

Problems with standard model:


```
solves cosmological puzzles
uses GR + scalar fields [(semi-)classical]
Inflation
can be implemented in high energy theories
makes falsifiable predictions ...
© ... consistent with all known observations
() string based ideas (brane inflation, ...)
```


Alternative model???

```
string based ideas (PBB, other brane models, string gas, ...)
- Quantum gravity / cosmology
- singularity, initial conditions \& homogeneity
- bounces
- provide challengers!
```


A brief history of bouncing cosmology

\Rightarrow R. C. Tolman, "On the Theoretical Requirements for a Periodic Behaviour of the Universe", PRD 38, 1758 (1931)
\Rightarrow G. Lemaître, "L'Univers en expansion", Ann. Soc. Sci. Bruxelles (1933)
\Rightarrow A. A. Starobinsky, "On one non-singular isotropic cosmological model", Sov. Astron. Lett. 4, 82 (1978)
\Rightarrow R. Durrer \& J. Laukerman, "The oscillating Universe: an alternative to inflation", Class. Quantum Grav. 13, 1069 (1996)

PBB - Ekpyrotic - Modified gravity - Quantum cosmology - Quintom -Horava-Lifshitz - Lee-Wick -

Pre Big Bang scenario: (cf. M.Gasperini \& G. Veneziano, arXiv: hep-th/0703055)

Ekpyrotic scenario:
$\mathcal{S}_{5} \propto \int_{\mathcal{M}_{5}} \mathrm{~d}^{5} x \sqrt{-g_{5}}\left[R_{(5)}-\frac{1}{2}(\partial \varphi)^{2}-\frac{3}{2} \frac{\mathrm{e}^{2 \varphi} \mathcal{F}^{2}}{5!}\right]$,

$$
\begin{gathered}
\mathcal{S}_{4}=\int_{\mathcal{M}_{4}} \mathrm{~d}^{4} x \sqrt{-g_{4}}\left[\frac{R_{(4)}}{2 \kappa}-\frac{1}{2}(\partial \phi)^{2}-V(\phi)\right]: \\
V(\varphi)=-V_{\mathrm{i}} \exp \left[-\frac{4 \sqrt{\pi \gamma}}{m_{\mathrm{P} 1}}\left(\varphi-\varphi_{\mathrm{i}}\right)\right]
\end{gathered}
$$

Standard Failures and some solutions

2 Singularity
Merely a non issue in the bounce case!
A

(1) FlatnesB $\frac{\mathrm{d}}{\mathrm{d} t}|\Omega-1|=-2 \frac{\ddot{a}}{\dot{a}^{3}}$
$\ddot{a}<0 \& \dot{a}<0$
accelerated expansion (inflation) or decelerated contraction (bounce)

(2) Somogeneity Large \& flat Universe + low initial density + diffusion $\frac{t_{\text {dissipation }}}{t_{\text {Hubble }}} \propto \frac{\lambda}{R_{\mathrm{H}}^{1 / 3}}\left(1+\frac{\lambda}{A R_{\mathrm{H}}^{2}}\right) \Longrightarrow$ enough time to dissipate any wavelength
(2) Dertutbationz see coming slides
(1) Sthers dark matter/energy, baryogenesis, ...

Self consistent bounce:

$$
\mathrm{d} s^{2}=\mathrm{d} t^{2}-a^{2}(t)\left(\frac{\mathrm{d} r^{2}}{1-\mathcal{K} r^{2}}+r^{2} \mathrm{~d} \Omega^{2}\right)
$$

$\longrightarrow \quad$ One d.o.f. +4 dimensions G.R.

Perturbations: $\quad \mathrm{d} s^{2}=a^{2}(\eta)\left\{(1+2 \Phi) \mathrm{d} \eta^{2}-\left[(1-2 \Phi) \gamma_{i j}+h_{i j}\right] \mathrm{d} x^{i} \mathrm{~d} x^{j}\right\}$

$$
\Longleftrightarrow \Phi=\frac{3 \mathcal{H} u}{2 a^{2} \theta} \quad \theta \equiv \frac{1}{a} \sqrt{\frac{\rho_{\varphi}}{\rho_{\varphi}+p_{\varphi}}\left(1-\frac{3 \mathcal{K}}{\rho_{\varphi} a^{2}}\right)}
$$

$$
u^{\prime \prime}+\left[k^{2}-\frac{\theta^{\prime \prime}}{\theta}-3 \mathcal{K}\left(1-c_{\mathrm{S}}^{2}\right)\right] u=0
$$

$$
\mathcal{P}_{\zeta}=\mathcal{A} k^{n_{\mathrm{S}}-1} \cos ^{2}\left(\omega \frac{k_{\mathrm{ph}}}{k_{\star}}+\psi\right)
$$

Data!

No obvious oscillations ...

A specific model: 4D Quantum cosmology

$$
\mathcal{S}=\int \sqrt{-g}\left(-\frac{R}{6 \ell_{\mathrm{P}}^{2}}+p\right) \mathrm{d}^{4} x
$$

Perfect fluid:

$$
p=\omega \rho
$$

bounce
(-) no horizon problem if
$\omega>-\frac{1}{3}$
®

$$
\begin{aligned}
n_{\mathrm{T}} & =n_{\mathrm{S}}-1=\frac{12 \omega}{1+3 \omega} \\
\frac{T}{S} & \simeq 4 \times 10^{-2} \sqrt{n_{\mathrm{S}}-1}
\end{aligned}
$$

Results:

Digression: about QM

Schrödinger $\quad i \frac{\partial \Psi}{\partial t}=\left[-\frac{\nabla^{2}}{2 m}+V(\boldsymbol{r})\right] \Psi$

Polar form of the wave function $\Psi=A(\boldsymbol{r}, t) \mathrm{e}^{i S(\boldsymbol{r}, t)}$
Hamilton-Jacobi $\quad \frac{\partial S}{\partial t}+\frac{(\nabla S)^{2}}{2 m}+V(\boldsymbol{r})+Q(\boldsymbol{r}, t)=0$

$$
\underset{\text { potential }}{\boldsymbol{\text { quantum }}} \underset{ }{\equiv-\frac{1}{2 m}} \frac{\nabla^{2} A}{A}
$$

Ontological interpretation (BdB) $\quad \exists x(t)$

Trajectories satisfy

$$
m \frac{\mathrm{~d}^{2} x(t)}{\mathrm{d} t^{2}}=-\nabla(V+Q)
$$

(-) strictly equivalent to Copenhagen QM
probability distribution (attractor)
Properties:
$\exists t_{0} ; \rho\left(x, t_{0}\right)=\left|\Psi\left(x, t_{0}\right)\right|^{2}$
© classical limit well defined $Q \longrightarrow 0$
© state dependent
© \exists intrinsic reality
non local ...
© no need for external classical domain!

The two-slit experiment:

Trajectories in the two-slit experiment

Quantum cosmology $\quad \mathrm{d} s^{2}=N^{2}(\tau) \mathrm{d} \tau-a^{2}(\tau) \gamma_{i j} \mathrm{~d} x^{i} \mathrm{~d} x^{j}$

+ canonical transformation
+ rescaling (volume ...) = a simple Hamiltonian:
+ units

$$
H=\left(-\frac{p_{a}^{2}}{4 a}-\mathcal{K} a+\frac{p_{T}}{a^{3 \omega}}\right) N
$$

Wheeler-De Witt $\quad H \Psi=0$

+ Technical trick: $\mathcal{K}=0 \Longrightarrow \chi \equiv \frac{2 a^{3(1-\omega) / 2}}{3(1-\omega)} \Longrightarrow i \frac{\partial \Psi}{\partial T}=\frac{1}{4} \frac{\partial^{2} \Psi}{\partial \chi^{2}}$
space defined by $\quad \chi>0 \ldots$ constraint $\bar{\Psi} \frac{\partial \Psi}{\partial \chi}=\Psi \frac{\partial \bar{\Psi}}{\partial \chi}$
alternative way of getting the solution:
WKB exact superposition: $\Psi=\int \mathrm{e}^{i E T} \rho(E) \psi_{E}(T) \mathrm{d} E$
Gaussian wave packet $\propto \mathrm{e}^{-\left(E T_{0}\right)^{2}}$
$\square \Psi=\left[\frac{8 T_{0}}{\pi\left(T_{0}^{2}+T^{2}\right)^{2}}\right]^{\frac{1}{4}} \exp \left(-\frac{T_{0} \chi^{2}}{T_{0}^{2}+T^{2}}\right) \mathrm{e}^{-i S(\chi, T)}$
phase $\quad S=\frac{T \chi^{2}}{T_{0}^{2}+T^{2}}+\frac{1}{2} \arctan \frac{T_{0}}{T}-\frac{\pi}{4}$
Bohmian trajectory $\quad \dot{a}=\{a, H\}$

$$
\longrightarrow a=a_{0}\left[1+\left(\frac{T}{T_{0}}\right)^{2}\right]^{\frac{1}{3(1-\omega)}}
$$

What about the perturbations?
Hamiltonian up to $2^{\text {nd }}$ order $\quad H=H_{(0)}+H_{(2)}+\cdots$
factorization of the wave function

$$
\Psi=\Psi_{(0)}(a, T) \Psi_{(2)}[v, T ; a(T)]
$$

$$
\text { comes from } 0^{\text {th }} \text { order }
$$

$$
\Delta \Phi=-\frac{3 \ell_{\mathrm{Pl}}^{2}}{2} \sqrt{\frac{\rho+p}{\omega}} a \frac{\mathrm{~d}}{\mathrm{~d} \eta}\left(\frac{v}{a}\right)
$$

Bardeen (Newton) gravitational potential

$$
\mathrm{d} s^{2}=a^{2}(\eta)\left\{(1+2 \Phi) \mathrm{d} \eta^{2}-\left[(1-2 \Phi) \gamma_{i j}+h_{i j}\right] \mathrm{d} x^{i} \mathrm{~d} x^{j}\right\}
$$

conformal time $\mathrm{d} \eta=a^{3 \omega-1} \mathrm{~d} T$

+ canonical transformations:

$$
i \frac{\partial \Psi_{(2)}}{\partial \eta}=\int \mathrm{d}^{3} x\left(-\frac{1}{2} \frac{\delta^{2}}{\delta v^{2}}+\frac{\omega}{2} v_{, i} v^{, i}-\frac{a^{\prime \prime}}{a}\right) \Psi_{(2)}
$$

spectrum

$$
\mathcal{P}_{\Phi} \propto k^{3}\left|\Phi_{k}\right|^{2} \propto A_{\mathrm{S}}^{2} k^{n_{\mathrm{S}}-1}
$$

id. grav. waves: $\quad \mu^{\prime \prime}+\left(k^{2}-\frac{a^{\prime \prime}}{a}\right) \mu=0 \quad \mu \equiv \frac{h}{a}$

$$
\mu_{\mathrm{ini}} \propto \frac{\exp (-i k \eta)}{\sqrt{k \eta}} \quad \quad \mathcal{P}_{h} \propto k^{3}\left|h_{k}\right|^{2} \propto A_{\mathrm{T}}^{2} k^{n_{\mathrm{T}}}
$$

same dynamics + initial conditions \longleftrightarrow same spectrum

$$
n_{\mathrm{T}}=n_{\mathrm{S}}-1=\frac{12 \omega}{1+3 \omega}
$$

CMB normalisation $\quad A_{\mathrm{S}}^{2}=2.08 \times 10^{-10}$
\Longleftrightarrow bounce curvature $\quad T_{0} a_{0}^{3 \omega} \simeq 1500 \ell_{\mathrm{P} 1}$

WMAP constraint

$$
n_{\mathrm{S}}=0.96 \pm 0.02 \Longrightarrow w \lesssim 8 \times 10^{-4}
$$

predictions

spectrum slightly blue

$$
\text { power-law + concordance } \simeq \simeq 0.62
$$

$\frac{T}{S}=\frac{C_{10}^{(\mathrm{T})}}{C_{10}^{(\mathrm{S})}}=\mathcal{F}(\Omega, \cdots) \frac{A_{\mathrm{T}}^{2}}{A_{\mathrm{S}}^{2}} \propto \sqrt{w}$

$$
\frac{T}{S} \simeq 4 \times 10^{-2} \sqrt{n_{\mathrm{S}}-1}
$$

Cosmology without inflation?

Cosmology without inflation!

monopoles $=$???
New solutions to old puzzles

Dark energy ..
Model dependence

Q No singularity
Q.R. ...

New predictions (oscillations, T / S...)

Future

String implementation
Non gaussianities

