WEAK GRAVITATIONAL LENSING

CARGÈSE 2012 DAVID BACON

INSTITUTE OF COSMOLOGY AND GRAVITATION

Centre for cosmology in Portsmouth

Interesting projects such as SDSS-III, DES, LOFAR, Galaxy Zoo

GRAVITATIONAL LENSING AS WE ALL KNOW IT

Abell 2218 (Draco) Cluster of galaxies 2 billion light years away, background galaxies 6 billion light years away

A LARGE SCATTERING EXPERIMENT

Direct measure of mass and geometry

THESE LECTURES:

- How does the light bend?
- How can we describe weak lensing?
- What are the observational challenges?
- Mapping dark matter
- Cosmological statistics

MIRAGES

MIRAGES - WHY?

Hasselhoff should run along the beach to save the drowning woman

MIRAGES - WHY?

Fermat: light behaves like Hasselhoff

Refractive index is function of temperature

FERMAT IN GR

In GR, the **arrival time** is stationary with respect to nearby candidate rays.

Full proof is involved (e.g. Perlick 1990)

We'll see that geodesic equation leads to same results.

How do we describe paths with varying refractive index?

Take dot product with **t**, noting $\mathbf{t} \cdot d\mathbf{t} = 0$

 $\frac{1}{n}\frac{dn}{dl} = \frac{1}{n}\mathbf{t}\cdot\nabla n$

Substitute into (1):

HOW DO WE DESCRIBE PATHS WITH VARYING REFRACTIVE INDEX?

This is just $\frac{d\mathbf{t}}{dl} = \frac{\nabla_{\perp} n}{n}$ where ∇_{\perp} is perpendicular to ray.

The bend angle is $\hat{\vec{\alpha}} = \mathbf{t}_{\rm in} - \mathbf{t}_{\rm out} = -\int dl \frac{d\mathbf{t}}{dl}$

So
$$\hat{\vec{\alpha}} = -\int dl \frac{\nabla_{\perp} n}{n}$$

Wonderful!

APPROXIMATE METRIC

Einstein field equations:

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = -\frac{8\pi G}{c^4}T_{\mu\nu}$$

Rough analogues:

So Einstein's field equations contain an analogue to Poisson, $\nabla^2 \Phi = 4\pi G \rho$

APPROXIMATE METRIC

For galaxies and clusters, $g_{\mu\nu} \simeq \eta_{\mu\nu} + h_{\mu\nu}$ $h_{\mu\nu} \ll 1$

Putting this into field equations, one finds

$$\Box^2 \bar{h}^{\mu\nu} = -\frac{16\pi G}{c^4} T^{\mu\nu}$$

Wave equation - if $\partial^2/\partial t^2$ is small, then like Poisson.

Then to secure the roll-over to Newton, we need

$$h_{\mu\mu} = 2\Phi/c^2$$
 so

$$ds^2 = g_{\mu\nu}dx^{\mu}dx^{\nu} = \left(1 + \frac{2\Phi}{c^2}\right)c^2dt^2 - \left(1 - \frac{2\Phi}{c^2}\right)dl^2$$

EFFECTIVE REFRACTIVE INDEX

 $ds^2=0$, so we can rearrange this to give

$$ct = \int \left(1 - \frac{2\Phi}{c^2}\right)^{\frac{1}{2}} \left(1 + \frac{2\Phi}{c^2}\right)^{-\frac{1}{2}} dl \simeq \int \left(1 - \frac{2\Phi}{c^2}\right) dl$$

$$n!$$

So space is acting like a refractive medium with

$$n=1-\frac{2\Phi}{c^2}$$

So bend angle $\left| \hat{\vec{\alpha}} = -\int dl \frac{\nabla_{\perp} n}{n} \right|$ is $\left| \hat{\vec{\alpha}} = \frac{2}{c^2} \int \nabla_{\perp} \Phi \, dl \right|$

This is parallel transported along ray, so

$$\frac{dt_a}{dl} - \Gamma^b_{ac} t_b \frac{dx^c}{dl} = 0$$

And we can rewrite this as

$$\boxed{\frac{dt_a}{dl} = \frac{1}{2}g_{cd,a}t^ct^d}$$

Nice form.

GEODESIC EQUATION

$$\frac{dt_a}{dl} = \frac{1}{2}g_{cd,a}t^ct^d$$

So e.g. ray in *z* direction, *t*=[1,0,0,1]:

$$\frac{dt_x}{dl} = -\frac{1}{2}\frac{\partial g_{00}}{\partial x} - \frac{1}{2}\frac{\partial g_{33}}{\partial x} = -\frac{2}{c^2}\frac{\partial \Phi}{\partial x}$$

which is what we got earlier for 'glass'!

Recall
$$\frac{d\mathbf{t}}{dl} = \frac{\nabla_{\perp} n}{n}$$
 , $n = 1 - \frac{2\Phi}{c^2}$

COMPARISON WITH NEWTON

Suppose we treated light's motion the same as low-velocity motion. Then we'd have $t \simeq [1,0,0,0]$:

$$\frac{dt_x}{dl} = -\frac{1}{2}\frac{\partial g_{00}}{\partial x} = -\frac{1}{c^2}\frac{\partial \Phi}{\partial x}$$

ie we miss the spatial curvature (g₃₃) part, so factor of two smaller.

A POTENTIALLY MISLEADING DIAGRAM:

This is OK as long as it's understood that the light rays are not locally straight in this bent 3-space; time distortion also needs to be taken into account.

MODIFIED GRAVITY

An important class of modified gravities are metric theories with two perturbations:

$$ds^{2} = \left(1 + \frac{2\Psi}{c^{2}}\right)dt^{2} - \left(1 - \frac{2\Phi}{c^{2}}\right)dl^{2}$$

As before we set this =0, then

$$t = \int \left(1 - \frac{2\Phi}{c^2}\right)^{\frac{1}{2}} \left(1 + \frac{2\Psi}{c^2}\right)^{-\frac{1}{2}} dl \simeq \int \left(1 - \frac{\Phi + \Psi}{c^2}\right) dl$$

so bend angle $\hat{\vec{\alpha}} = \frac{1}{c^2} \int \nabla_{\perp} (\Phi + \Psi) dl$

i.e. lensing responds to the combination $\Phi + \Psi$.

MOVING BEYOND THE BEND ANGLE...

Earlier we found the GR lensing bend angle:

$$\hat{\vec{\alpha}} = \frac{2}{c^2} \int \nabla_{\perp} \Phi \ dl$$

BORN ÅPPROXIMATION

We typically make the approximation that the integral can be taken in the radial direction:

LENS GEOMETRY

Suppose we have the following:

 $\vec{\theta} = \vec{\beta} + \vec{\alpha}$

Lens equation

Small angles:

$$\vec{\alpha}D_s = \hat{\vec{\alpha}}D_{ls}$$
 so $\vec{\alpha}$

$$\mathbf{O} \quad \left| \vec{\alpha} = \frac{D_{ls}}{D_s} \hat{\vec{\alpha}} \right|$$

RAYTRACING EXAMPLE

LENSING POTENTIAL

We'll find it very useful to squash (project) the gravitational potential into 2D on the sky.

Gravitational potential well in 3D

Lensing potential in 2D

LENSING POTENTIAL

How do we do this?

SURFACE MASS DENSITY

We'll also find it very useful to squash (project) the density into 2D on the sky.

Density in 3D

Surface density in 2D

SURFACE DENSITY

How do we do this?

$$\Sigma = \int dr \; \rho$$

Let's also introduce a quantity containing all the constants and distance ratios:

$$\Sigma_c = \frac{c^2}{4\pi G} \frac{D_s}{D_{ls} D_l}$$

Then
$$\nabla_{\theta} \cdot \vec{\alpha} \sim \int dr \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) \Phi \sim \int dr \rho$$

and we find

$$abla_ heta \cdot ec lpha =
abla_ heta^2 \psi = rac{2\Sigma}{\Sigma_c}$$

- a 2D Poisson!

NEAR-OBSERVABLES: 1) MAGNIFICATION

Interesting: lensing conserves surface brightness

(Why? Because I/ν^3 is conserved along rays in GR, and ν change is almost all from cosmological redshift)

Call ratio of lensed to unlensed luminosity, the magnification

So since *I* is conserved, magnification is the ratio of lensed to unlensed area of image.

NEAR-OBSERVABLES: 1) MAGNIFICATION

Total=4

Magnification=4, which is ratio of areas

JACOBIAN

To go further, it will help to describe the lensing with the Jacobian matrix

$$\mathcal{A}_{ij} = rac{\partialeta_i}{\partial heta_j}$$

i.e. how a position in the image plane maps to a position in the source plane.

The lens equation says $\beta_i = \theta_i - \alpha_i$

So
$$\mathcal{A}_{ij} = \delta_{ij} - \frac{\partial \alpha_i}{\partial \theta_j} = \delta_{ij} - \frac{\partial^2 \psi}{\partial \theta_i \partial \theta_j}$$

2) CONVERGENCE

This includes the term $\nabla^2_{\theta} \psi$ which we found $=\frac{2\Sigma}{\Sigma_c}$

So let's call
$$\kappa = \frac{\Sigma}{\Sigma_c}$$
 the convergence.

The convergence is proportional to the projected density.

Then the mapping is just $A = \begin{pmatrix} 1-\kappa & 0\\ 0 & 1-\kappa \end{pmatrix} + \dots$

which is an expansion / contraction.

The convergence sets the amount of isotropic expansion of the image.

THE DISTORTIONS

SHEAR

What about the other terms in $\mathcal{A}_{ij} = \delta_{ij} - \frac{\partial^2 \psi}{\partial \theta_i \partial \theta_j} ?$ We can write these as $\gamma_1 = \frac{1}{2} (\partial_1^2 - \partial_2^2) \psi, \quad \gamma_2 = \partial_1 \partial_2 \psi$ then

$$\begin{bmatrix} \mathcal{A} = \begin{pmatrix} 1 - \kappa - \gamma_1 & -\gamma_2 \\ -\gamma_2 & 1 - \kappa + \gamma_1 \end{pmatrix} \end{bmatrix} = (1 - \kappa) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} \gamma_1 & \gamma_2 \\ \gamma_2 & -\gamma_1 \end{pmatrix}$$

THE DISTORTIONS

...BUT WE CAN'T MEASURE IT.

So at best can only measure a combination of convergence and shear.

We can rewrite

$$\mathcal{A} = (1-\kappa) \begin{pmatrix} 1-g_1 & -g_2 \\ -g_2 & 1+g_1 \end{pmatrix}$$

 $1 + \kappa - \gamma$

 $1 + \kappa + \gamma$

where *g* is the reduced shear, $g_i = \frac{\gamma_i}{1 - \kappa}$ NB for very weak shear, $\gamma \sim \kappa \sim 0.01$ then $\gamma \sim g$.

PERFECT

So now we just go to a telescope and measure

the magnification the convergence the shear

and we perfectly understand cosmology.

No?