
CMB DATA PROCESSING 
•  Spatial agency point of view:  

•  provide a set of frequency channel maps 
•  provide ‘clean, calibrated’ time-ordered data 

•  Cosmologist’s point of view:  
•  provide a likelihood, parameterized by power spectra 
•  provide a clean, well-characterized CMB map (e.g for NG studies) 
•  Don’t want to hear about systematic effects ! 

•  What we have to do: 
•  Comply with spatial agency (always wise, they have the money) 
•  Provide a likelihood to cosmologists 
•  Provide ‘some’ CMB map (characterization ? Not necessarily 
intermediate step from above problem… see component separation) 
•  Systematic effects: 

•  Learn about the instrument parameters from calibration 
phases and flight data (iterative process…) 
•  Validate the noise model (stationarity, null tests, etc.) 
•  Propagate systematics residuals to likelihood somehow (hard, 
not always possible…)  



A CMB pipeline sketch example: Planck HFI (FM)  



CMB data processing: plan of the lectures 

•  Cartography 

•  Data model 
•  From timelines to maps: optimal estimation 
•  Polarized maps estimation  
•  Noise models: the case of Planck (destripers) 
•  Open questions: sub-pixel modelling, beam asymetry, non-stationarity   

•  Power spectrum estimation: towards a hybrid philosophy ? 

•  Maximum likelihood (large scales) 
•  Pseudo spectra (small scales, fast heuristic weighting) 
•  Bayesian posterior samplers (Gibbs, HMC, PMC) 
•  Bayesian posterior approximations: the Gaussian copula case 
•  Open questions: towards a hybrid likelihood ?  



SCALAR MAPMAKING 



CMB imaging: scanning experiments 

Time-response of the instrument 
(detector + electronics) EM filters band-pass Angular response: beam 

and scanning strategy 

Detector noise Simplified linear model (pixelized sky) 

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

Archeops, Kiruna BICEP focal plane Spider web bolometer 



Imagers: map-making 

BAYES theorem 

Linear data model 

Sufficient statistics 
Covariance matrix of the map 

Uniform signal prior 

Huge linear system to solve: use iterative methods (PCG) + FFTs 



Exemple: Boomerang 1998 

•  Preconditionned conjugate gradient 
•  Piecewise stationnary noise model 

•  FFT-based weighting scheme 
•  need constrained noise realizations 

•  I did it  



POLARISED 
MAPMAKING 



Imagers: polarised map-making 

 One polarised detector (i) 

Let us consider n measurements of the same pixel, indexed by their angle α	



ML solution 



Polarisation: optimal configurations 

Assume uncorrelated and equal variance measurements, look for optimal configuration of angles : 

General expression of 
the covariance matrix 

•  Stokes parameters errors 
are uncorrelated 
•  Covariance determinant is 
minimized 



Planck special case: destripers 
•  Specific observing strategy: ~45-60 redundant circles, then depointing 
•  Noise in phase-coadded data: mostly white + random offset 
•  Effect of N-1: kill average of each ring 
•  Map-making reduces to chi-square fit of offset values using circles crossings 

Fj constant on ring j 

Minimize w.r.t. a and m 

White noise 
Simple coadded map with offsets removed 

•  Simple offset determination 
•  Z removes average value in pixel 

Delabrouille 98, Revenu et al. 00, Maino et al. 02, Keihanen et al. 04 

Generalizes to more complex baselines F (Fourier modes, polynomials, etc.) 



Visual aspect of stripes 

•  Can dominate the signal at large scales if not taken care of ! 
•  See Efstathiou 07 for power spectra of stripes or stripes residuals 

Maino et al. 08 



What remains to be done for mapmaking 

•  Mapmaking methods described so far do not adress beam asymmetries 
•  Case of circular beams: resulting beam is approximately 
homogeneous and circular on the map: easy to propagate to power 
spectra 
•  Effect can in principle be propagated to power spectrum estimation 
(see work of T. Souradeep & S. Mitra) 
•  Beam deconvolution: boosts small scale noise: needs regularization ! 
•  Far side lobe decomposition using all sky convolver: see Armitage & 
Wandelt 04 (still an open problem at small scales) 
•  Sub-pixel modeling: signal variations inside pixels (important for 
Planck, especially polarization measurements)   



Systematic deviations from the idealized case: impact on B modes 

•  Reminder: B-mode polarization signal is (expected to be) very tiny ! 
•  All systematic effects can create artificial B-mode from E or T  



Detection chain systematics 
Polarization tensor: 

Jones matrix: electric field transmission 

Error in Jones matrix determination: 

•  g1, g2: gains (fluctuations) 
•  ε1, ε2:  cross-talk amplitudes 
•  ϕ1, ϕ2: cross-talk phases

•  α: phase delay   

Gain error Rotation error Leakage error Hu, Hedman & Zaldarriaga 03 



Beam & pointing errors 
Symmetry (spin) conditions imply local errors of the form: 

Beam errors, different for each polarized component: 

Hu, Hedman & Zaldarriaga 03 



Identifying error terms 

Q measurement 

Mean pointing error 

Differential pointing error 

Mean ellipticity error 

Differential ellipticity error 

At first order in the errors : 

Hu, Hedman & Zaldarriaga 03 



Impact on polarization B-modes 
Measurement chain errors 

Hu, Hedman & Zaldarriaga 03 

Negligible beam size – varying coherence length 



Impact on B-modes (cont.) 
Beam & pointing errors 

Hu, Hedman & Zaldarriaga 03 

Varying beam size (and coherence length accordingly) 



CMB data processing: 
Interferometers 

Application to CBI data 



The case of interferometers 

CBI – Atacama desert 



(May 2002, as VSA) 

… and the diffusion scale  
The CBI example: 
•  Atacama desert 
•  Interferometer (13 antennas) 
•  10 frequency bands (26-36 GHz) 
•  Noise properties simpler (no drift scan) 
•  Ground effects, point sources … 

Also BIMA … 

6x7 field mosaic map 



Interferometers: data model 
Visibilities: sample the convolved UV space: 

Idem for Q and U Stokes parameters 

RL and LR baselines give (Q±iU) 

Relationship between (Q,U) and (E,B) in UV (flat) space 

Visibilities correlation matrix 

UV coverage of a single pointing of CBI (10 freq. bands) 
( Pearson et al. 2003) 



Pixelisation in UV/pixel space 
•  Redundant measurements in UV-space 
•  Possibility to compress the data ~w/o loss 

•  Hobson and Maisinger 2002 

•  Myers et al. 2003 
•  Park et al. 2003 

Least squares solution 

For an NGP pointing matrix: 

Resultant noise matrix 

Use in conjonction with an ML estimator 

Newton-like iterative maximisation 

Fisher matrix 

Covariance derivatives for one visibility 



Polarized mosaic observations: gd pick-up 

Polarization signal dominated by ground spillover: needs cleaning 

I Q U 



Lead-trail differencing 
Differencing visibility measurements on fields separated by 9’ RA 



Results of polarized mosaic observations 



Linear (Wiener) filtering: application to imaging -23.0000 23.0000
mJy/pixel

-15.0000 15.0000
mJy/pixel

-15.0000 15.0000
mJy/pixel

-15.0000 15.0000
mJy/pixel

Raw data 

CMB 

Signal 

Sources 



SCALAR POWER 
SPECTRUM: 

MLE 



Imagers: power spectrum 
Signal covariance matrix 

BAYES again… 

TO BE MAXIMIZED WITH RESPECT TO POWER SPECTRUM 

Marginalize over the map 



Imagers: power spectrum (cont.) 
Second order 
Taylor expansion 

For each iteration and each band, Npix
3 operation scaling !! 

PSEUDO-NEWTON (FISHER) 



‘Quadratic Maximum Likelihood’ 
•  If some knowledge of the power spectrum is available, one may side-step 
iterations of the pseudo-Newton to compute an optimal estimator (i.e. lossless) 
•  The estimator is then quadratic in the data… 
•  Note that in principle you need the answer to get the answer !! 
•  Suppose noisy experiment, with no beam (easy to generalize though) 

Unbiased 

Minimum variance, under constraint 

Tegmark 97 

•  Knowing C means knowing power spectrum ! 
•  Still a very time-consuming process… 
•  Fisher matrix for these parameters not always invertible 
•  Generalizes easily to polarization data 



Application to COBE data 

State of the art in 1997…. 
Do you see a peak ?  

Tegmark 97 



SCALAR 
MASTER 



Imagers: too many pixels ! 
 New (fast) analysis methods needed 

•  Fast harmonic transforms 
•  Heuristically weighted maps 

Quite ugly at first sight !! 



Imagers (cont.) 
Power spectrum expectation value 

…simplifies, after summation over angles (m):  



Imagers: “Master” method 
Finite sky coverage  loss of spectral resolution  need to regularize inversion 

MC estimation of 
covariance matrix 
of PS estimates 

Spectral binning of the kernel Unbiased estimator 

Works also for polarization (easier regularization on correlation function) 



Quadratic estimators: covariances 
Temperature case, reminders 

Edge-corrected estimators covariances in terms of pseudo-Cls covariances 

As long as Mll’ is invertible, same information content in edge-
corrected Cls and pseudo-Cls 



Pseudo-Cls estimators: cosmic variance 

Forget noise for the moment, consider signal only: 

Case of high ells and/or almost full sky 

If simple weighting (zeros and ones) 

Same can be done for polarization, only more complicated … 



Application: WMAP power spectrum 

(Method fixed) 

1/3 
ML/pseudo 

Beam  
corection 



Imagers: polarised spectrum estimation 

Stokes parameter in the great circle basis 



Polarisation: correlation functions 

Polynomials in cos(β): integrate exactly with 
Gauss-Legendre quadrature 



Polarisation: (fast) CF estimators 
Heuristic weighting (wP,wT): Normalization: correlation function of 

the weights 

Using for m=n=2 involves 

with Weighted polarization field 

Using 

We get 



Polarisation: (fast) CF and PS estimators 
Define the pseudo-Cls estimates: 

These can be computed using fast SPH transforms 
in O(npix

3/2) (compare to o(npix
3) scaling of ML…) 

If CF measured at all angles: 
integrate with GL quadrature 

Assuming parity invariance  



Polarisation: CF estimators on finite surveys 
Incomplete measurement of correlation function: apodizing function f(β): 

Normalization of the window functions 

Results in E/B modes leakage 



Cut-sky effects: E-B mixing 
•  Mixing occurs from line integrals on the border 
•  Define STF windows that project out E contribution 
•  This can be achieved by SVD of coupling matrix 
•  For each m, 2 modes are lost 

Lewis, Challinor, Turok 2001 

•  Separation is done at the map level 
•  Block-diagonal structure of coupling allows to  
  gain CPU time for azimuthally symmetric patches 
•  Pixel effects can be important if no quadrature 
 sampling … (e.g. Bunn et al. 2002) 



E-B mixing: statistical separation 
•  Use integrals of the Stokes correlations 
  functions over observed angular range to  
  construct pure E and B statistics 
•  Originally derived for lensing  
  (Crittenden et al. 2002) 
•  Generalized to the sphere  
  (Chon et al. 2004) and coupled to 
  fast, edge-corrected estimation of  
  correlation functions 

Fast decoupled, edge-corrected estimators 
of polarized spectra available 

•  E-B separation only in the mean ! 
•  E-mode cosmic variance leaks into B-mode variance 
•  Only valid for sufficiently large surveys 
  (Challinor & Chon 2005) 

OR  

•  Use the coupling kernels of polarised pseudo-Cls  
  (Hansen & Gorski 2003) 
•  Generalise MASTER (or FASTER) method 
•  Regularised (binned) inversion of coupling  
  kernel 
•  This was used in the B03 data processing 



Polarisation: E/B coupling of cut-sky 

Leakage window functions (not normalized) Recovered BB spectra (dots) 

No correlation function information over βmax=20± 



Polarisation: E/B coupling of cut-sky 

Leakage window functions (not normalized) Recovered BB spectra (dots) 

No correlation function over 
Gaussian apodization 



Polarisation: E/B leakage correction 

Define: 

Then: 

As a function of ξ+ 

We have obtained pure E and B spectra (in the mean) 



Results on small survey simulation 

•  Solid line: input BB spectrum 
•  bullets: recovered BB (unnormalized) 
•  + : recovered BB (normalized) 

 Renormalized windows 



Polarized case: harmonic point of view 

Challinor & Chon 05 
Hansen et al. 03 



Pseudo-spectra: continued 



Recovered spectra (E/B statistical separation) 

Only invertible if correlations functions 
are measured over [0,π], otherwise 
need regularization (e.g. binning) 

Using (apodized) correlation functions is 
a way to find pseudo-inverses with 
specific properties 

Edge-corrected, E/B decoupled estimators: 

and idem for B modes 



A small survey exemple:15 degree radius coverage 

Conservative 
regularization 
(apodization) 
hence poor 
spectral 
resolution of 
recovered 
spectra 



Exact covariance properties 

Exemple: BB covariance, 
with or without E leakage 



Approximations: first stage 
For sufficiently smooth windows Spin raising/lowering operators 



Illustration: EE 

EXACT 

APPROXIMATE 



Illustration: BB 

EXACT 

APPROXIMATE 



Illustration: EB 

EXACT 

APPROXIMATE 



Approximations: second stage 
Approximate covariance of pseudo-spectra band powers: 

Approximate recovered spectra as weighted sums of pseudo-spectra: 



Illustration: E-mode leakage in BB covariance 



BB r=0.3 

Approx EE/BB 
foreground 

Application: WMAP3 SPECTRA 

• TT/TE at high ell 
were obtained with 
pseudo spectra 
•  All other spectra 
were obtained with 
pixel-based MLE 

Page et al. 06 



E/B separation “in the map” 

•  Idea: E/B mode separation in the map, using fast spherical harmonics transforms 
•  Can be achieved if weight function and its derivatives have specific properties 
•  BB spectrum covariance is not contaminated by E-mode power 

Regular fast estimator New fast estimator 

Bunn et al. 03 
Smith 06 



E/B separation in the map (cont.) 

• Needs to be implemented on discretized data: remaining pixelization issues 
• Difficulty Is in (numerical) design of the window: make estimator close to QML  

Integrate by parts: 

W window function of finite support: S
m
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on survey boundary 

Usual pseudo-Cl 

Contreterms 



Effect on covariance 
•  10 deg. Circular patch 
•  5.64 µK.arcmin 
•  8’ fwhm beam 

Pseudo-Cl 
with contreterms 

Smith & Zaldarriaga 07 

Difficulty is in (numerically) optimizing windows to get minimum covariance 



Spectral estimation in CMB observations (reminders) 

Temperature only: scalar case 

Full sky case, no noise: 

Sufficient statistics 

Simple data model: gaussian 
fields on a pixelized sphere 
- scalar (temperature fluctuations)  
- vector (T and polarization) 



Flat prior 

Generalizes easily to vector-valued, pixelized fields 
E.g. Temperature and polarisation anisotropies 

Wishart distribution 

Generalizes easily to isotropic noise + beam: 

Full-sky likelihoods 
Chi2 distribution 

Inverse Gamma 
distribution 



In case of anisotropic noise / partial coverage, the factorisation of the posterior 
(based on spherical harmonics orthogonality) is lost… 
Empirical power spectrum is not a sufficient statistics anymore… 

Possible path: 
•  different approach for large and small scales (resp. low and high multipoles) 
•  find parametrized, more or less sophisticated approximations of the (joint)  
posterior at small scales 
•  sample the exact posterior at large scales where approximations fail 

Realistic case: anisotropic noise, partial coverage… 

Beware: this is still a simplified data model, reality involves asymmetric beams,  
noise filtering in time domain, etc. 



Strategy at high multipoles 
"  Partial sky coverage: no product form for the posterior 

"  Huge number of pixels: cannot efficiently explore the posterior  

"  but gaussian asymptotics should help to construct approximations 

"  Partial sky coverage: no exactly sufficient statistics in terms of 
empirical power spectra, but very good approximations, especially in 
noise dominated regime 

"  data compression in terms of heuristically weighted/corrected 
empirical power spectrum 

"  construction of approximate, analytical posterior functions inspired 
from the full-sky case, and (empirical) covariance of the (empirical) 
PS 



Start from the full-sky distribution of the empirical power spectrum: 

Assume we have an unbiased empirical power spectrum estimate, with known 
covariance, we look for a function of this estimate which is approximately gaussian 

Choice: (approximately) put the third derivative of lnP to zero in the full-sky case: 

Further inspection of the full-sky distribution (peak and curvature at peak) leads to this choice: 

Parametrized approximations using pseudo spectra 

Other possible choices: offset log-normal approximation, (direct) gaussian 
approximation, inverse-gamma approximation, etc.  

and 

Smith et al. 06 
Percival & Brown 06 
Hamimeche & Lewis 08 

•  Beware: in general pseudo-spectra are not sufficient statistics 
•  This is still an open problem, especially for polarization 



Strategy at low multipoles 
"   Small number of observable modes/pixels 
"   Partial sky coverage: simple approximations to the posterior 

fail 
"   Need to sample from the “exact” posterior (or build clever 

approximations) 



Exploring the full likelihood: Gibbs samplers 
IDEA: factorize (complicated) likelihood into (simpler) conditional probabilities 

Goal: sampling of the posterior: 

Can be achieved by marginalizing: 

How to do that ? Iterative sampling from the conditional probabilities: 

Wiener filter 

Wandelt et al. 2004 



Gibbs sampling (cont.) 

Wiener filter map, computed 
Using CG iterations 

Fluctuation part, ξ and χ	


are normal random variables	



Compute 

Vector of normal random variables, of size 

Drawing from 

Drawing from 

Or replace this sampling step with analytical knowledge of this conditional 
distribution  Blackwell-Rao estimator (leads to reduced variance on integrals of 
the posterior, see later) 



Results on WMAP1 data 
Map average over posterior: 
Generalized wiener filter 

V-band spectrum: 
Samples and mean 
posterior 

Eriksen et al. (2004) 

Main issue: slow convergence of sampler if S/N << 1 



Gibbs sampling and Blackwell-Rao 

We don’t know want to sample directly from 

But we know how to sample from the conditionals: 

Product of inverse Gamma (Wishart) distribution, analytic 

Constrained gaussian realisation, iterative solvers… 

Draw from each conditional iteratively: Gibbs sampling 

But we know this analytically  Blackwell-Rao estimator: 

Chu et al. 05 



Comparison of Gibbs results to (one choice of) analytical, parameterized posteriors 

Validation of the Gibbs sampler 
for a 2 parameters case 

Comparison of Gibbs results to analytical (WMAP) 
posterior 

Chu et al. 05 



Plus and minuses… 

"   As any MC sampling, can easily refine the 
posterior (e.g. foreground templates) 

"    It can “deal” with intermediate scales, 
where “exact” computation of the posterior 
  is impossible (too many pixels/modes) 

"   What about convergence ??? 
"    Very bad behavior at low Signal-to-

Noise ratio  
"   need to rebin at small scales 

"    Fortunately, at large scales Signal is 
really dominant (at least for 
temperature) 

"    Lack of parallelism 
"   Recent developments to overcome 

convergence problems: Jewell et al. 08 

Low resolution, high S/N prospective 
experiment 

Need to bin (logarithmically) to get 
reasonable convergence (5 chains of 
1000 samples, 10 min/sample) 

Larson et al. 07 



Same for high resolution, higher noise experiment (e.g. Planck) 

"   Heavily binned (20 bins only) 
"   Very small number of samples (8 chains of 100 samples) 
"   Each constrained realisation takes ~16 CPU hours 
"   Even with this binning, convergence indicators are not very good 

(not surprising given the number of samples, and the parameter 
space of the chain) 

Larson et al. 07 



A proposed alternative: Hybrid/Hamiltonian MC 

Data model 

Decomposition of joint posterior 
decomposition (as in Gibbs) 



HMC Implementation 
Augmented log-posterior, with kinetic term 

 Draw moments pi from Gaussian law 
 Integrate Hamilton’s equation (e.g. leap-frog) 
 Estimate acceptance probability 

Useful non-trivial gradients 
Fast because of fast  
Spherical harmonics  
transforms 

Fast because 
scalar 



Results on WMAP simulation 

Starting point: Constrained realization 

Diagonal mass matrix, inversely 
proportional to approx. variances 
of parameters 



Hanson’s convergence criterion 

 3000 “burn-in” discarded samples 
 4000 used samples 



TEASING : analytic approximations at large scales 

Pixel-based likelihood (=> target) Sampling proposal 

Parameters 
starting 
points 

Iteratively minimize divergence between the distributions 
using adaptive importance sampling (Population MC) 

Benabed, Cardoso, Prunet, Hivon 2009 



Population Monte Carlo basics 
Also known as Adaptive Importance Sampling 

•  MC basic sampling 
•  Needs to know how       
to sample under π 

•  Importance sampling 
•  No need to sample under π 
•  Need to know how to compute π 
•  Only need to sample under q 
•  Beware: q cannot be too far from π 
•  q and π need to have same support 

•  Normalized importance sampling 
•  Useful when π is not normalized 



Importance sampling: need for adaptation 

minimized when  

IS estimate 

No bias 



PMC base algorithm 
IS under parametrized mixture proposal: 

Iterative minimization of KL divergence: 

Cappe et al. 07 

Monitor 
convergence with 

Perplexity 



PMC algorithm: derivation 
Goal: maximize 

As in EM algorithm, use mixture 
index as latent variable: 

Update as in EM, with 
additional expectation on X 

Using: 

And defining: 



PMC: case of Gaussian mixtures 

Solutions: 

Can be easily generalized to log-normals, but also multivariate Student mixtures 

where 



Results on synthetic (low-l) data 
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Taking into account the covariance: Copula approximation 

Gaussianization of marginals, 
defines Gl as functions of Dl 

Gaussian copula approximation 

MG is measured (for now) on the (Gaussianized) samples 

Measured Dl correlation Correlation predicted from copula 

W
M

A
P

5 
lo

w
-r

es
 

Benabed, Cardoso, Prunet, Hivon 2009 



Quality of approximation: parameter posteriors 

•  WMAP5 data 
•  Simple 2-parameters model 

Benabed, Cardoso, Prunet, Hivon 2009 

TO COME SOON: APPROXIMATIONS WITH NO SAMPLING REQUIRED ! 



Summary 
•  Provided with a linear instrument and Gaussian noise, (optimal) maps are 

•  available (through iterative solvers) 
•  sufficient statistics 

•  Given a map, we know how to find the peak of the spectrum likelihood 
•  exactly at large scales 
•  approximately at small scales 

•  Given a peak (and curvature at peak) of the PS likelihood, we can have: 
•  (proven) good approximation of the likelihood at large scales (polar ?) 
•  approximations at small scales ? Use asymptotics ? (open pb) 
•  how to stitch large and small scales ?? (open pb) 

•  Multi-channel, multi-components likelihoods (see JFC’s lectures) 

•  Boltzmann codes + PS likelihoods  cosmological inference 
•  via MCMC codes (e.g. COSMOMC) 
•  via PMC codes 



Polarisation measurements 
Status and perspectives 



Polarisation: first measurement 

First detection of 
E-mode polarisation 
by DASI (2002) 

3 years results: 
sharpened E detection 

Kovac et al. 2002 
Leitch et al. 2005 



Polarisation 
Upper limits and first measurement by DASI 



Polarisation spectra: 2005 observational status 
EE power spectrum 

TE cross-spectrum 

B03 

DASI 
CBI 

CAPMAP 

WMAP 

Interferometer - HEMTs 

HEMTs- differential 

Interferometer - HEMTs 

Sing. dish - HEMTs 

Sing. Dish - Bolometers 

Montroy et al. 2005 

Piacentini et al. 2005 



Cosmological consistency 

WMAP TT+TE CBI+B03+DASI EE+TE WMAP TT+TE   +   CBI+B03+DASI TT+TE+EE 

Sievers et al. 2005 



Polarisation: on-going 

QUAD 

BICEP 



WMAP5: first large-scale polarization maps 

Q Stokes 

Hinshaw et al. 08 



WMAP5: first large-scale polarization maps 

U Stokes 

Hinshaw et al. 08 



WMAP5: TE cross-spectrum 

Nolta et al. 08 



WMAP5: EE spectrum 

Nolta et al. 08 



Polarized maps: CMB, sync, dust (Q,U) Stokes parameters 

Dunkley et al. 08 Component separation with Gibbs sampling, see later 



1-sigma pixel errors, CMB, sync, dust 

Dunkley et al. 08 



Synchrotron amplitude, spectral index and error on latter 

•  Correlated patterns between synchrotron amplitude and index 
•  Polarized likelihood on foreground template cleaned map 

Dunkley et al. 08 



QUAD second release (2008) 

Pryke et al. 08 



Polarisation: Planck 

Nice propaganda ! But does not include systematics … 

http://background.uchicago.edu/~whu/ 
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A foretaste of Planck-HFI @ 145 GHz but: 
•  wI =82µK.arcmin, while HFI goal is wI =42µK.arcmin @ 143GHz (OK FM bolos delivered~36) 
•  Planck has matching sensitivities in 9 frequency bands, e.g. ~60 µK.arcmin @ 100 & 217 GHz  
•  90 deg2, i.e. 0.2% of the sky covered, instead of 100% (and deep surveys in Planck too) 

B03 Deep survey 



Why bother: parameters posteriors 
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Bond et al. 04 



Space-borne polarimeter 

•  Specific design to control instrumental 
systematics 
– Thermal stability (tiny signals !) 
– Instrumental polarisation control 
– Optimized scanning strategy 

• Detectors are ~background limited 
– Need a lot of them !! 
– Detector arrays, no horns, big focal planes 

Specific needs 



Polarisation: the future challenge 

•  Primordial GW background: no theoretical prior on amplitude… 
•  One-field inflationary models: Tensor amplitude varies as Einf

4 

•  Lensing-induced B-modes: dominant at least on small scales 
•  Polarized foreground emissions are nearly unknown ... 

C
ou

rte
sy

 E
P

IC
 c

on
so

rti
um

 



Polarisation from space: requirements 
•  Large scales: space required 
•  Stable environment: space … 
•  Detectors are background limited 

•  need lots of them ! 
•  detector arrays 
•  large telemetry … 

•  Stringent systematics control 

Courtesy EPIC consortium 



Lensing-induced B-mode cleaning 

Kesden, Cooray, Kamionkowski (2002) 

Substract lensing-induced BB 
by reconstruction of deflection 
angle using 4-point minimum 
variance estimators (Hu & 
Okamoto 2002) 

Exponantial cut-off of CMB 
anisotropies at small scales 
limits lensing reconstruction 



Lensing “cleaning”: improvement ? 

Hirata & Seljak 2003  

•  Iterative ML method 
•  Gains in the low-noise limit 
by reducing the CV of the residual 


