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OUTLINE

CMB polarization

• Polarization observables

• Physics of CMB polarization

• Observational status and applications

• (Near-)Future of CMB research

CMB lensing

• Basics of CMB lensing

• Lensing of CMB power spectra

• Lensing reconstruction

• Applications of lensing reconstruction

• Lensing and primordial non-
Gaussianity
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USEFUL REFERENCES

• CMB polarization

– Wayne Hu’s website (http://background.uchicago.edu/~whu/)

– Hu & White’s “Polarization primer” (arXiv:astro-ph/9706147)

– AC’s summer school lecture notes (arXiv:0903.5158 and
arXiv:astro-ph/0403344)

– Kosowsky’s “Introduction to Microwave Background Polarization”
(arXiv:astro-ph/9904102)

• CMB lensing

– Lewis & AC’s “Weak gravitational lensing of the CMB” (arXiv:astro-ph/0601594)

– Hanson, AC & Lewis’s “Weak lensing of the CMB” (arXiv:0911.0612)

• Applications of CMB lensing

– Smith et al. CMBPol document (arXiv:0811.3916)

• Textbooks covering most of the above

– The Cosmic Microwave Background by Ruth Durrer (CUP)
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INTRODUCTION TO CMB POLARIZATION
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CMB POLARIZATION: STOKES PARAMETERS

• For plane wave along z, symmetric trace-free correlation tensor of electric field E
defines (transverse) linear polarization tensor:

Pab ≡
( 1

2〈E
2
x − E2

y 〉 〈ExEy〉
〈ExEy〉 −1

2〈E
2
x − E2

y 〉

)
≡

1

2

(
Q U
U −Q

)

Q > 0 Q < 0 U > 0 U < 0
 

• Under right-handed rotation of x and y through ψ about propagation direction (z)

Q± iU → (Q± iU)e∓2iψ ⇒ Q+ iU is spin -2
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E AND B MODES: VECTOR FIELDS

• As a warm-up, can always write vector field in 2D as

Va = gradient + divergence-free vector
= ∇aVE + εa

b∇bVB

• Consider spin-±1 components of V on null basis m± ≡ (∂θ ± icosecθ∂φ)

– Since εabma
± = ∓imb

± have

m± · V = (∂θ ± icosecθ∂φ)VE ∓ i(∂θ ± icosecθ∂φ)VB
= (∂θ ± icosecθ∂φ)(VE ∓ iVB)

• Define spin-weight derivatives via

ðsη = − sins θ(∂θ + icosec∂φ)(sin−s θsη)

ð̄sη = − sin−s θ(∂θ − icosec∂φ)(sins θsη)

– Then spin components of V are spin-weight derivatives of complex potential:

m+ · V = −ð(VE − iVB), m− · V = −ð̄(VE + iVB)
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E AND B MODES FOR POLARIZATION

• Generalisation of E-B decomposition to 2nd-rank STF tensors

Pab(n̂) = ∇〈a∇b〉PE + εc(a∇b)∇cPB

• Components of Pab on null basis are complex combinations of Stokes parameters
(defined in (θ,−φ) basis following IAU)

ma
±m

b
±Pab = Q∓ iU

• Evaluating null components of covariant derivatives gives

Q+ iU = ð̄ð̄(PE − iPB), Q− iU = ðð(PE + iPB)

• PE and PB are scalar fields⇒ can expand in usual spherical harmonics:

PE(n̂) =
∑
lm

√
(l−2)!
(l+2)!ElmYlm(n̂), PB(n̂) =

∑
lm

√
(l−2)!
(l+2)!BlmYlm(n̂)

– l-dependent factors “undo” ∼ l2 factors from double derivatives to give

Q± iU =
∑
lm

(Elm ∓ iBlm)

√
(l−2)!
(l+2)!

{
ð̄ð̄
ðð

}
Ylm =

∑
lm

(Elm ∓ iBlm)∓2Ylm
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FLAT-SKY LIMIT

• Work near North pole and can use global x,−y basis now

• Since m± = e∓iφ(x̂± iŷ)

(Q± iU)flat = e∓2iφ(Q± iU)

= e∓2iφ
{

ð̄ð̄
ðð

}
(PE ∓ iPB)

≈ e∓2iφe±2iφ(∂x ∓ i∂y)2(PE ∓ iPB)

• In Fourier space, with e.g. PE(l) = E(l)/l2 have

(Q± iU)flat(l) = −e∓2iφl(E ∓ iB)(l)

– Fourier modes E(l) produces Q polarization on basis adapted to l:
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TWO-POINT STATISTICS

• Statistical isotropy demands 2-point correlations of form

〈ElmE∗l′m′〉 = CEl δll′δmm′

• For Gaussian fluctuations all information in power spectrum Cl

• Under parity transformations Q(n̂)→ Q(−n̂) and U(n̂)→ −U(−n̂) so

P̂ (Q± iU)(n̂) = (Q∓ iU)(−n̂)

⇒
∑
lm

P̂ (Elm ∓ iBlm)∓2Ylm(n̂) =
∑
lm

(Elm ± iBlm)±2Ylm(−n̂)

=
∑
lm

(−1)l(Elm ± iBlm)∓2Ylm(n̂)

– Follows that Elm → (−1)lElm under parity but Blm → −(−1)lBlm

– Cannot have E-B or T -B correlations if parity respected in mean

• Flat-sky limit of power spectra: e.g. 〈E(l)E∗(l′)〉 = CEl δ(l− l
′)
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PHYSICS OF CMB POLARIZATION
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CMB POLARIZATION: THOMSON SCATTERING

• Photon diffusion around recombination→ local tem-
perature quadrupole

– Subsequent Thomson scattering generates (par-
tial) linear polarization with r.m.s. ∼ 5µK from
density perturbations

Polarization

Hot

Cold.
• Thomson scattering of radiation quadrupole produces linear polarization

(dimensionless temperature units!)

d(Q± iU)(e) =
3

5
aneσTdη

∑
m
±2Y2m(e)

E2m −
√

1

6
Θ2m


– Purely electric quadrupole (l = 2)

• In linear theory, generated Q+ iU then conserved for free-streaming radiation

– Suppressed by e−τ if further scattering at reionization
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PHYSICS OF CMB POLARIZATION: SCALAR PERTURBATIONS

• Single plane wave of scalar perturbation has Θ2m ∝ Y ∗2m(k̂)⇒ with k̂ along z,
dQ ∝ sin2 θ and dU = 0

- -

Plane-wave scalar quadrupole Electric quadrupole (m = 0) Pure E mode

Scatter Modulate

• Linear scalar perturbations produce only E-mode polarization
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QUADRUPOLE SOURCE TERM

• Consider scales large compared to diffusion-damping scale (few×10 Mpc)

– Temperature fluctuation seen by electron determined by conditions at previous
scattering lp away:

Θ(e) + ψ ≈ (Θ0 + ψ)(−lpe) + e · v(b)(−lpe)

≈ (Θ0 + ψ)− lpei∂i(Θ0 + ψ) +
1

2
l2pe

iej∂i∂j(Θ0 + ψ)

+ e · v(b) − lpe
iej∂jv(b)i + · · ·

– Dominant temperature quadrupole for each source from trace-free part of eiej

component [e〈iej〉 = eiej − δij/3]:∑
m

Θ2mY2m(e) ∼
1

2
l2pe
〈iej〉∂i∂j(Θ0 + ψ)− lpe〈iej〉∂jv(b)i

– Intrinsic temperature contribution suppressed by factor ∼ klp cf Doppler

• Polarization traces baryon velocity at recombination⇒ peaks at troughs of ∆T

• Large-angle polarization from recombination small since quadrupole source
generated causally
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SCALAR POLARIZATION POWER SPECTRA

• Polarization mostly probing vb at last
scattering

– CEl peaks at minima of CTl

• Correlations between T and E

• Additional large-angle polarization from
scattering around reionization

• B-modes are generated at second or-
der, e.g. by lensing (see later)

13



CORRELATED POLARIZATION IN REAL SPACE

• On largest scales, infall into potential wells at last scattering generates e.g. radial
polarization around large-scale cold spots

• Sign of correlation scale-dependent inside horizon

. Cold

Hot

Polarization

Converging velocity flow

∆Τ < 0

(Sachs−Wolfe)

Large−scale overdensity
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CORRELATED POLARIZATION IN REAL SPACE
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LARGE-ANGLE POLARIZATION FROM REIONIZATION

• Temperature quadrupole at reionization peaks around k(ηre − η∗) ∼ 2

– Re-scattering generates polarization on this linear scale→ projects to
l ∼ 2(η0 − ηre)/(ηre − η∗)

– Amplitude of polarization ∝ optical depth through reionization→ best way to
measure τ with CMB

16



GRAVITY WAVES AND THE CMB

• Tensor metric perturbations ds2 = a2[dη2 − (δij + hij)dx
idxj] with δijhij = 0

– Shear (anisotropic expansion) ∝ ḣij gives anisotropic redshifting⇒

Θ(n̂) ≈ −1
2

∫
dη ḣijn̂

in̂j

– Only contributes on large scales since hij decays like a−1 after entering horizon
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CMB POLARIZATION FROM GRAVITY WAVES

• For single +-polarized gravity wave with k̂ along z, Θ2m ∝ δm2 + δm−2 so
dQ ∝ (1 + cos2 θ) cos 2φ and dU ∝ − cos θ sin 2φ

- �
�
�
�
�
�
�
�
�
��

HH
HHH

HHH
HHHj

Plane-wave tensor quadrupole Electric quadrupole (|m| = 2)

Scatter

Modulate E mode

B mode

• Gravity waves produce both E- and B-mode polarization (with roughly equal
power)
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SCALAR AND TENSOR POWER SPECTRA (r = 0.2)
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OBSERVATIONAL STATUS AND APPLICATIONS

20



CURRENT MEASUREMENTS: TE AND EE

• Super-horizon, adiabatic fluctuations from TE anti-correlation for 5◦ > θ > 1◦

• Optical depth through reionization: τ = 0.087± 0.014 from WMAP7
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TE AND EE FORECASTS FOR PLANCK
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PARAMETERS FROM POLARIZATION: ACOUSTIC PEAKS AND DAMPING TAIL

• 30% improvement on Ωbh
2, Ωmh2, h and ns from Planck E modes at l > 20

• Other beneficiaries of polarization: isocurvature modes, Helium abundance etc.
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PARAMETERS FROM LARGE-ANGLE POLARIZATION

• Reionization: τ = 0.087± 0.014 from WMAP7

– Expect ∆τ = 0.004 from nominal Planck mission

• Constraints on gravity waves (next)

Page et al. (2007)
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PRIMORDIAL GRAVITATIONAL WAVES AND B-MODES

• Well motivated by inflation models

– Amplitude depends only on Hubble parameter during inflation

– Should be detectable in CMB in large-field models (∆φ > MPl requiring
GUT-scale inflation)

• Detection would rule out some models (e.g. cyclic)

– Also problematic for many string-inspired models

• Current best limit from WMAP7 (∆T and E) alone: r < 0.36 (95% CL)

• Improves to r < 0.24 with inclusion of BAO and H0 (degeneracy breaking)
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GRAVITATIONAL WAVES IN THE CMB

• Cosmic variance of dominant scalar fluctuations limits ∆r = 0.07 from T and
∆r = 0.02 if include E

– Degeneracies make actual limits worse; WMAP7 alone r < 0.36 (95% CL)
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CURRENT CONSTRAINTS: BB

• BICEP limit (Chiang et al. 2009) on r from B-modes alone: r < 0.73 (95% CL)

• B-modes will improve on r < 0.24 in next generation of experiments (Planck,
BICEP2, EBEX, SPIDER etc.)
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THE (NEAR-)FUTURE OF CMB

• Better measurements of higher peaks and damping tail

– Sub-percent errors in acoustic parameters from Planck and shape of primordial
power spectrum

• Better E-mode polarization

– Some improvements in parameters and tests of large-angle anomalies

• Direct detection of weak lensing effect in CMB temperature and polarization

• Physics from scattering secondaries (reionization and clusters) and lensing
reconstruction

• Tighter constraints on non-Gaussianity (∆fNL ∼ 5 from Planck)

– Polarization improves ∆fNL by up to factor 2

• Gravity waves from B-mode polarization (Einf and improved inflation
phenomenology)?
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INTRODUCTION TO CMB LENSING
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CMB LENSING

• CMB photons gravitationally deflected by LSS in propagating from last-scattering
surface

• Geometric deflections conserve surface brightness so no effect on uniform
2.275 K CMB

• CMB anisotropies and polarization mostly sourced around last scattering over
distance ∼ 100 Mpc

– Narrow compared to 14000 Mpc distance to last scattering: approximate CMB
as single source plane

• Only consider transverse displacements here

– Radial displacements are suppressed geometrically
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CMB LENSING ORDERS OF MAGNITUDE

last scattering surface

δβ

α χ

χ*

• Bending angle δβ = −δχ∇⊥(φ+ ψ)

– Typical potential ∼ 2× 10−5 so ex-
pect δβ ∼ 10−4

• Coherence size of potentials
∼ 300 Mpc so random walk with
14000/300 ∼ 50 steps from last
scattering

– Net deflection typically
√

50 ×
10−4 ∼ 2 arcmin

– Coherent over 300/7000 ∼ 2◦ for
lens midway to last scattering
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QUALITATIVE EFFECTS ON CMB OBSERVABLES

• Acoustic peaks on degree scales:

– Deflections much smaller (2 arcmin) but coherent over size of acoustic features

– Typical CMB hotspot has its size increased/decreased by 2/60 ∼ 3%

smoothing out primary acoustic peaks

• Primary CMB smooth on arcmin scales (diffusion damping):

– Arcmin scale lenses imprint (non-Gaussian) small scale power exceeding
primary CMB

• Only relative deflections are important!

• Transforms E-mode polarization to B (and vice versa)

• Introduces non-Gaussianity to CMB
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SO WHY SHOULD YOU CARE?

• Must include effect on power spectra to avoid biases in parameter determination

– Can use this to break (some!) degeneracies

• Lens-induced B-modes act like white noise for primordial gravity wave searches

• Use non-Gaussianity to reconstruct deflections

– Further constraints on dark parameters

• Must account for “local” bispectrum in f local
NL searches

• Constrain cluster masses at high redshift
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COMPARISONS WITH GALAXY LENSING

• Single source plane at known distance (fixed by background cosmology)

• Statistics of sources on source plane well understood

– Given by linear-theory power spectrum

– Magnification and shear equally useful so work with deflection angles directly

• Sources are large, i.e. CMB is smooth on small scales

– CMB features do not “point-like” sample shear and magnification

• Source plane very distant – most efficient lenses at z ∼ 2 – and large linear lenses

• Full-sky observations so account for spherical geometry for accurate correlation
results
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LENSING DEFLECTIONS

• Lensing preserves brightness; simply re-maps temperature and polarization from
recombination

Θ̃(n̂) = Θ(n̂+α) (Q̃± iŨ)(n̂) = (Q± iU)(n̂+α)

• Lensing (angular) deflection field from summing contributions of lenses along line
of sight:

α(n̂) = −2
∫ χ∗

0
dχ

dA(χ∗ − χ)

dA(χ∗)
∇⊥Ψ(χn̂; η0 − χ) 2Ψ ≡ ψN + φN

= −2
∫ χ∗

0
dχ

dA(χ∗ − χ)

dA(χ∗)dA(χ)
∇n̂Ψ(χn̂; η0 − χ)

– To O(Ψ) can take integral along background line of sight (Born approximation)

• Deflection is then angular gradient of deflection potential, α = ∇n̂ψ:

ψ(n̂) ≡ −2
∫ χ∗

0
dχ

dA(χ∗ − χ)

dA(χ∗)dA(χ)
Ψ(χn̂; η0 − χ)
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POWER SPECTRUM OF LENSING POTENTIAL

ψ(n̂) = −2
∫ χ∗

0
dχ

dA(χ∗ − χ)

dA(χ∗)dA(χ)
Ψ(n̂χ; η0 − χ)

• Fourier expand (Weyl) potential as Ψ(x; η) =
∫ d3k

(2π)3/2Ψ(k; η)eik·x and use

plane-wave expansion to get

ψlm = −8πil
∫
dχ

d3k

(2π)3/2

dA(χ∗ − χ)

dA(χ∗)dA(χ)
Ψ(k; η0 − χ)jl(kχ)Y ∗lm(k̂)

• In terms of unequal-time power spectrum of Ψ(k; η),

〈Ψ(k; η)Ψ∗(k′; η′) =
2π2

k3
PΨ(k; η, η′)δ(k − k′)

get power spectrum of deflection potential

Cψ
l = 16π

∫
d ln k

∫ χ∗

0
dχ

∫ χ∗

0
dχ′PΨ(k; η0 − χ, η0 − χ′)jl(kχ)jl(kχ

′)
dA(χ∗ − χ)

dA(χ∗)dA(χ)

dA(χ∗ − χ′)
dA(χ∗)dA(χ′)
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DEFLECTION POWER SPECTRUM

• Limber approximation ok except on large scales:

C
ψ
l ≈

8π2

l3

∫ χ∗
0

χdχPΨ(l/χ; η0 − χ)

(
dA(χ∗ − χ)

dA(χ∗)dA(χ)

)2

• Deflection angle power spectrum is l(l + 1)Cψl

– d〈α2〉/d ln l ≈ [l(l + 1)]2Cψl /2π peaks at l ∼ 40 (few degrees coherence)

– Receives contributions out to high redshift
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Θ-ψ CORRELATION

• ISW (z < 1) sourced by LSS that also lenses CMB

– Produces positive large-angle Θ-ψ correlation, important for non-Gaussianity
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LENSING OF CMB POWER SPECTRA
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LENSING EFFECT ON TEMPERATURE

Θ̃(x) = Θ(x+α) = Θ(x) +α(x) ·∇Θ(x) + · · ·

Hanson, AC & Lewis (2009)

• Antony Lewis’s temperature and polarization re-mapping tool LensPix:
http://cosmologist.info/lenspix/
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CALCULATING LENSED SPECTRA: APPROXIMATIONS

• Lensing potential uncorrelated to temperature

– Good, except on large scales (ISW) but ignoring is harmless

• Gaussian lensing potential

– Breaks down on non-linear scales but even then ok for calculating lensed power
spectra

• Optional simplifying assumptions:

– Work in flat-sky limit (induces percent level errors in lensed BB)

– Series expansion to leading order (will have to relax later)
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FLAT-SKY TEMPERATURE ANISOTROPIES

• Expand unlensed temperature in Fourier modes:

Θ(x) =
∫
d2l

2π
Θ(l)eil·x , 〈Θ(l)Θ∗(l′)〉 = Clδ(l− l′)

• Since only relative lensing displacements important, convenient to work with
correlation functions

ξ(r) = 〈Θ(x)Θ(x+ r)〉 =
∫

d2l

(2π)2
Cle

il·r

⇒ Cl =
∫
d2rξ(r)e−il·r = 2π

∫
rdr ξ(r)J0(lr)

• Lensed correlation function by r → r +α(x+ r)−α(x) ≡ r +α′ −α and
averaging over lenses:

ξ̃(r) =
∫

d2l

(2π)2
Cl〈eil·reil·(α

′−α)〉

– Only depends on relative displacement α′ −α!
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LEADING-ORDER CALCULATION

• Expand expectation of exponential as

〈eil·(α
′−α)〉 = 1 + i〈l · (α′ −α)〉 −

1

2
〈[l · (α′ −α)]2〉+ · · ·

= 1− 〈(l ·α)2〉+ lilj〈αiα′j〉+ (statistical isotropy)

• Correlation tensor of displacements is

〈αiα′j〉 =
∫

d2L

(2π)2
LiLjC

ψ
Le

iL·r

– Follows that

〈(l ·α)2〉 =
1

2
l2
∫
LdL

2π
L2C

ψ
L =

1

2
l2〈α2〉 (independent of r)

〈(l ·α)(l ·α′)〉 =
∫

d2L

(2π)2
C
ψ
L(L · l)2eiL·r

• Extracting lensed Cl from correlation function gives

C̃l =
[
1−

1

2
l2〈α2〉

]
Cl +

∫
d2r

∫
d2l′

(2π)2

∫
d2L

(2π)2
Cl′e

−il·reil
′·rCψL(L · l′)2eiL·r︸ ︷︷ ︸

=
∫

d2l′
(2π)2Cl′C

ψ

|l−l′|[l
′·(l−l′)]2
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LENSED TEMPERATURE POWER SPECTRUM

C̃l =
[
1−

1

2
l2〈α2〉

]
Cl +

∫
d2l′

(2π)2
Cl′C

ψ
|l−l′|[l

′ · (l− l′)]2

• Second term is a convolution: smooths acoustic peaks and generates small-scale
power in damping tail
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CANCELLATIONS BETWEEN TERMS

• Taylor expansion out of control in map at l ∼ O(1000) for 3-arcmin deflections but
only relative deflections matter for statistics
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SMALL-SCALE LIMIT

• For l� 1000 primary CMB has little power (diffusion damping) so drop first term:

C̃l ≈
∫

d2l′

(2π)2
Cl′C

ψ
|l−l′|[l

′ · (l− l′)]2

• Integral restricted to l′ � l so l− l′ ≈ l:

C̃l ≈ C
ψ
l

∫
d2l′

(2π)2
Cl′(l

′ · l)2

=
1

2
l2C

ψ
l

∫
l′dl′

2π
l′2Cl′ =

1

2
〈(∇Θ)2〉l2Cψl

• Small-scale lenses imprinting structure at same scale by displacing local gradient
(〈(∇Θ)2〉 ∼ 2× 109 µK2)
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COMPARISON WITH OTHER SECONDARY ANISOTROPIES

• Lensing correction significant for 500 < l < 3000

– Sub-dominant to thermal SZ on small scales

ISW

RS

suppression

lensing

Doppler δ-mod

i-mod

linear

l

10

100

1

0.1
10 100 1000

l
10 100 1000

∆ T
(µ

K
)

(a) (b)

SZ

Hu & Dodelson (2002)
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A MORE ACCURATE CALCULATION

ξ̃(r) =
∫

d2l

(2π)2
Cle

il·r〈eil·(α
′−α)〉

• Expansion of eil·(α
′−α)〉 slow to converge at high l

• Avoid by making Gaussian assumption for deflections so

〈eil·(α
′−α)〉 = e−

1
2〈[l·(α−α

′)]2〉

• Expectation value here is 〈[l · (α−α′)]2〉 = l2σ2(r) + l2 cos 2φCgl,2(r)

– σ2(r) =
∫ ldl

2πl
2C

ψ
l [1− J0(lr)] = 〈(α−α′)2〉/2 is variance of α−α′

– Cgl,2(r) =
∫ ldl

2πl
2C

ψ
l J2(lr) is small correction due to anisotropy of 〈αiα′j〉

• Lensed correlation function becomes

ξ̃(r) =
∫
ldl

2π
Cle
−l2σ2(r)/2

∫
dφ

2π
eilr cosφe−l

2Cgl,2(r) cos(2φ)/2

≈
∫
ldl

2π
Cle
−l2σ2(r)/2

[
J0(lr) +

1

2
l2Cgl,2(r)J2(lr) + · · ·

]
• Note exponential is non-perturbative in Cψl
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ERRORS IN LEADING-ORDER RESULT

• Few percent errors in lensed Cl around l ∼ 3000

– Significant fraction of lensing effect on these scales

• Leading-order calculation accurate on large scales (l−1 � typical deflection) and
on small scales (CMB accurately a gradient)

1000 2000 3000 4000 5000 6000 7000

−0.1

−0.05

0

0.05

0.1

∆
C

l/
C

l

l
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DETECTING LENSING IN POWER SPECTRA

Cl = Cno−lens
l + qlens∆C lens

l

• qlens = 1.23+0.83
−0.76 (95% C.L. from WMAP5 + ACBAR)

Reichardt et al. (2008)
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LENSED POLARIZATION POWER SPECTRA

• Calculation for polarization spectra similar to temperature

• Assuming no primordial B modes, leading-order results are

C̃El =
(

1−
1

2
l2〈α2〉

)
CEl +

∫
d2l′

(2π)2
CEl′ C

ψ
|l−l′|[l

′ · (l− l′)]2cos2 2(φl − φl′)

C̃TEl =
(

1−
1

2
l2〈α2〉

)
CTEl +

∫
d2l′

(2π)2
CEl′ C

ψ
|l−l′|[l

′ · (l− l′)]2cos 2(φl − φl′)

• Qualitatively new feature is generation of B-modes from lensing of E:

C̃Bl =
∫

d2l′

(2π)2
CEl′ C

ψ
|l−l′|[l

′ · (l− l′)]2sin2 2(φl − φl′)

– Geometric term ensures broad mode-coupling of E-mode power to B

– Non-linearities in ψ change low-l B modes by 10%!
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LENSED E-MODE SPECTRA

• Similar effect to temperature

– Smoothing of acoustic peaks but more pronounced since sharper

– Transfer of power to small scales
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B-MODES FROM LENSING

• E-mode power peaks on small scales so, for l� 1000 have l′ − l ≈ l′ and

C̃Bl ≈
∫

d2l′

(2π)2
(l′ · l′)2C

ψ
l′ C

E
l′ sin2 2φl′ =

1

2

∫
l′dl′

2π
l′4Cψ

l′ C
E
l′

• White noise spectrum with CBl ∼ 2× 10−6µK2

– Additional source of confusion for primordial B-mode searches comparable to
∆P ∼ 5µK-arcmin
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COSMOLOGICAL PARAMETERS FROM LENSED SPECTRA

• Important to include lensing to avoid parameter biases at high l (Lewis 2005)

– Cl covariance due to lensing non-Gaussianity ignorable expect for BB

• Lensed spectra break geometric degeneracy

– Models with same dA(z∗) generally have different Cψl

• Lensed spectra contain essentially two new pieces of information (Smith et al.
2006)

– One from T and E about Cψl for l < 300

– One from B about Cψl over a broad range of l

– More information can be mined with lens reconstruction (next!)
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ASIDE: GEOMETRIC DEGENERACY

• Primary CMB fluctuations only constrain dA(z∗) = 14116± 160 Mpc (WMAP7)

– Need external data or secondaries (e.g. lensing) to break geometric
degeneracies beyond flat, ΛCDM
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LENSING RECONSTRUCTION
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BASICS OF RECONSTRUCTION

• For fixed lenses, lensing correlates lensed CMB Θ̃ with gradient of unlensed CMB:

Θ̃(x) = Θ(x) +α(x) ·∇Θ(x) + · · ·

⇒ 〈Θ̃∂iΘ〉Θ = αj〈∂jΘ∂iΘ〉Θ =
1

2
αi〈Θ∇2Θ〉Θ

– Can estimate unlensed CMB by Wiener filtering observed CMB (see later)

• Chance correlations between unlensed CMB and its gradient introduce statistical
noise to any reconstruction (similar to shape noise in galaxy lensing)

• Reconstructs the projection of dark mater on 100 Mpc scales back to high redshift

• Can estimate Cψl from reconstruction by looking for excess power over and above
that due to Gaussian CMB
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RECONSTRUCTION IN FOURIER SPACE

• Fourier transform of Θ̃(x) = Θ(x) +α(x) ·∇Θ(x) + · · · is

Θ̃(l) = Θ(l)−
∫
d2l′

2π
l′ · (l− l′)Θ(l′)ψ(l− l′) + · · ·

• Fixed lenses produce anisotropic (off-diagonal) correlations in lensed CMB:

〈Θ̃(l)Θ̃∗(l−L)〉Θ = Clδ(L) +
1

2π

[
l ·L′Cl + (L− l) ·LC|l−L|

]
ψ(L)

– Estimate lensing potential for L 6= 0 with a weighted-average of off-diagonal
terms:

ψ̂(L) = N(L)
∫
d2l

2π
Θ̃(l)Θ̃∗(l−L)g(l,L)

– Want an unbiased estimate averaged over realisations of CMB – fixes
normalisation:

〈ψ̂(L)〉Θ = ψ(L) ⇒ N(L)−1 =
∫

d2l

(2π)2

[
(L− l) ·LC|l−L|+ l ·LCl

]
g(l,L)
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“OPTIMAL” QUADRATIC ESTIMATOR

ψ̂(L) = N(L)
∫
d2l

2π
Θ̃(l)Θ̃∗(l−L)g(l,L)

• Free to choose weights g(l,L) to minimise statistical noise in reconstruction;
leading order result gives

g(l,L) =
(L− l) ·LC|l−L|+ l ·LCl

2C̃tot
l C̃tot

|l−L|

where C̃tot
l is total observed CMB power including instrument noise

• Statistical noise on reconstruction is

〈|ψ̂(L)− ψ(L)|2〉 ≈ δ(0)N(L) =

∫ d2l

(2π)2

[
(L− l) ·LC|l−L|+ l ·LCl

]2
2C̃tot

l C̃tot
|l−L


−1

– Noise from both instrument noise and CMB sample variance

– Requires high resolution – small CMB blobs can be used to reconstruct lenses
on all scales
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ESTIMATOR IN REAL SPACE

ψ̂(L) = N(L)L ·
∫
d2l

2π

lClΘ̃(l)

C̃tot
l

Θ̃(L− l)
C̃tot
|l−L|

• Integral is a convolution so has local real-space form:

ψ̂(L) = −N(L)
∫
d2x

2π
e−iL·x∇ · [F1(x)∇F2(x)]

where filtered fields in Fourier space are

F1(l) ≡
Θ̃(l)

C̃tot
l

and F2(l) ≡
ClΘ̃(l)

C̃tot
l

– F2(x) is Wiener reconstruction of unlensed CMB so ∇ψ̂ ∼ Θ̃∇Θ

Hu & Okamoto (2002)
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STATISTICAL NOISE LEVELS IN RECONSTRUCTION

Kendrick Smith
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DETECTION OF LENSING IN CROSS-CORRELATION

• Smith et al. (2007) reconstruct (very noisy!) deflection map from WMAP3

– Statistical noise too high (WMAP resolution 15 arcmin) for direct detection of
lensing but . . .

– Detect signal power at 3.4σ by cross-correlating reconstruction with (less
noisy!) LSS tracer (NVSS radio galaxies)
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RECONSTRUCTION WITH CMB POLARIZATION

• Quadratic estimators generalise to polarization

– Helpful since more small-scale power and, for TB and EB estimators, less
confusion from chance off-diagonal correlations

– Needs high sensitivity – imaging lens-induced B-modes requires
∆p < 5µK arcmin

• Can improve significantly on quadratic estimator for polarization (Hirata & Seljak
2003)

Hu & Okamoto (2002)
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STATISTICAL NOISE LEVELS IN RECONSTRUCTION

Kendrick Smith
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APPLICATIONS OF LENS RECONSTRUCTION: Cψl

• Primary CMB provides limited information on sub-eV neutrino masses and dark
energy – only through dA (and ISW)

• Reconstruction gives full Cψl : much more information than the lensing effect on
CMB power spectra

– Error on
∑
νmν ∼ 0.04 eV (c.f.

∑
νmν > 0.05 eV from oscillation data)

– Not very constraining for dark energy – σ(w) > 0.08 – since mostly sensitive
to z ∼ 2 but good probe of early dark energy models
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DELENSING B-MODES

• Lensing acts like 5µK-armin noise for detecting primordial B-modes

– Limits r > 3× 10−4 for l > 40 and r > 3× 10−5 for all l

• Delens by remapping observed polarization with (noisy) reconstructed ψ̂

– Up to factor ∼ 10 improvement on r but requires ∼ 1µK-arcmin polarization
imaging and < 5 arcmin resolution

– Small-scale T observations alone insufficient; ideal LSS to z = 3 gives factor
∼ 2 improvement

66



CMB LENSING AND PRIMORDIAL NON-GAUSSIANITY
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BISPECTRUM FROM LENSING-ISW CORRELATION

• Reduced bispectrum of lensed CMB:

〈Θ̃(l1)Θ̃(l2)Θ̃(l3)〉 =
1

2π
bl1l2l3δ(l1 + l2 + l3)

• To leading order

〈Θ̃(l1)Θ̃(l2)Θ̃(l3)〉 =
1

2
〈Θ(l1)Θ(l2)(∇Θ · ∇ψ)(l3)〉+ 5 perms

= −
1

2

∫
d2l′3
2π
〈Θ(l1)Θ(l2)Θ(l′3)ψ(l3 − l′3)〉l′3 · (l3 − l

′
3)

= −
1

2π
C

Θψ
l1

CΘ
l2
l1 · l2δ(l1 + l2 + l3) + 5 perms

• Gives reduced bispectrum

bl1l2l3 = −
1

2
[l3(l3 + 1)− l1(l1 + 1)− l2(l2 + 1)]CΘψ

l1
CΘ
l2

+ 5 perms

– Peaks in squeezed limit (〈ISW × small-scale Θ× small-scale Θ̃〉)
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IMPACT ON f local
NL SEARCHES

bl1l2l3 = −
1

2
[l3(l3 + 1)− l1(l1 + 1)− l2(l2 + 1)]CΘψ

l1
CΘ
l2

+ 5 perms

• +25% correlation with bispectrum of local model

– Both peak in squeezed limit

• For Planck (lmax = 2000), gives spurious (local-model) fNL = 9.3 if uncorrected;
negligible for WMAP (lmax = 750)

Smith & Zaldarriaga (2006)
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LENSING EFFECT ON PRIMORDIAL NON-GAUSSIANITY

• Lensing can also modify observed shape of primordial non-Gaussianity

• Analytic calculation to O(Cφl ):

δbl1l2l3 ∼ −
1

4
[l1(l1 + 1) + l2(l2 + 1) + l3(l3 + 1)] 〈α2〉bl1l2l3︸ ︷︷ ︸

〈δ2ΘΘΘ〉

+Bl1l2l3[Cφ, b]︸ ︷︷ ︸
〈δΘδΘΘ〉

• Also check against simulations:

– Generate non-Gaussian maps (Smith & Zaldarriaga 2006; Ligouri et al. 2007)
with correct power spectrum and (at least) bispectrum

Θlm = ΘG
lm + fNLΘNG

lm

– Perform lensing displacement with LensPix (Lewis 2005)

– Estimate bispectrum on full sky from lensed maps (reduce MC error by
subtracting 3-pt from ΘG

lm)
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LENSED LOCAL-MODEL BISPECTRUM
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Hanson, Smith, AC, Ligouri (2009)

• Only 0.05% effect hence negligible:

– If Planck found fNL = 60± 5, bias if ignore lensing only ∆fNL = 0.03
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SUMMARY

• Weak lensing of CMB is important

– Several percent corrections through acoustic peaks

– Generates small-scale power

– Lens-induced B-modes confuse primordial for r < 0.01

– Non-Gaussian signal

– All generally well-understood and can be modelled accurately in linear theory
with small non-linear corrections

• Potential uses

– Mapping distribution of dark matter to high redshift

– Improve parameter constraints and break degeneracies

– De-lens primordial B-modes

– Others not covered: cluster masses at high redshift etc.

• Watch out for direct detections in next two years (Planck, ACT, SPT etc)
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