

If all components scale rigidly or, i.o.w. are fully coherent, then stacking the
sky maps seen at all F' observation frequencies:

[ Xl(.97¢) |

| Xr(0,9) |
In these lectures, we focus on that simple model and consider the statistial
aspects of component separation, that is, the best recovery of S given X and
various amounts of prior information.

X(0,9) = = AS(0,¢9)+ N0, ) A :the F' x C mixing matrix.

This is a simplified setting, complications may be introduced later. ..



T he component separation problem may not be what you think

e If the beams have been perfectly corrected and
e if there are no more foreground emissions than channels and
e if each foreground is fully coherent so that an accurate model is

[ X1(07¢> |

X(Q,Qb) — :
| X4(0,0) |

= AS(0,9) + N(6,9)

e if there is no noise: N(0,¢) = 0 and

e if the mixing matrix A is known perfectly,

then, there is no component separation problem since

S(0,9) = BX(0,¢) for any C x F matrix B such that BA = I

The problem is not the separation itself but dealing with the uncertainties and
the approximations in the above statement.



Maximal uncertainty: Blind component separation (a.k.a. ICA)
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JADE finds uncorrelated, maximally non Gaussian components.
Here, results on 5 W-MAP channels degraded to common resolution.
See also AItICA (based on FastICA) by Baccigalupi, Maino et al.




Pixel space versus harmonic space
Ideally, we should work jointly on big data matrices X of size Nchan X Npixels-

In practice, our processors rather work on Ncpan X 1 vectors X (t)
where t is an index for:

a direction in the sky t = (6, ¢)

a spherical harmonic coefficient t = (I, m)

a wavelet coefficient t = (j,k) (to be discussed later).

In theory, one can move freely from ‘pixel space’ to harmonic space (and back):

atm = [ XO,0Vjn(0,8)  ©  X(0,0) =3 Y apmVim(9, ¢)

¢y m

T he basic mixture model

X(0,9) =AS(0,9) + N(0,9)
retains the same structure in harmonic space:
Xﬁm — ASEm + Ném

but the statistical properties are dramatically different.



HEALPix (Gorski, Hivon et al.)

1. Hierarchical structure. 5,,;,:__;;’;5\ Pl Ay
Essential for large data bases, neighbor- / / \i:j\ F;’“ \
hood search, multi-resolution analysis,. ..
2. Equal pixel area.

Preserves white noise, among other things.
3. Iso-latitude distribution.

Recall YV;,,(0,$) = P;,,(cosf) e™mP,

0 direction: Associated Legendre func-
tions are evaluated via slow recursions.

¢ direction: FFT possible.
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The HEALPIx grid at resolution r has Npjx = 12NZ,, = 12 - 22" pixels.
It offers synthesis and (approximate) analysis up to fmax ~ 3 X Nsige:

4
X(Qpa ¢p) — Z Z aﬁmyﬁm(epa pr) N—WZX(QZ% ¢p)yzm(9pa pr) ~ Gy,

ngmax |m|§€ DiX p
Jargon: WMAP delivers at Ngjge = 512, Planck at Ngjge = 2048.



Wiener filters and friends
In the next slides, we focus in the generic problem of estimating the C' x 1
‘component vector’ s from F' noisy mixtures available on a vector x:

r= As+n The ‘mixing matrix’ A has size F' x C

Ask to yourself (or to me): when is it critical that F > C 7

Often, but not necessarily always, we consider the case of redundant observa-
tions: matrix A is ‘tall’” with linearly independent columns.



Some notations, basic properties

1. The n x n identity matrix I,,. Also denoted I if clear from context.

2. Transpose: [AT]Z-]- = Aj;; trace: trA =73 Ay,
Scalar product (A|B) = > ; Py A;iBij = 1tr ABT:

Euclidian norm || A[|? = ¥, ¥; A7, = tr AAT (works for vectors and matrices).
3. Column space of a matrix A denoted Span(A).

4. Moore-Penrose pseudo inverse A#.
For a full-column-rank A, it is A% = (ATA)~1AT.
It is one of these matrices such that A# A = I and
the unique matrix such that AA# is the orthogonal projector onto Span(A).

5. Square root of a non-negative matrix R:
any matrix W such that R = WWT.

6. Expectation E(X) of a random variable.
E(X|Y): expectation of X conditonned on observing Y.

7. Covariance matrix of a random vector X: Cov(X)=EXXT —EX E XT.
Cross-covariance for vectors X and Y: Cov(X,Y)=EXYT—EX EYT.



The best MSE predictor
Try to predict a vector X based on the observation of a vector Y.

Assume a probablistic relation between X and Y, represented by their joint
probability distribution p(X,Y).

Problem: What the best predictor in the MSE, that is, what is the function
f(Y) giving the minimum mean squared error:
mjjn EIX — f(Y)|I?
The solution is the conditional expectation of X given Y
fA(Y) = E(X|Y).
Often called ‘the Wiener filter'.

Proof:



The best linear filter

Best (in the MSE sense) linear predictor W of X given Y
minE || X — WY||?
1%

Depends on Rg;; = Cov(X) and on Rzy = Cov(X,Y), and only on that:
W* = ReyR,,!

regardless of the distribution of (X,Y) (finite variance)

For (jointly!) Gaussian vectors X and Y, the Wiener filter boils down to:
E(X|Y) = RayR;,' Y

This is linear in Y !



Statistical efficiency versus simplicity

For non Gaussian observations, the best processor (in terms of mean squqred
error) is non linear. BUT,

1. In order to implement the best non linear processor on non Gaussian vari-

ables, one needs to know or to estimate the non Gaussian part of their
distribution.

2. The best non linear filtering may be significantly (or immensely) more
difficult to implement.

3. Non-linear filtering may induce non Gaussianities |

4. The characterization and propagation of errors is much harder for non
linear processing.

5. The CMB is Gaussian-distributed in a first very good approximation.



A quick look at the Gaussian scalar Wiener filter

Scalar Gaussian signal in uncorrelated Gaussian noise:

) = 48 <> T
Then Ryy = 02 and Ry, = 02 + o2 and we find a simple downweighting:
2 1 2

F=Wwy=RoyRly= 52— y= Y SNR = 72
YW T T 52 4 52 1+ SNR™! o
The relative reconstruction error
E(7 — 2
(Z — x) _ 1 <1
o2 1 4+ SNR

If you're smart, you never make more than 100% error. ;-)

1. ‘Better safe than sorry’ or ‘If SNR is bad, don't even try'.
Not ‘unbiased’ (what a poor choice of words!)

No information gain (or loss, for that matter).

> 80

The story becomes interesting only for vector processing.



Wiener filter for stationary processes

Consider a noisy pixelized CMB map: xp = sp + nyp

where Esg =02, and Esg — o2 is the variance of the noise in each pixel.

2

A pixel-wise Wiener filter produces an estimated CMB: &, = x,— CMB _
oCMBT R

That is excessively boring and useless. Cannot we use the inter-pixel corre-
lation of the CMB which is ignored in the pixel-wise processor? Maybe some
kind of local averaging 7

Yes! Do it in harmonic space where the model becomes zy,,, = sy,,, + 1y, With

4
E(Sfmsé’m’) = C(g) 5@/ 5mm’ E(ngmng/m/) ~ QO‘,,% 566’ 5mm’ Y= Nﬂ-

PiX

It exposes the SNR contrast and justifies mode-wise processing, namely:

~ C'(¢)
S — 5
That does correspond to smoothing (the MSE-optimal one).

The ‘Wiener beam’




A (double) example from Gosh et al.

K—Band E—Band E—Band

{70.0, —30.8) Galnctic {70.0, —30.8) Galnctic {700, —30.8) Galnctic

1) Total emission in WMAP K band
2) After subtracting a Wiener filtered version of (an estimated) CMB map.
3) After applying the Wiener to the previous result.

Note: We are not seeing stationary processes here.
But recall that we are applying the best linear filter.
Doing better is vastly more complicated and hard to characterize.



Wiener filter for Gaussian vectors

Things get interesting with vector observations. Assume F' noisy mixtures of
C components (in pixel space, harmonic space,. .. ):

r—= As+n with an F' x C mixing matrix A
and with Cov(s) =S and Cov(n) = N. The Gaussian Wiener estimate is
§=W*s with W*= Rs:R,..
Now, Rsz = SAT and Ryr = Cov(As +n) = ASAT 4+ N so
W* = SAT(ASAT + N)~1
So the best reconstruction of the observations is
As = (ASAT(ASAT + N)~ 1z = Cov(signal) Cov(signal + noise) ! =

Compare to the scalar case.



T he alternate form of Wiener and the high SNR limit

Pepole with really tall matrices love the second form of the Wiener filter:
= SAT(ASAT+ N) 1 = (UAIN"TA4+ s )~ TaINT,

The second form makes it clear that, in the high SNR limit, thats is when
ATN-1A4 <« S—1 the Wiener filter becomes

Wi — Weo = (AIN"14)714TN1
The global reconstruction of AS is by the filter AW
AWoo = A(ATN"14) 14N

1) AW does not depend on the signal covariance S and
2) AW+ depends on A only via Span(A), i.e. is invariant under A — AT
3) It also reads

1 1
AWs = N2TIN "2

1
where I is the orthogonal projector onto Span(IN"2A4).

Geometric interpretation: see AW~ as an oblique projector.
Statistical interpretation: leaves out uncorrelated noise.



What do we get out of the BLUE?

Best linear unbiased estimate (BLUE):
If £ = As 4+ n, then find matrix W such that E||Wz — s||? is minimum under
the ‘unbiasedness’ constraint, that is, WA = 1.

That is a pure, no compromise, noise-fighting device.

Solution: form the Lagrangian:

LW,N) =E||[Wz —s||? 4+ trAT(WA —I)

and solve to find:

Wy = (ATX"14)"1aTx 1 with X = Cov(z).

Notes:
1) W, needs only X which can be replaced by a plain sample estimate!

2) AW, is an oblique projector, just as AWs = A(ATN—14)-14ATN-1,



High SNR Wiener and the BLUE

For z = As + n, with X = Cov(z) = ASAT + N, etc, two forms of Wiener

Wy =SAT(ASAT 4+ N)"1 = (AIN"1A 4+ S )~ TaIN—T (1)

and two limits: the BLUE W, (enforcing unbiasedness) and the high SNR
Wiener W

Wy = (ATX1A)1ATX"1 wo=UN1T4)"1aN"1L

Both clearly are left inverses of A since W A = WA = Io.
Because of eq. (1), AW, and AWs must be identical projectors. See why?

Therefore

Wy = Wao
that is, the Wiener filter converges to the BLUE at high SNR.



Wiener and the BLUE

For x = As + n, we can connect the ‘true Wiener’ and the BLUE:

Wi =SAT(ASAT4+ N) 1 =8SA4TX 1 = (UAN"144+ S H"14aINT
Wy = Weo = (AINTTA)TATNTL = (4ATX14)"1aTX 1

because the share the same row space Span(N—1A4) = Span(X—14).

Then, let's rephrase in terms of BLUE output. Define

su=Wyz=s+n, with N, = Cov(n,) = (ATN"14A)"1

We find the C' x F' Wiener W is the concatenation of
1) C x FF compression by W, without ‘bias’ or information loss followed by
2) C x C reversible reshaping (biasing) by 1/(1 +SNR™1):

—-1\-1
=+ N.S ) Wu
reshape project



Internal linear combination (ILC)
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From Tegmark '99

Linear ‘unbiased’ combination of the frequency channels in harmonic space:
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Figure assumes CMB units

Left: fighting only (homogeneous) white noise (see the beam effect).

Right: fighting everything, noise and foregrounds.



The ILC and its Wiener version

1. For x = As + n, recall the BLUE estimator:
s=Wyr = (ATX1A) 1aTX 1y with X = Cov(z).
2. Assume we look for a single component: the CMB. Matrix A reduces to a

single column vector A = [a] (and a=1 in CMB units).
The BLUE in any domain reduces to

s = Wyx = ‘Internal’ linear combination.

3. Optionnally Wienerize the ILC map i.e. impose the Wiener beam:

~ . CYy
S — S
m Emcg_l_NE

Reversible smoothing minimizing overall MSE

4. Estimation of missing quantities.
e BLUE: X estimated by a sample average X in the appropriate domain.
e Wiener: What about Cy, N,7? Estimation using Planck jackknives (woohoo!)



ILC and localization

e Pixel-based ILC (bad!)

T —1 _—
al X 33(9, Qb) X — - Z qj(Qp, Q5p)513(0p> Cbp)T

A X-1a Npix 2=

s(0,¢) =

with the data covariance matrix estimated globally over the sky.

e Localize by working on sky domains ° and stitching.

e Localize in harmonic space (remember Tegmark'’s figure)

1
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aTX\Z 1a

Spm —

e Localize in both space and multipole using wavelets. Needlet ILC.

‘Optimally’ expose the local SNR condition.



And now for something different

Blind component separation

a.k.a. ICA: Independent component analysis.



