POLARIZATION AND WEAK GRAVITATIONAL LENSING OF THE CMB

Anthony Challinor

Institute of Astronomy and KICC

and

Department of Applied Mathematics and Theoretical Physics University of Cambridge, U.K. a.d.challinor@ast.cam.ac.uk

Xth School of Cosmology 5–10 July 2010, IESC, Cargèse

CMB lensing

CMB polarization

- Polarization observables
- Physics of CMB polarization
- Observational status and applications
- (Near-)Future of CMB research

- Basics of CMB lensing
- Lensing of CMB power spectra
- Lensing reconstruction
- Applications of lensing reconstruction
- Lensing and primordial non-Gaussianity

USEFUL REFERENCES

- CMB polarization
 - Wayne Hu's website (http://background.uchicago.edu/~whu/)
 - Hu & White's "Polarization primer" (arXiv:astro-ph/9706147)
 - AC's summer school lecture notes (arXiv:0903.5158 and arXiv:astro-ph/0403344)
 - Kosowsky's "Introduction to Microwave Background Polarization" (arXiv:astro-ph/9904102)
- CMB lensing
 - Lewis & AC's "Weak gravitational lensing of the CMB" (arXiv:astro-ph/0601594)
 - Hanson, AC & Lewis's "Weak lensing of the CMB" (arXiv:0911.0612)
- Applications of CMB lensing
 - Smith et al. CMBPol document (arXiv:0811.3916)
- Textbooks covering most of the above
 - The Cosmic Microwave Background by Ruth Durrer (CUP)

INTRODUCTION TO CMB POLARIZATION

CMB POLARIZATION: STOKES PARAMETERS

 For plane wave along z, symmetric trace-free correlation tensor of electric field E defines (transverse) linear polarization tensor:

$$\mathcal{P}_{ab} \equiv \begin{pmatrix} \frac{1}{2} \langle E_x^2 - E_y^2 \rangle & \langle E_x E_y \rangle \\ \langle E_x E_y \rangle & -\frac{1}{2} \langle E_x^2 - E_y^2 \rangle \end{pmatrix} \equiv \frac{1}{2} \begin{pmatrix} Q & U \\ U & -Q \end{pmatrix}$$

$$Q > 0 \qquad Q < 0 \qquad U > 0 \qquad U < 0$$

• Under right-handed rotation of x and y through ψ about propagation direction (z)

 $Q \pm iU \rightarrow (Q \pm iU)e^{\mp 2i\psi} \Rightarrow Q + iU$ is spin -2

E and B modes: vector fields

• As a warm-up, can always write vector field in 2D as

 $V_a = \text{gradient} + \text{divergence-free vector}$ $= \nabla_a V_E + \epsilon_a{}^b \nabla_b V_B$

- Consider spin- ± 1 components of V on null basis $m_{\pm} \equiv (\partial_{\theta} \pm i \text{cosec} \theta \partial_{\phi})$
 - Since $\epsilon_a{}^b m^a_{\pm} = \mp i m^b_{\pm}$ have

 $m_{\pm} \cdot V = (\partial_{\theta} \pm i \operatorname{cosec} \theta \partial_{\phi}) V_E \mp i (\partial_{\theta} \pm i \operatorname{cosec} \theta \partial_{\phi}) V_B$ $= (\partial_{\theta} \pm i \operatorname{cosec} \theta \partial_{\phi}) (V_E \mp i V_B)$

Define spin-weight derivatives via

$$\begin{aligned} \bar{\vartheta}_s \eta &= -\sin^s \theta (\partial_\theta + i \text{cosec} \partial_\phi) (\sin^{-s} \theta_s \eta) \\ \bar{\vartheta}_s \eta &= -\sin^{-s} \theta (\partial_\theta - i \text{cosec} \partial_\phi) (\sin^s \theta_s \eta) \end{aligned}$$

- Then spin components of V are spin-weight derivatives of complex potential:

 $\boldsymbol{m}_+ \cdot \boldsymbol{V} = -\eth(V_E - iV_B), \qquad \boldsymbol{m}_- \cdot \boldsymbol{V} = -\eth(V_E + iV_B)$

${\cal E}$ and ${\cal B}$ modes for polarization

• Generalisation of E-B decomposition to 2nd-rank STF tensors

 $\mathcal{P}_{ab}(\hat{\boldsymbol{n}}) = \nabla_{\langle a} \nabla_{b \rangle} P_E + \epsilon^c{}_{(a} \nabla_{b)} \nabla_c P_B$

 Components of *P_{ab}* on null basis are complex combinations of Stokes parameters (defined in (θ, -φ) basis following IAU)

 $m^a_{\pm}m^b_{\pm}\mathcal{P}_{ab} = Q \mp iU$

• Evaluating null components of covariant derivatives gives

 $Q + iU = \overline{\eth}\overline{\eth}(P_E - iP_B), \qquad Q - iU = \eth\eth(P_E + iP_B)$

• P_E and P_B are scalar fields \Rightarrow can expand in usual spherical harmonics:

$$P_E(\hat{n}) = \sum_{lm} \sqrt{\frac{(l-2)!}{(l+2)!}} E_{lm} Y_{lm}(\hat{n}), \qquad P_B(\hat{n}) = \sum_{lm} \sqrt{\frac{(l-2)!}{(l+2)!}} B_{lm} Y_{lm}(\hat{n})$$

- *l*-dependent factors "undo" $\sim l^2$ factors from double derivatives to give

$$Q \pm iU = \sum_{lm} (E_{lm} \mp iB_{lm}) \sqrt{\frac{(l-2)!}{(l+2)!}} \left\{ \begin{array}{c} \overline{\eth}\overline{\eth}\\ \overline{\eth}\overline{\eth}\\ \overline{\eth}\overline{\eth} \end{array} \right\} Y_{lm} = \sum_{lm} (E_{lm} \mp iB_{lm})_{\mp 2} Y_{lm}$$

FLAT-SKY LIMIT

- Work near North pole and can use global x, -y basis now
- Since $m_{\pm} = e^{\mp i\phi}(\hat{x} \pm i\hat{y})$ $(Q \pm iU)_{\text{flat}} = e^{\mp 2i\phi}(Q \pm iU)$ $= e^{\mp 2i\phi} \left\{ \begin{array}{c} \overline{\eth}\overline{\eth}\\ \overline{\eth}\\ \overline{\eth}\\ \overline{\eth} \end{array} \right\} (P_E \mp iP_B)$ $\approx e^{\mp 2i\phi} e^{\pm 2i\phi} (\partial_x \mp i\partial_y)^2 (P_E \mp iP_B)$
- In Fourier space, with e.g. $P_E(l) = E(l)/l^2$ have

$$(Q \pm iU)_{\mathsf{flat}}(l) = -e^{\mp 2i\phi_l}(E \mp iB)(l)$$

- Fourier modes E(l) produces Q polarization on basis adapted to l:

Pure B mode

TWO-POINT STATISTICS

Statistical isotropy demands 2-point correlations of form

$$\langle E_{lm} E^*_{l'm'} \rangle = C^E_l \delta_{ll'} \delta_{mm'}$$

- For Gaussian fluctuations all information in power spectrum C_l
- Under parity transformations $Q(\hat{n}) \to Q(-\hat{n})$ and $U(\hat{n}) \to -U(-\hat{n})$ so

$$\hat{P}(Q \pm iU)(\hat{n}) = (Q \mp iU)(-\hat{n})$$

$$\Rightarrow \sum_{lm} \hat{P}(E_{lm} \mp iB_{lm})_{\mp 2}Y_{lm}(\hat{n}) = \sum_{lm} (E_{lm} \pm iB_{lm})_{\pm 2}Y_{lm}(-\hat{n})$$

$$= \sum_{lm} (-1)^l (E_{lm} \pm iB_{lm})_{\mp 2}Y_{lm}(\hat{n})$$

- Follows that $E_{lm} \rightarrow (-1)^l E_{lm}$ under parity but $B_{lm} \rightarrow -(-1)^l B_{lm}$
- Cannot have E-B or T-B correlations if parity respected in mean
- Flat-sky limit of power spectra: e.g. $\langle E(l)E^*(l')\rangle = C_l^E \delta(l-l')$

PHYSICS OF CMB POLARIZATION

CMB POLARIZATION: THOMSON SCATTERING

 Thomson scattering of radiation quadrupole produces linear polarization (dimensionless temperature units!)

$$d(Q \pm iU)(e) = \frac{3}{5}an_e\sigma_T d\eta \sum_{m} \pm 2Y_{2m}(e) \left(E_{2m} - \sqrt{\frac{1}{6}}\Theta_{2m}\right)$$

- Purely electric quadrupole (l = 2)
- In linear theory, generated Q + iU then conserved for free-streaming radiation
 - Suppressed by $e^{-\tau}$ if further scattering at reionization

PHYSICS OF CMB POLARIZATION: SCALAR PERTURBATIONS

• Single plane wave of scalar perturbation has $\Theta_{2m} \propto Y_{2m}^*(\hat{k}) \Rightarrow$ with \hat{k} along z, $dQ \propto \sin^2 \theta$ and dU = 0

Plane-wave scalar quadrupole Electric quadrupole (m = 0) Pure *E* mode

• Linear scalar perturbations produce only E-mode polarization

QUADRUPOLE SOURCE TERM

- Consider scales large compared to diffusion-damping scale (few × 10 Mpc)
 - Temperature fluctuation seen by electron determined by conditions at previous scattering l_p away:

$$\Theta(e) + \psi \approx (\Theta_0 + \psi)(-l_p e) + e \cdot v_{(b)}(-l_p e)$$

$$\approx (\Theta_0 + \psi) - l_p e^i \partial_i (\Theta_0 + \psi) + \frac{1}{2} l_p^2 e^i e^j \partial_i \partial_j (\Theta_0 + \psi)$$

$$+ e \cdot v_{(b)} - l_p e^i e^j \partial_j v_{(b)i} + \cdots$$

- Dominant temperature quadrupole for each source from trace-free part of $e^{i}e^{j}$ component [$e^{\langle i}e^{j}\rangle = e^{i}e^{j} - \delta^{ij}/3$]:

$$\sum_{m} \Theta_{2m} Y_{2m}(e) \sim \frac{1}{2} l_p^2 e^{\langle i} e^{j \rangle} \partial_i \partial_j (\Theta_0 + \psi) - l_p e^{\langle i} e^{j \rangle} \partial_j v_{(b)i}$$

- Intrinsic temperature contribution suppressed by factor $\sim kl_p$ cf Doppler
- Polarization traces baryon velocity at recombination \Rightarrow peaks at troughs of ΔT
- Large-angle polarization from recombination small since quadrupole source generated causally

SCALAR POLARIZATION POWER SPECTRA

- Polarization mostly probing v_b at last scattering
 - C_l^E peaks at minima of C_l^T
- Correlations between T and E
- Additional large-angle polarization from scattering around reionization
- *B*-modes are generated at second order, e.g. by lensing (see later)

CORRELATED POLARIZATION IN REAL SPACE

- On largest scales, infall into potential wells at last scattering generates e.g. radial polarization around large-scale cold spots
- Sign of correlation scale-dependent inside horizon

CORRELATED POLARIZATION IN REAL SPACE

LARGE-ANGLE POLARIZATION FROM REIONIZATION

- Temperature quadrupole at reionization peaks around $k(\eta_{re} \eta_*) \sim 2$
 - Re-scattering generates polarization on this linear scale \rightarrow projects to $l \sim 2(\eta_0 \eta_{re})/(\eta_{re} \eta_*)$
 - Amplitude of polarization \propto optical depth through reionization \rightarrow best way to measure τ with CMB

GRAVITY WAVES AND THE CMB

- Tensor metric perturbations $ds^2 = a^2[d\eta^2 (\delta_{ij} + h_{ij})dx^i dx^j]$ with $\delta^{ij}h_{ij} = 0$
 - Shear (anisotropic expansion) $\propto \dot{h}_{ij}$ gives anisotropic redshifting \Rightarrow

$$\Theta(\hat{n}) \approx -\frac{1}{2} \int d\eta \, \dot{h}_{ij} \hat{n}^i \hat{n}^j$$

- Only contributes on large scales since h_{ij} decays like a^{-1} after entering horizon

CMB POLARIZATION FROM GRAVITY WAVES

• For single +-polarized gravity wave with \hat{k} along z, $\Theta_{2m} \propto \delta_{m2} + \delta_{m-2}$ so $dQ \propto (1 + \cos^2 \theta) \cos 2\phi$ and $dU \propto -\cos \theta \sin 2\phi$

• Gravity waves produce both *E*- and *B*-mode polarization (with roughly equal power)

19

OBSERVATIONAL STATUS AND APPLICATIONS

CURRENT MEASUREMENTS: TE and EE

- Super-horizon, adiabatic fluctuations from TE anti-correlation for $5^{\circ} > \theta > 1^{\circ}$
- Optical depth through reionization: $\tau = 0.087 \pm 0.014$ from WMAP7

TE and EE forecasts for Planck

PARAMETERS FROM POLARIZATION: ACOUSTIC PEAKS AND DAMPING TAIL

- 30% improvement on $\Omega_b h^2$, $\Omega_m h^2$, h and n_s from Planck *E* modes at l > 20
- Other beneficiaries of polarization: isocurvature modes, Helium abundance etc.

PARAMETERS FROM LARGE-ANGLE POLARIZATION

- Reionization: $\tau = 0.087 \pm 0.014$ from WMAP7
 - Expect $\Delta \tau = 0.004$ from nominal Planck mission
- Constraints on gravity waves (next)

PRIMORDIAL GRAVITATIONAL WAVES AND B-MODES

- Well motivated by inflation models
 - Amplitude depends *only* on Hubble parameter during inflation
 - Should be detectable in CMB in large-field models ($\Delta \phi > M_{\rm Pl}$ requiring GUT-scale inflation)
- Detection would rule out some models (e.g. cyclic)
 - Also problematic for many string-inspired models
- Current best limit from WMAP7 (ΔT and E) alone: r < 0.36 (95% CL)
- Improves to r < 0.24 with inclusion of BAO and H_0 (degeneracy breaking)

GRAVITATIONAL WAVES IN THE CMB

- Cosmic variance of dominant scalar fluctuations limits $\Delta r = 0.07$ from T and $\Delta r = 0.02$ if include E
 - Degeneracies make actual limits worse; WMAP7 alone r < 0.36 (95% CL)

CURRENT CONSTRAINTS: BB

- BICEP limit (Chiang et al. 2009) on r from B-modes alone: r < 0.73 (95% CL)
- *B*-modes will improve on r < 0.24 in next generation of experiments (Planck, BICEP2, EBEX, SPIDER etc.)

- Better measurements of higher peaks and damping tail
 - Sub-percent errors in acoustic parameters from Planck and shape of primordial power spectrum
- Better *E*-mode polarization
 - Some improvements in parameters and tests of large-angle anomalies
- Direct detection of weak lensing effect in CMB temperature and polarization
- Physics from scattering secondaries (reionization and clusters) and lensing reconstruction
- Tighter constraints on non-Gaussianity ($\Delta f_{NL} \sim 5$ from Planck)
 - Polarization improves Δf_{NL} by up to factor 2
- Gravity waves from B-mode polarization (E_{inf} and improved inflation phenomenology)?

INTRODUCTION TO CMB LENSING

CMB LENSING

- CMB photons gravitationally deflected by LSS in propagating from last-scattering surface
- Geometric deflections conserve surface brightness so no effect on uniform 2.275 K CMB
- CMB anisotropies and polarization mostly sourced around last scattering over distance $\sim 100\,\text{Mpc}$
 - Narrow compared to 14000 Mpc distance to last scattering: approximate CMB as single source plane
- Only consider transverse displacements here
 - Radial displacements are suppressed geometrically

CMB LENSING ORDERS OF MAGNITUDE

last scattering surface

- Bending angle $\delta\beta = -\delta\chi\nabla_{\perp}(\phi + \psi)$
 - Typical potential $\sim 2 \times 10^{-5}$ so expect $\delta \beta \sim 10^{-4}$
- Coherence size of potentials

 300 Mpc so random walk with
 14000/300 ~ 50 steps from last
 scattering
 - Net deflection typically $\sqrt{50} \times 10^{-4} \sim 2 \, arcmin$
 - Coherent over $300/7000 \sim 2^{\circ}$ for lens midway to last scattering

QUALITATIVE EFFECTS ON CMB OBSERVABLES

- Acoustic peaks on degree scales:
 - Deflections much smaller (2 arcmin) but coherent over size of acoustic features
 - Typical CMB hotspot has its size increased/decreased by $2/60 \sim 3\%$ smoothing out primary acoustic peaks
- Primary CMB smooth on arcmin scales (diffusion damping):
 - Arcmin scale lenses imprint (non-Gaussian) small scale power exceeding primary CMB
- Only *relative deflections* are important!
- Transforms E-mode polarization to B (and vice versa)
- Introduces non-Gaussianity to CMB

SO WHY SHOULD YOU CARE?

- Must include effect on power spectra to avoid biases in parameter determination
 - Can use this to break (some!) degeneracies
- Lens-induced *B*-modes act like white noise for primordial gravity wave searches
- Use non-Gaussianity to reconstruct deflections
 - Further constraints on dark parameters
- Must account for "local" bispectrum in f_{NL}^{local} searches
- Constrain cluster masses at high redshift

COMPARISONS WITH GALAXY LENSING

- Single source plane at known distance (fixed by background cosmology)
- Statistics of sources on source plane well understood
 - Given by linear-theory power spectrum
 - Magnification and shear equally useful so work with deflection angles directly
- Sources are large, i.e. CMB is smooth on small scales
 - CMB features do not "point-like" sample shear and magnification
- Source plane very distant most efficient lenses at $z \sim 2$ and large linear lenses
- Full-sky observations so account for spherical geometry for accurate correlation results

LENSING DEFLECTIONS

 Lensing preserves brightness; simply re-maps temperature and polarization from recombination

 $\tilde{\Theta}(\hat{n}) = \Theta(\hat{n} + \alpha)$ $(\tilde{Q} \pm i\tilde{U})(\hat{n}) = (Q \pm iU)(\hat{n} + \alpha)$

 Lensing (angular) deflection field from summing contributions of lenses along line of sight:

$$\begin{aligned} \boldsymbol{\alpha}(\hat{\boldsymbol{n}}) &= -2 \int_{0}^{\chi_{*}} d\chi \, \frac{d_{A}(\chi_{*} - \chi)}{d_{A}(\chi_{*})} \boldsymbol{\nabla}_{\perp} \Psi(\chi \hat{\boldsymbol{n}}; \eta_{0} - \chi) \qquad 2\Psi \equiv \psi_{N} + \phi_{N} \\ &= -2 \int_{0}^{\chi_{*}} d\chi \, \frac{d_{A}(\chi_{*} - \chi)}{d_{A}(\chi_{*}) d_{A}(\chi)} \boldsymbol{\nabla}_{\hat{\boldsymbol{n}}} \Psi(\chi \hat{\boldsymbol{n}}; \eta_{0} - \chi) \end{aligned}$$

- To $O(\Psi)$ can take integral along background line of sight (Born approximation)
- Deflection is then angular gradient of *deflection potential*, $lpha=
 abla_{\widehat{n}}\psi$:

$$\psi(\hat{\boldsymbol{n}}) \equiv -2 \int_0^{\chi_*} d\chi \frac{d_A(\chi_* - \chi)}{d_A(\chi_*) d_A(\chi)} \Psi(\chi \hat{\boldsymbol{n}}; \eta_0 - \chi)$$
POWER SPECTRUM OF LENSING POTENTIAL

$$\psi(\hat{\boldsymbol{n}}) = -2 \int_0^{\chi_*} d\chi \frac{d_A(\chi_* - \chi)}{d_A(\chi_*) d_A(\chi)} \Psi(\hat{\boldsymbol{n}}\chi; \eta_0 - \chi)$$

• Fourier expand (Weyl) potential as $\Psi(x;\eta) = \int \frac{d^3k}{(2\pi)^{3/2}} \Psi(k;\eta) e^{ik \cdot x}$ and use plane-wave expansion to get

$$\psi_{lm} = -8\pi i^l \int d\chi \frac{d^3 \mathbf{k}}{(2\pi)^{3/2}} \frac{d_A(\chi_* - \chi)}{d_A(\chi_*) d_A(\chi)} \Psi(\mathbf{k}; \eta_0 - \chi) j_l(k\chi) Y_{lm}^*(\hat{\mathbf{k}})$$

• In terms of unequal-time power spectrum of $\Psi(\mathbf{k}; \eta)$,

$$\langle \Psi(\boldsymbol{k};\eta)\Psi^*(\boldsymbol{k}';\eta') = \frac{2\pi^2}{k^3}\mathcal{P}_{\Psi}(\boldsymbol{k};\eta,\eta')\delta(\boldsymbol{k}-\boldsymbol{k}')$$

get power spectrum of deflection potential

$$C_{l}^{\psi} = 16\pi \int d\ln k \int_{0}^{\chi_{*}} d\chi \int_{0}^{\chi_{*}} d\chi' \mathcal{P}_{\Psi}(k;\eta_{0}-\chi,\eta_{0}-\chi') j_{l}(k\chi) j_{l}(k\chi') \frac{d_{A}(\chi_{*}-\chi)}{d_{A}(\chi_{*})d_{A}(\chi)} \frac{d_{A}(\chi_{*}-\chi')}{d_{A}(\chi_{*})d_{A}(\chi)} \frac{d_{A}(\chi_{*}-\chi')}{d_{A}(\chi_{*})d_{A}(\chi')} \frac{d_{A}(\chi_{*}-\chi')}{d_{A}(\chi')} \frac{d_{A}(\chi_{*}-\chi')}{d_{A}(\chi_{*})d_{A}(\chi')} \frac{d_{A}(\chi_{*}-\chi')}{d_{A}(\chi')} \frac{d_{A}(\chi_{*}-\chi')}{d_{A}(\chi')} \frac{d_{A}(\chi_{*}-\chi')}{d_{A}(\chi')} \frac{d_{A}(\chi_{*}-\chi')}{d_{A}(\chi')} \frac{d_{A}(\chi_{*}-\chi')}{d_{A}(\chi')} \frac{d_{A}(\chi_{*}-\chi')}{d_{A}(\chi')} \frac{d_{A}(\chi')}{d_{A}(\chi')} \frac$$

DEFLECTION POWER SPECTRUM

• Limber approximation ok except on large scales:

$$C_l^{\psi} \approx \frac{8\pi^2}{l^3} \int_0^{\chi_*} \chi d\chi \,\mathcal{P}_{\Psi}(l/\chi;\eta_0-\chi) \left(\frac{d_A(\chi_*-\chi)}{d_A(\chi_*)d_A(\chi)}\right)^2$$

- Deflection angle power spectrum is $l(l+1)C_l^{\psi}$
 - $d\langle \alpha^2 \rangle / d \ln l \approx [l(l+1)]^2 C_l^{\psi} / 2\pi$ peaks at $l \sim 40$ (few degrees coherence)
 - Receives contributions out to high redshift

- ISW (z < 1) sourced by LSS that also lenses CMB
 - Produces *positive* large-angle \ominus - ψ correlation, important for non-Gaussianity

LENSING OF CMB POWER SPECTRA

LENSING EFFECT ON TEMPERATURE

Hanson, AC & Lewis (2009)

 Antony Lewis's temperature and polarization re-mapping tool LensPix: http://cosmologist.info/lenspix/

CALCULATING LENSED SPECTRA: APPROXIMATIONS

- Lensing potential uncorrelated to temperature
 - Good, except on large scales (ISW) but ignoring is harmless
- Gaussian lensing potential
 - Breaks down on non-linear scales but even then ok for calculating lensed power spectra
- Optional simplifying assumptions:
 - Work in flat-sky limit (induces percent level errors in lensed *BB*)
 - Series expansion to leading order (will have to relax later)

FLAT-SKY TEMPERATURE ANISOTROPIES

• Expand unlensed temperature in Fourier modes:

$$\Theta(\mathbf{x}) = \int \frac{d^2 \mathbf{l}}{2\pi} \Theta(\mathbf{l}) e^{i\mathbf{l}\cdot\mathbf{x}} \quad , \quad \langle \Theta(\mathbf{l})\Theta^*(\mathbf{l}')\rangle = C_l \delta(\mathbf{l} - \mathbf{l}')$$

• Since only relative lensing displacements important, convenient to work with correlation functions

$$\xi(r) = \langle \Theta(x)\Theta(x+r) \rangle = \int \frac{d^2l}{(2\pi)^2} C_l e^{il \cdot r}$$

$$\Rightarrow \quad C_l = \int d^2r \xi(r) e^{-il \cdot r} = 2\pi \int r dr \, \xi(r) J_0(lr)$$

• Lensed correlation function by $r \to r + \alpha(x + r) - \alpha(x) \equiv r + \alpha' - \alpha$ and averaging over lenses:

$$\tilde{\xi}(r) = \int \frac{d^2 l}{(2\pi)^2} C_l \langle e^{i l \cdot r} e^{i l \cdot (\alpha' - \alpha)} \rangle$$

– Only depends on relative displacement $\alpha' - \alpha!$

LEADING-ORDER CALCULATION

• Expand expectation of exponential as

$$\begin{split} \langle e^{i\boldsymbol{l}\cdot(\boldsymbol{\alpha}'-\boldsymbol{\alpha})} \rangle &= 1 + i\langle \boldsymbol{l}\cdot(\boldsymbol{\alpha}'-\boldsymbol{\alpha}) \rangle - \frac{1}{2}\langle [\boldsymbol{l}\cdot(\boldsymbol{\alpha}'-\boldsymbol{\alpha})]^2 \rangle + \cdots \\ &= 1 - \langle (\boldsymbol{l}\cdot\boldsymbol{\alpha})^2 \rangle + l_i l_j \langle \alpha_i \alpha'_j \rangle + \quad \text{(statistical isotropy)} \end{split}$$

• Correlation tensor of displacements is

$$\langle \alpha_i \alpha'_j \rangle = \int \frac{d^2 \boldsymbol{L}}{(2\pi)^2} L_i L_j C_L^{\psi} e^{i \boldsymbol{L} \cdot \boldsymbol{r}}$$

Follows that

$$\langle (\boldsymbol{l} \cdot \boldsymbol{\alpha})^2 \rangle = \frac{1}{2} l^2 \int \frac{L \, dL}{2\pi} L^2 C_L^{\psi} = \frac{1}{2} l^2 \langle \boldsymbol{\alpha}^2 \rangle \qquad \text{(independent of } \boldsymbol{r}\text{)}$$
$$\langle (\boldsymbol{l} \cdot \boldsymbol{\alpha})(\boldsymbol{l} \cdot \boldsymbol{\alpha}') \rangle = \int \frac{d^2 \boldsymbol{L}}{(2\pi)^2} C_L^{\psi} (\boldsymbol{L} \cdot \boldsymbol{l})^2 e^{i \boldsymbol{L} \cdot \boldsymbol{r}}$$

• Extracting lensed C_l from correlation function gives

$$\tilde{C}_{l} = \left[1 - \frac{1}{2}l^{2}\langle \alpha^{2} \rangle\right]C_{l} + \underbrace{\int d^{2}r \int \frac{d^{2}l'}{(2\pi)^{2}} \int \frac{d^{2}L}{(2\pi)^{2}} C_{l'}e^{-il\cdot r}e^{il'\cdot r}C_{L}^{\psi}(L\cdot l')^{2}e^{iL\cdot r}}_{=\int \frac{d^{2}l'}{(2\pi)^{2}}C_{l'}C_{l'}^{\psi}e^{il'\cdot r}C_{L}^{\psi}(L\cdot l')^{2}e^{iL\cdot r}}$$

_ENSED TEMPERATURE POWER SPECTRUM

$$\tilde{C}_{l} = \left[1 - \frac{1}{2}l^{2}\langle \boldsymbol{\alpha}^{2} \rangle\right]C_{l} + \int \frac{d^{2}\boldsymbol{l}'}{(2\pi)^{2}}C_{l'}C_{|\boldsymbol{l}-\boldsymbol{l}'|}^{\psi}[\boldsymbol{l}' \cdot (\boldsymbol{l}-\boldsymbol{l}')]^{2}$$

 Second term is a convolution: smooths acoustic peaks and generates small-scale power in damping tail

CANCELLATIONS BETWEEN TERMS

 Taylor expansion out of control in map at l ~ O(1000) for 3-arcmin deflections but only *relative* deflections matter for statistics

SMALL-SCALE LIMIT

• For $l \gg 1000$ primary CMB has little power (diffusion damping) so drop first term:

$$\tilde{C}_{l} \approx \int \frac{d^{2}\boldsymbol{l}'}{(2\pi)^{2}} C_{\boldsymbol{l}'} C_{\boldsymbol{l}'} C_{\boldsymbol{l}-\boldsymbol{l}'|}^{\psi} [\boldsymbol{l}' \cdot (\boldsymbol{l}-\boldsymbol{l}')]^{2}$$

• Integral restricted to $l' \ll l$ so $l - l' \approx l$:

$$\tilde{C}_{l} \approx C_{l}^{\psi} \int \frac{d^{2}\boldsymbol{l}'}{(2\pi)^{2}} C_{l'} (\boldsymbol{l}' \cdot \boldsymbol{l})^{2}$$
$$= \frac{1}{2} l^{2} C_{l}^{\psi} \int \frac{l' dl'}{2\pi} l'^{2} C_{l'} = \frac{1}{2} \langle (\nabla \Theta)^{2} \rangle l^{2} C_{l}^{\psi}$$

• Small-scale lenses imprinting structure at same scale by displacing local gradient $(\langle (\nabla \Theta)^2 \rangle \sim 2 \times 10^9 \, \mu \text{K}^2)$

COMPARISON WITH OTHER SECONDARY ANISOTROPIES

- Lensing correction significant for 500 < l < 3000
 - Sub-dominant to thermal SZ on small scales

Hu & Dodelson (2002)

A MORE ACCURATE CALCULATION

$$\tilde{\xi}(r) = \int \frac{d^2 l}{(2\pi)^2} C_l e^{i l \cdot r} \langle e^{i l \cdot (\alpha' - \alpha)} \rangle$$

- Expansion of $e^{il \cdot (\alpha' \alpha)}$ slow to converge at high l
- Avoid by making Gaussian assumption for deflections so

$$\langle e^{i\boldsymbol{l}\cdot(\boldsymbol{\alpha}'-\boldsymbol{\alpha})}\rangle = e^{-\frac{1}{2}\langle [\boldsymbol{l}\cdot(\boldsymbol{\alpha}-\boldsymbol{\alpha}')]^2\rangle}$$

- Expectation value here is $\langle [l \cdot (\alpha \alpha')]^2 \rangle = l^2 \sigma^2(r) + l^2 \cos 2\phi C_{gl,2}(r)$
 - $\sigma^2(r) = \int \frac{ldl}{2\pi} l^2 C_l^{\psi} [1 J_0(lr)] = \langle (\alpha \alpha')^2 \rangle / 2$ is variance of $\alpha \alpha'$
 - $C_{gl,2}(r) = \int \frac{ldl}{2\pi} l^2 C_l^{\psi} J_2(lr)$ is *small* correction due to anisotropy of $\langle \alpha_i \alpha'_j \rangle$
- Lensed correlation function becomes

$$\tilde{\xi}(r) = \int \frac{ldl}{2\pi} C_l e^{-l^2 \sigma^2(r)/2} \int \frac{d\phi}{2\pi} e^{ilr\cos\phi} e^{-l^2 C_{\text{gl},2}(r)\cos(2\phi)/2}$$
$$\approx \int \frac{ldl}{2\pi} C_l e^{-l^2 \sigma^2(r)/2} \left[J_0(lr) + \frac{1}{2} l^2 C_{\text{gl},2}(r) J_2(lr) + \cdots \right]$$

• Note exponential is non-perturbative in C_l^{ψ}

- Few percent errors in lensed C_l around $l \sim 3000$
 - Significant fraction of lensing effect on these scales
- Leading-order calculation accurate on large scales (*l*⁻¹ ≫ typical deflection) and on small scales (CMB accurately a gradient)

DETECTING LENSING IN POWER SPECTRA

 $C_l = C_l^{\mathsf{no-lens}} + q_{\mathsf{lens}} \Delta C_l^{\mathsf{lens}}$

• $q_{\text{lens}} = 1.23^{+0.83}_{-0.76}$ (95% C.L. from WMAP5 + ACBAR)

LENSED POLARIZATION POWER SPECTRA

- Calculation for polarization spectra similar to temperature
- Assuming no primordial *B* modes, leading-order results are

$$\tilde{C}_{l}^{E} = \left(1 - \frac{1}{2}l^{2}\langle\alpha^{2}\rangle\right)C_{l}^{E} + \int \frac{d^{2}l'}{(2\pi)^{2}}C_{l'}^{E}C_{|l-l'|}^{\psi}[l'\cdot(l-l')]^{2}\cos^{2}2(\phi_{l}-\phi_{l'})$$

$$\tilde{C}_{l}^{TE} = \left(1 - \frac{1}{2}l^{2}\langle\alpha^{2}\rangle\right)C_{l}^{TE} + \int \frac{d^{2}l'}{(2\pi)^{2}}C_{l'}^{E}C_{|l-l'|}^{\psi}[l'\cdot(l-l')]^{2}\cos 2(\phi_{l}-\phi_{l'})$$

• Qualitatively new feature is generation of B-modes from lensing of E:

$$\tilde{C}_{l}^{B} = \int \frac{d^{2}l'}{(2\pi)^{2}} C_{l'}^{E} C_{|l-l'|}^{\psi} [l' \cdot (l-l')]^{2} \sin^{2} 2(\phi_{l} - \phi_{l'})$$

- Geometric term ensures broad mode-coupling of E-mode power to B
- Non-linearities in ψ change low-l B modes by 10%!

LENSED E-MODE SPECTRA

- Similar effect to temperature
 - Smoothing of acoustic peaks but more pronounced since sharper
 - Transfer of power to small scales

B-MODES FROM LENSING

• *E*-mode power peaks on small scales so, for $l \ll 1000$ have $l' - l \approx l'$ and

$$\tilde{C}_{l}^{B} \approx \int \frac{d^{2}l'}{(2\pi)^{2}} (l' \cdot l')^{2} C_{l'}^{\psi} C_{l'}^{E} \sin^{2} 2\phi_{l'} = \frac{1}{2} \int \frac{l'dl'}{2\pi} l'^{4} C_{l'}^{\psi} C_{l'}^{E}$$

- White noise spectrum with $C_l^B \sim 2 imes 10^{-6} \mu \, {\rm K}^2$
 - Additional source of confusion for primordial B -mode searches comparable to $\Delta_P \sim 5\,\mu{\rm K}{\rm -arcmin}$

COSMOLOGICAL PARAMETERS FROM LENSED SPECTRA

- Important to include lensing to avoid parameter biases at high l (Lewis 2005)
 - C_l covariance due to lensing non-Gaussianity ignorable expect for BB
- Lensed spectra break geometric degeneracy
 - Models with same $d_A(z_*)$ generally have different C_l^{ψ}
- Lensed spectra contain essentially two new pieces of information (Smith et al. 2006)
 - One from T and E about C_l^{ψ} for l < 300
 - One from B about C_l^{ψ} over a broad range of l
 - More information can be mined with lens reconstruction (next!)

ASIDE: GEOMETRIC DEGENERACY

- Primary CMB fluctuations only constrain $d_A(z_*) = 14116 \pm 160 \text{ Mpc}$ (WMAP7)
 - Need external data or secondaries (e.g. lensing) to break geometric degeneracies beyond flat, ACDM

LENSING RECONSTRUCTION

BASICS OF RECONSTRUCTION

● For fixed lenses, lensing correlates lensed CMB ⊖ with gradient of *unlensed* CMB:

$$\begin{split} \tilde{\Theta}(x) &= \Theta(x) + \alpha(x) \cdot \nabla \Theta(x) + \cdots \\ \Rightarrow \qquad \langle \tilde{\Theta} \partial_i \Theta \rangle_{\Theta} &= \alpha_j \langle \partial_j \Theta \partial_i \Theta \rangle_{\Theta} = \frac{1}{2} \alpha_i \langle \Theta \nabla^2 \Theta \rangle_{\Theta} \end{split}$$

- Can estimate unlensed CMB by Wiener filtering observed CMB (see later)
- Chance correlations between unlensed CMB and its gradient introduce statistical noise to any reconstruction (similar to shape noise in galaxy lensing)
- Reconstructs the projection of dark mater on 100 Mpc scales back to high redshift
- Can estimate C_l^{ψ} from reconstruction by looking for excess power over and above that due to Gaussian CMB

• Fourier transform of $\tilde{\Theta}(x) = \Theta(x) + \alpha(x) \cdot \nabla \Theta(x) + \cdots$ is

$$\tilde{\Theta}(l) = \Theta(l) - \int \frac{d^2 l'}{2\pi} l' \cdot (l - l') \Theta(l') \psi(l - l') + \cdots$$

• Fixed lenses produce anisotropic (off-diagonal) correlations in lensed CMB:

$$\langle \tilde{\Theta}(\boldsymbol{l}) \tilde{\Theta}^*(\boldsymbol{l}-\boldsymbol{L}) \rangle_{\Theta} = C_l \delta(\boldsymbol{L}) + \frac{1}{2\pi} \left[\boldsymbol{l} \cdot \boldsymbol{L}' C_l + (\boldsymbol{L}-\boldsymbol{l}) \cdot \boldsymbol{L} C_{|\boldsymbol{l}-\boldsymbol{L}|} \right] \psi(\boldsymbol{L})$$

- Estimate lensing potential for $L \neq 0$ with a weighted-average of off-diagonal terms:

$$\widehat{\psi}(\boldsymbol{L}) = N(\boldsymbol{L}) \int \frac{d^2 \boldsymbol{l}}{2\pi} \widetilde{\Theta}(\boldsymbol{l}) \widetilde{\Theta}^*(\boldsymbol{l} - \boldsymbol{L}) g(\boldsymbol{l}, \boldsymbol{L})$$

 Want an unbiased estimate averaged over realisations of CMB – fixes normalisation:

$$\langle \hat{\psi}(\boldsymbol{L}) \rangle_{\Theta} = \psi(\boldsymbol{L}) \quad \Rightarrow \quad N(\boldsymbol{L})^{-1} = \int \frac{d^2 \boldsymbol{l}}{(2\pi)^2} \left[(\boldsymbol{L} - \boldsymbol{l}) \cdot \boldsymbol{L} C_{|\boldsymbol{l} - \boldsymbol{L}|} + \boldsymbol{l} \cdot \boldsymbol{L} C_{\boldsymbol{l}} \right] g(\boldsymbol{l}, \boldsymbol{L})$$

"OPTIMAL" QUADRATIC ESTIMATOR

$$\widehat{\psi}(\boldsymbol{L}) = N(\boldsymbol{L}) \int \frac{d^2 \boldsymbol{l}}{2\pi} \widetilde{\Theta}(\boldsymbol{l}) \widetilde{\Theta}^*(\boldsymbol{l} - \boldsymbol{L}) g(\boldsymbol{l}, \boldsymbol{L})$$

 Free to choose weights g(l, L) to minimise statistical noise in reconstruction; leading order result gives

$$g(l, L) = \frac{(L - l) \cdot LC_{|l - L|} + l \cdot LC_{l}}{2\tilde{C}_{l}^{\text{tot}}\tilde{C}_{|l - L|}^{\text{tot}}}$$

where $\tilde{C}_{l}^{\text{tot}}$ is total observed CMB power including instrument noise

• Statistical noise on reconstruction is

$$\langle |\hat{\psi}(\boldsymbol{L}) - \psi(\boldsymbol{L})|^2 \rangle \approx \delta(\boldsymbol{0}) N(\boldsymbol{L}) = \left(\int \frac{d^2 \boldsymbol{l}}{(2\pi)^2} \frac{\left[(\boldsymbol{L} - \boldsymbol{l}) \cdot \boldsymbol{L} C_{|\boldsymbol{l} - \boldsymbol{L}|} + \boldsymbol{l} \cdot \boldsymbol{L} C_{\boldsymbol{l}} \right]^2}{2\tilde{C}_{\boldsymbol{l}}^{\text{tot}} \tilde{C}_{|\boldsymbol{l} - \boldsymbol{L}|}^{\text{tot}}} \right)^{-1}$$

- Noise from both instrument noise and CMB sample variance
- Requires high resolution small CMB blobs can be used to reconstruct lenses on all scales

ESTIMATOR IN REAL SPACE

$$\widehat{\psi}(\boldsymbol{L}) = N(\boldsymbol{L})\boldsymbol{L} \cdot \int \frac{d^2\boldsymbol{l}}{2\pi} \frac{\boldsymbol{l}C_l \widetilde{\Theta}(\boldsymbol{l})}{\widetilde{C}_l^{\text{tot}}} \frac{\widetilde{\Theta}(\boldsymbol{L}-\boldsymbol{l})}{\widetilde{C}_{|\boldsymbol{l}-\boldsymbol{L}|}}$$

• Integral is a convolution so has local real-space form:

$$\widehat{\psi}(\boldsymbol{L}) = -N(\boldsymbol{L}) \int \frac{d^2\boldsymbol{x}}{2\pi} e^{-i\boldsymbol{L}\cdot\boldsymbol{x}} \boldsymbol{\nabla} \cdot [F_1(\boldsymbol{x})\boldsymbol{\nabla}F_2(\boldsymbol{x})]$$

where filtered fields in Fourier space are

$$F_1(l) \equiv \frac{\tilde{\Theta}(l)}{\tilde{C}_l^{\text{tot}}}$$
 and $F_2(l) \equiv \frac{C_l \tilde{\Theta}(l)}{\tilde{C}_l^{\text{tot}}}$

- $F_2(x)$ is Wiener reconstruction of unlensed CMB so $\nabla \hat{\psi} \sim \tilde{\Theta} \nabla \Theta$

STATISTICAL NOISE LEVELS IN RECONSTRUCTION

Kendrick Smith

DETECTION OF LENSING IN CROSS-CORRELATION

- Smith et al. (2007) reconstruct (very noisy!) deflection map from WMAP3
 - Statistical noise too high (WMAP resolution 15 arcmin) for direct detection of lensing but . . .
 - Detect signal power at 3.4σ by cross-correlating reconstruction with (less noisy!) LSS tracer (NVSS radio galaxies)

RECONSTRUCTION WITH CMB POLARIZATION

- Quadratic estimators generalise to polarization
 - Helpful since more small-scale power and, for TB and EB estimators, less confusion from chance off-diagonal correlations
 - Needs high sensitivity imaging lens-induced *B*-modes requires $\Delta_p < 5 \,\mu$ K arcmin
- Can improve significantly on quadratic estimator for polarization (Hirata & Seljak 2003)

Hu & Okamoto (2002)

STATISTICAL NOISE LEVELS IN RECONSTRUCTION

Kendrick Smith

APPLICATIONS OF LENS RECONSTRUCTION: C_{i}

- Primary CMB provides limited information on sub-eV neutrino masses and dark energy only through d_A (and ISW)
- Reconstruction gives full C_l^{ψ} : much more information than the lensing effect on CMB power spectra
 - Error on $\sum_{\nu} m_{\nu} \sim 0.04 \text{ eV}$ (c.f. $\sum_{\nu} m_{\nu} > 0.05 \text{ eV}$ from oscillation data)
 - Not very constraining for dark energy $-\sigma(w) > 0.08$ since mostly sensitive to $z \sim 2$ but good probe of *early dark energy* models

DELENSING **B**-MODES

- Lensing acts like 5μ K-armin noise for detecting primordial *B*-modes
 - Limits $r > 3 \times 10^{-4}$ for l > 40 and $r > 3 \times 10^{-5}$ for all l
- Delens by remapping *observed* polarization with (noisy) reconstructed $\widehat{\psi}$
 - Up to factor \sim 10 improvement on r but requires \sim 1 μ K-arcmin polarization imaging and < 5 arcmin resolution
 - Small-scale T observations alone insufficient; ideal LSS to z = 3 gives factor ~ 2 improvement

CMB Lensing and primordial non-Gaussianity

BISPECTRUM FROM LENSING-ISW CORRELATION

• Reduced bispectrum of lensed CMB:

$$\langle \tilde{\Theta}(l_1)\tilde{\Theta}(l_2)\tilde{\Theta}(l_3)\rangle = \frac{1}{2\pi}b_{l_1l_2l_3}\delta(l_1+l_2+l_3)$$

• To leading order

$$\begin{split} \langle \tilde{\Theta}(l_1)\tilde{\Theta}(l_2)\tilde{\Theta}(l_3)\rangle &= \frac{1}{2} \langle \Theta(l_1)\Theta(l_2)(\nabla\Theta\cdot\nabla\psi)(l_3)\rangle + 5 \text{ perms} \\ &= -\frac{1}{2} \int \frac{d^2 l_3'}{2\pi} \langle \Theta(l_1)\Theta(l_2)\Theta(l_3')\psi(l_3-l_3')\rangle l_3' \cdot (l_3-l_3') \\ &= -\frac{1}{2\pi} C_{l_1}^{\Theta\psi} C_{l_2}^{\Theta} l_1 \cdot l_2 \delta(l_1+l_2+l_3) + 5 \text{ perms} \end{split}$$

• Gives reduced bispectrum

 $b_{l_1 l_2 l_3} = -\frac{1}{2} \left[l_3 (l_3 + 1) - l_1 (l_1 + 1) - l_2 (l_2 + 1) \right] C_{l_1}^{\Theta \psi} C_{l_2}^{\Theta} + 5 \text{ perms}$

- Peaks in squeezed limit ((ISW × small-scale Θ × small-scale $\tilde{\Theta}$))

IMPACT ON f_{NL}^{local} SEARCHES

$$b_{l_1 l_2 l_3} = -\frac{1}{2} \left[l_3 (l_3 + 1) - l_1 (l_1 + 1) - l_2 (l_2 + 1) \right] C_{l_1}^{\Theta \psi} C_{l_2}^{\Theta} + 5 \text{ perms}$$

- +25% correlation with bispectrum of local model
 - Both peak in squeezed limit
- For Planck ($l_{max} = 2000$), gives spurious (local-model) $f_{NL} = 9.3$ if uncorrected; negligible for WMAP ($l_{max} = 750$)

LENSING EFFECT ON PRIMORDIAL NON-GAUSSIANITY

- Lensing can also modify observed shape of primordial non-Gaussianity
- Analytic calculation to $O(C_l^{\phi})$:

$$\frac{\delta b_{l_1 l_2 l_3}}{\langle \delta^2 \Theta \Theta \Theta \rangle} \sim \underbrace{-\frac{1}{4} \left[l_1 (l_1 + 1) + l_2 (l_2 + 1) + l_3 (l_3 + 1) \right] \langle \alpha^2 \rangle b_{l_1 l_2 l_3}}_{\langle \delta \Theta \delta \Theta \Theta \rangle} + \underbrace{\mathcal{B}_{l_1 l_2 l_3} [C^{\phi}, b]}_{\langle \delta \Theta \delta \Theta \Theta \rangle}$$

- Also check against simulations:
 - Generate non-Gaussian maps (Smith & Zaldarriaga 2006; Ligouri et al. 2007) with correct power spectrum and (at least) bispectrum

$$\Theta_{lm} = \Theta_{lm}^{\mathsf{G}} + f_{NL} \Theta_{lm}^{\mathsf{NG}}$$

- Perform lensing displacement with LensPix (Lewis 2005)
- Estimate bispectrum on full sky from lensed maps (reduce MC error by subtracting 3-pt from ⊖^G_{lm})

LENSED LOCAL-MODEL BISPECTRUM

Hanson, Smith, AC, Ligouri (2009)

- Only 0.05% effect hence negligible:
 - If Planck found $f_{NL} = 60 \pm 5$, bias if ignore lensing only $\Delta f_{NL} = 0.03$

- Weak lensing of CMB is important
 - Several percent corrections through acoustic peaks
 - Generates small-scale power
 - Lens-induced *B*-modes confuse primordial for r < 0.01
 - Non-Gaussian signal
 - All generally well-understood and can be modelled accurately in linear theory with small non-linear corrections
- Potential uses
 - Mapping distribution of dark matter to high redshift
 - Improve parameter constraints and break degeneracies
 - De-lens primordial *B*-modes
 - Others not covered: cluster masses at high redshift etc.
- Watch out for direct detections in next two years (Planck, ACT, SPT etc)