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two views of the universe

GIF collaboration

Make the simulations “look” like the observations



dark matter around galaxies

Dynamical and strong lensing studies provide important 
constraints on the mass distribution on scales of a few tens of kpc. 

But what do we know about the mass distribution on scales larger 
than 100kpc? How can we study this (as a function of redshift)?
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Weak gravitational lensing



Weak gravitational lensing
The signal induced by a typical galaxy is dwarfed by the 
intrinsic shapes of the sources and can only detected by 
averaging over many lenses: only ensemble averages



Some history

Just like cosmic shear, galaxy-galaxy lensing is a fairly 
new area of research, albeit the oldest application of 
weak lensing.

q 1984: first attempt to measure the signal (Tyson et al.)
q 1996: first detection (Brainerd et al.)
q 2000: first accurate measurement from SDSS (Fischer et al.)

Since then several results, for instance from SDSS (e.g., McKay et al.; 
Guzik & Seljak, Mandelbaum et al.), RCS (Hoekstra et al. 2004; 2005) 
and CFHTLS (Parker et al. 2007) have been published.
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In the beginning...

Tyson et al. (1984)

Photographic plates
~12000 lenses
~47000 sources

Circular velocity <170km/s

will it ever work?



A lot of progress...

Brainerd et al. (1996) van Uitert et al. (2011)

~439 lenses
~511 sources

~2x106 lenses
~15x106 sources



... and much more to come

Early studies observed relatively small areas of sky
and lacked redshift information for the lenses.

large errors and limited interpretation



need for redshifts

Without redshift information we can only select on 
apparent magnitude: brighter galaxies are “lenses” and 
fainter galaxies are “sources”.

A fraction of the faint galaxies are in fact satellites that are 
physically associated with the lenses. When they are 
included in the source catalog they dilute the signal. 

We can estimate the level of contamination by 
looking at excess counts of sources around the lens.
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Fig. 2. The size-magnitude diagram of one of the chips
in a randomly picked exposure. The black dots are the
SExtractor detections, the green dots are the selected
stars, the red dots are the 3-sigma outliers, and the blue
dots are the selected galaxies. The dashed lines indicate
the location of the stellar branch. Thanks to the good im-
age quality the stars are easily separated from the galaxies.

to sky coordinates are used to calculate the camera dis-
tortion. We use the automated masking routines from the
THELI pipeline to generate image masks and to combine
them with the RCS2 masks in order to omit image regions
that contaminate the lensing signal (e.g. saturated stars,
satellite trails). All masks are inspected by eye, and manu-
ally improved where necessary.

We use SExtractor (Bertin & Arnouts 1996) to detect
the objects in the images. To select the stars for modelling
the PSF variation across the images, we first identify the
locus of the stellar branch in a size-magnitude diagram. We
select the non-saturated objects close to the stellar branch
with a signal to noise ratio larger than 30 and with no
SExtractor flags raised. To remove small galaxies that have
been misidentified as stars, and stars that have been af-
fected by cosmic rays, we fit a second-order polynomial to
both the size and the ellipticity of these star-candidates,
and discard all 3-sigma outliers. We clean the stellar se-
lection even further in the shape measurement pipeline by
removing shape parameter outliers. All objects larger than
1.2 times the local size of the PSF are classified as galaxies.

In Figure 2 we illustrate the star-galaxy separation. It
has been fully automated, but as a precaution we inspect
all size-magnitude diagrams by eye. The separation fails for
a few chips that have either very few stars or a PSF with
a large FWHM, and we manually adjust those. As neigh-
bouring patches overlap by ∼ 1 arcminute, we remove all
galaxies within 35 arcseconds from the image edges in order
to avoid duplicating the lenses and sources in our analysis.

Elixir provides approximate zeropoints for each point-
ing, which we use to measure the r′-band magnitudes of

Fig. 3. The source galaxy overdensity as a function of dis-
tance from the lenses for the different stellar mass bins.
The overdensity increases with stellar mass. Massive galax-
ies reside on average at higher redshifts and live in denser
environments with more satellite galaxies.

the objects in the images. We correct the magnitudes for
galactic extinction using the dust maps from Schlegel et al.
(1998). These magnitudes are not as accurately calibrated
as those from Gilbank et al. (2011), and differ in the r′-
band on average by −0.01± 0.32. Our calibration is, how-
ever, sufficiently accurate to select the source galaxy sam-
ple. For the calculation of the luminosity overdensity, which
is discussed in Section 6.1, we use the catalogues from
Gilbank et al. (2011) instead.

3.3. Contamination correction

A fraction of the galaxies in the source catalogue is
physically associated with the lenses. Since we lack red-
shifts for the sources, we are unable to remove them. These
objects are not lensed, and therefore dilute the lensing sig-
nal. To estimate this contamination we measure fcg(r), the
excess source number density around the lenses. We show
the overdensity around the lenses which have been divided
into seven stellar mass bins (defined in Table 3) as a func-
tion of lens-source separation in Figure 3. The error bars
are computed assuming that the number of source galaxies
in each radial bin follows a Poisson distribution. The con-
tamination increases with stellar mass, as massive galax-
ies reside in denser environments and therefore have more
satellite galaxies. Although the overdensity is shown inde-
pendently of the lens galaxy type in Figure 3, we measure
it for the early- and late-types separately in the science
analysis presented in Section 5, 6 and 7. Assuming that
the satellite galaxies have random orientations, we correct
for the contamination by boosting the lensing signal with
a factor 1 + fcg(r). Note, however, that the contamination
correction may be too small if satellite galaxies are pref-
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need for redshifts

The SDSS provides a wealth of information about the 
baryonic content of galaxies. In particular the 
availability of spectroscopic redshifts is useful for a 
clear division of lenses.

Current surveys observe >1000 deg2 in multiple bands, 
which yield photometric redshift information for the 
lenses. In this case we need to account for the redshift 
errors in the analysis.



need for redshifts

Photometric redshift errors have a bigger impact on low redshift lenses.



The future is here

The Kilo Degree Survey (KiDS) is will be an important step 
forward for galaxy-galaxy lensing. Observations have started 
and the survey will be completed in ~3-4 years.

survey area:     1500 deg2 
filter coverage: ugri ZYJHK

excellent photometric redshifts



Key science drivers

- study halos as a function of baryonic content

- study properties as a function of environment

- study these relations as a function of redshift

Can we study galaxies at z>1?



Magnification
Magnification has two effects:

observed skytrue sky

- true survey area is 1/! times larger
- objects are  ! times larger/brighter
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magnification of LBGs

Hildebrandt et al. (2009):
CFHTLS DEEP: 4 sq. deg.

CFHTLS Wide: ~150 sq. deg
shear + magnification!

We can now start to study z>1 halos!



How to interpret the signal?

halo mass

clustering



how to interpret?

The signal (the galaxy-mass cross-correlation function) is the 
convolution of the dark matter distribution around 
galaxies and the clustering properties of the lenses.

We have some options to infer information about the 
properties of the dark matter halos around galaxies:

- interpret the data in the context of a model (simulations/analytical)
- deconvolve the correlation function
- look at isolated halos/small scales

- use the GMCC to learn about cosmology



‘Deconvolution’

- Assign a halo to each galaxy
- Compute the lensing signal
- Compare to the data

best fit halo parameters
(also see Schneider & Rix 1997)



Deconvolution: halo sizes

M200=(1.3±0.1) x 1012 M☼ for “Milky Way” halo

Hoekstra et al. (2004)

42 sq. deg. RCS

120,000 lenses
1.5 million sources

No redshifts for the lenses



Deconvolution: issues

The maximum-likelihood has a number advantages:

- it uses that actual clustering of lenses
- it uses the 2-d shear signal (optimal use of data)

The maximum-likelihood has a number disadvantages:

- it assumes that all mass is associated with galaxies
- it always gives an answer



Halos of cluster galaxies
It is possible to study the properties of galaxies in 
dense environments.

We need to separate the
contribution from the cluster 
halo from the  galaxy signal.

The latter dominates on very
small scales only.

Guzik & Seljak (2002)



Halos of cluster galaxies
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Halos of cluster galaxies

Limousin et al. (2007): limited to small radii



Focus on small radii

One small scales the weak galaxy lensing signal is 
sensitive to the density profile of the primary lens.
On those scales it is also interesting to combine 
with strong lensing. 



Focus on small radii

Gavazzi et al. (2007)



Focus on small radii

Close to the lens the shear is no longer contant across 
the source: we need to consider the higher derivative of the 
deflection potential.

We need to extend the Taylor expansion of the lensing mapping:

Source image is mapped to:



Flexion
spin-1

spin-3

Bacon et al. (2006) 



Flexion

- Flexion has units 1/length
- It probes small scales

consider SIS:



Flexion

Velander et al. (2011)



Avoid the clustering signal

H
oekstra et al. (2005)



Avoid the clustering signal

“isolated” galaxies with 0.2<z<0.4 from RCS 
using photometric redshift for the lenses

Hoekstra et al. (2005)



What do we measure?



Scaling relation

Mvir ∝ L1.5

Hoekstra et al. (2005)



What do we measure?
We bin in terms of an observable, but if there is intrinsic 
scatter between this property and the mass, what do we end 
up measuring? 

We need to account for this in order to connect to predictions 
from theory.

Edo van Uitert et al.: The relation between baryons and dark matter

smaller than unity. At the high mass end, the stellar mass
function of the late-types is poorly determined due to the
lack of objects. We cannot reliably determine the bias for
the S6 late-type bin, and therefore apply the correction
factor of the S5 bin to this bin as well.

The observed stellar masses have already been scat-
tered, and the best fit powerlaw is therefore too shallow.
To investigate how this affects the bias, we correct our
initial halo masses for the scattering, and again fit a
powerlaw between stellar mass and halo mass. We repeat
our simulations with these new powerlaw slopes, and
find that the correction factors change by at most 4%.
The correction we apply is obtained using the corrected
powerlaw slopes.

The intrinsic stellar mass function is steeper than the
observed one as on average more low stellar mass objects
have scattered upward. Although we cannot retrieve the
intrinsic stellar mass function, we can obtain an estimate
of the level of contamination. For this purpose, we draw
1 × 108 objects from the observed stellar mass function,
apply the log-normal scatter, and compare the number of
objects in the stellar mass bins before and after the scatter.
The number of lenses in the three lowest stellar mass bins
does not change much after the scatter, but it increases
with stellar mass for the more massive bins, reaching a
maximum of 36% more lenses in the S7 early-type bin. The
increase in the number of objects may be even larger, as the
observed stellar masses have already been scattered, and
therefore the observed stellar mass function is smoother
than the intrinsic one. As the stellar mass function at the
high mass end is already very uncertain, we do not attempt
to retrieve the intrinsic stellar mass function. However,
the bias correction is sensitive to the slope at the high
mass end, and the correction factors may actually be larger.

Appendix B: Mean versus fitted halo mass

The distribution of halo masses for a certain luminosity (or
stellar mass) is given by the conditional probability func-
tion, which is usually described by a log-normal function of
the form

P (mh|l) ∝ exp
(

−
(mh −mh,cent)2

2σ2
mh

)

(B.1)

where l = log(L), mh = log(Mh) and σmh
is the scatter

in mh. In this Appendix we study how the best fit lensing
mass is related to either the mean halo mass or to the
centre of the halo mass distribution, mh,cent. To mimic
the selection of real galaxies, we assign a value to mh,cent

and σmh
, and randomly draw 1000 galaxies from the

conditional probability function which has been convolved
with the halo mass function (Equation 10). We calculate
the NFW shear profiles of these galaxies, average their
signals to simulate the usual lensing procedure, and fit an
NFW profile to the stacked shear. Figure B.1 shows the
ratio of Mh,cent to the best fit NFW mass in the top panel,
and the ratio of the mean halo mass to the best fit NFW
mass in the lower panel. The lines correspond to different
values of σmh

, ranging from 0.10 to 0.40 from bottom to
top. Note that the scale of the vertical axes in the two
panels is different.

In Figure B.1a we see that the best fit NFW mass is

Fig.B.1. The ratio of the central mass of the halo mass
distribution, mh,cent, and the best fit NFW mass (top) and
the ratio of the mean halo mass and the best fit NFW mass
(bottom) as a function of best fit NFW mass. Different lines
correspond to values of σmh

0.10 (bottom line), 0.15, 0.20,
0.25, 0.30, 0.35 and 0.40 (top line). The lensing mass is
converted to the mean halo mass using the corrections from
the bottom panel.

considerably lower than the central mass of the distribu-
tion. This is mainly the result of the declining halo mass
function, which leads us to preferentially pick lower mass
haloes. The shape of an NFW profile changes with halo
mass because the NFW concentration parameter depends
on halo mass. The shape and amplitude of the stacked
shear signal is therefore not equal to the profile of an NFW
with a corresponding mean halo mass. Therefore, the best
fit NFW mass underestimates the mean halo mass, as
demonstrated in Figure B.1b.

The ratios in Figure B.1a and B.1b are sensitive to the
value of σmh

. We use the results from More et al. (2011),
who studied the distribution of halo masses as a function
of luminosity and stellar mass using the kinematics of
satellite galaxies orbiting central galaxies. As only central
galaxies are considered in their work, the actual scatter
for a sample of galaxies consisting of both centrals and
satellites may be larger. On the other hand, part of the
scatter may be introduced through uncertainties in the
determination of the halo masses, which would imply a
lower intrinsic scatter.

We use Figures 4 and 9 from More et al. (2011) to
read off the values we assign to σmh

for the luminosity
and stellar mass bins. We list these values, and the
corresponding correction factor to the mean halo mass,
in Table B.1. The luminosities and stellar masses in our
sample extend to higher values than More et al. (2011)
use, but their figures suggest that σmh

does not change
rapidly at the high mass/luminosity end, and we therefore
assume that the values remain constant. For the stellar
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What do we measure?
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factor of the S5 bin to this bin as well.
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tered, and the best fit powerlaw is therefore too shallow.
To investigate how this affects the bias, we correct our
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find that the correction factors change by at most 4%.
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and the ratio of the mean halo mass to the best fit NFW
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considerably lower than the central mass of the distribu-
tion. This is mainly the result of the declining halo mass
function, which leads us to preferentially pick lower mass
haloes. The shape of an NFW profile changes with halo
mass because the NFW concentration parameter depends
on halo mass. The shape and amplitude of the stacked
shear signal is therefore not equal to the profile of an NFW
with a corresponding mean halo mass. Therefore, the best
fit NFW mass underestimates the mean halo mass, as
demonstrated in Figure B.1b.

The ratios in Figure B.1a and B.1b are sensitive to the
value of σmh

. We use the results from More et al. (2011),
who studied the distribution of halo masses as a function
of luminosity and stellar mass using the kinematics of
satellite galaxies orbiting central galaxies. As only central
galaxies are considered in their work, the actual scatter
for a sample of galaxies consisting of both centrals and
satellites may be larger. On the other hand, part of the
scatter may be introduced through uncertainties in the
determination of the halo masses, which would imply a
lower intrinsic scatter.

We use Figures 4 and 9 from More et al. (2011) to
read off the values we assign to σmh

for the luminosity
and stellar mass bins. We list these values, and the
corresponding correction factor to the mean halo mass,
in Table B.1. The luminosities and stellar masses in our
sample extend to higher values than More et al. (2011)
use, but their figures suggest that σmh

does not change
rapidly at the high mass/luminosity end, and we therefore
assume that the values remain constant. For the stellar

22

Edo van Uitert et al.: The relation between baryons and dark matter

smaller than unity. At the high mass end, the stellar mass
function of the late-types is poorly determined due to the
lack of objects. We cannot reliably determine the bias for
the S6 late-type bin, and therefore apply the correction
factor of the S5 bin to this bin as well.

The observed stellar masses have already been scat-
tered, and the best fit powerlaw is therefore too shallow.
To investigate how this affects the bias, we correct our
initial halo masses for the scattering, and again fit a
powerlaw between stellar mass and halo mass. We repeat
our simulations with these new powerlaw slopes, and
find that the correction factors change by at most 4%.
The correction we apply is obtained using the corrected
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function, which leads us to preferentially pick lower mass
haloes. The shape of an NFW profile changes with halo
mass because the NFW concentration parameter depends
on halo mass. The shape and amplitude of the stacked
shear signal is therefore not equal to the profile of an NFW
with a corresponding mean halo mass. Therefore, the best
fit NFW mass underestimates the mean halo mass, as
demonstrated in Figure B.1b.

The ratios in Figure B.1a and B.1b are sensitive to the
value of σmh

. We use the results from More et al. (2011),
who studied the distribution of halo masses as a function
of luminosity and stellar mass using the kinematics of
satellite galaxies orbiting central galaxies. As only central
galaxies are considered in their work, the actual scatter
for a sample of galaxies consisting of both centrals and
satellites may be larger. On the other hand, part of the
scatter may be introduced through uncertainties in the
determination of the halo masses, which would imply a
lower intrinsic scatter.

We use Figures 4 and 9 from More et al. (2011) to
read off the values we assign to σmh

for the luminosity
and stellar mass bins. We list these values, and the
corresponding correction factor to the mean halo mass,
in Table B.1. The luminosities and stellar masses in our
sample extend to higher values than More et al. (2011)
use, but their figures suggest that σmh
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assume that the values remain constant. For the stellar
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Best fit mass somewhere between mean and median



Comparison with other probes
Although lensing provides the most direct measurement 
of the halo mass, it is interesting to consider other mass 
indicators:

- (central) velocity dispersion
- stellar mass
- combination of stellar mass and structural parameters

Edo van Uitert et al.: Stellar mass versus velocity dispersion

these relations. The properties of galaxies we compare in
this work are the stellar mass and the velocity dispersion.
Note that there are various other observables that trace
the total mass, and could have been used instead, but most
of them are either expected to exhibit a large amount of
scatter (e.g. metallicity), or they are closely related to the
stellar mass (e.g. luminosity).

The total mass of galaxies is not directly observable, and
can only be determined by indirect means. An excellent tool
to do this is via weak gravitational lensing. In weak lensing
the distortion of the images of faint background galaxies
(sources) due to the gravitational potentials of intervening
structures (lenses) is measured. From this distortion, the
differential surface mass density of the lenses can be de-
duced, which can be modelled to obtain the total mass. A
major advantage of weak lensing is that it does not
rely on optical tracers, making it a particular useful
probe to study dark matter haloes of galaxies which
can extend up to hundreds of kpcs, where optical
tracers are sparse. The major disadvantage of weak lens-
ing is that the lensing signal of individual galaxies is too
weak to detect as the induced distortions are typically 10-
100 times smaller than the intrinsic ellipticities of galaxies.
Therefore, the signal has to be averaged over hundreds or
thousands of lenses to yield a useful signal. However, the
average total mass for a certain selection of galaxies is still
a very useful measurement, which can be compared to sim-
ulations.

It is important to note that the lensing signal on small
and large scales measures different properties of dark mat-
ter haloes. On projected separations larger than a
few times the virial radius, the lensing signal is
mainly determined by neighbouring structures, and
therefore depends on the clustering properties of
the lenses. Within the virial radius, on the other
hand, the lensing signal traces the dark matter dis-
tribution of the halo that hosts the galaxy and is
therefore directly related to the halo mass. In this
work, we ignore the lensing signal at large scales and in-
stead focus at the signal at small scales.

This work is a weak-lensing analogy of the analysis pre-
sented in Wake et al. (2012), who performed a similar study
using galaxy clustering instead of gravitational lensing. One
of their main findings is that the spectroscopic velocity dis-
persion is more tightly correlated to the clustering signal
than either the stellar mass or the dynamical mass. This
implies that the velocity dispersion better traces the prop-
erties of the halo that determine its clustering, that is the
halo mass or the halo age. As the small scale weak lens-
ing signal measures the halo mass, it allows us to dis-
entangle the possible explanations of the clustering results.

The outline of this work is as follows. In Section 2,
we discuss the various steps of the lensing analysis: we
start with a description of the lens selection, then provide
a brief outline of the creation of the shape measurement
catalogues, and finally discuss the lensing analysis. The
measurements are shown in Section 3, and we conclude in
Section 4. Throughout the paper we assume a WMAP7 cos-
mology (Komatsu et al. 2011) with σ8 = 0.8, ΩΛ = 0.73,
ΩM = 0.27, Ωb = 0.046 and h = 0.7 the dimensionless
Hubble parameter. All distances quoted are in physical
(rather than comoving) units unless explicitly stated oth-
erwise.

2. Lensing analysis

In this study we use the ∼300 square degrees of over-
lapping area between the Sloan Digital Sky Survey (SDSS;
York et al. 2000) and the Red Sequence Cluster Survey 2
(RCS2; Gilbank et al. 2011). We use the SDSS to obtain the
properties of the lenses (e.g. stellar mass, velocity disper-
sion), information that is not available in the RCS2. The
lensing analysis is performed on the RCS2, because it is
∼2 magnitudes deeper than the SDSS in r′. The increase
in depth combined with a median seeing of 0.7′′, which is
a factor of two smaller than the seeing in the SDSS, re-
sults in a source galaxy number density that is about five
times higher, and a source redshift distribution that peaks
at z∼0.7. Therefore, the RCS2 enables a high-quality de-
tection of the lensing signal, even for a moderate number
of lens galaxies.

2.1. Lenses

The SDSS has imaged roughly a quarter of the entire
sky, and has measured the spectra for about one million
galaxies (Eisenstein et al. 2001; Strauss et al. 2002). The
combination of spectroscopic coverage and photometry in
five optical bands (u, g, r, i, z) in the SDSS provides a wealth
of galaxy information that is not available from the RCS2.
To use this information, but also benefit from the improved
lensing quality of the RCS2, we use the 300 square degrees
overlap between the surveys for our analysis. We match the
RCS2 catalogues to the DR7 (Abazajian et al. 2009) spec-
troscopic catalogue, to the MPA-JHU DR71 stellar mass
catalogue and to the NYU Value Added Galaxy Catalogue
(NYU-VAGC)2 (Blanton et al. 2005; Adelman-McCarthy
et al. 2008; Padmanabhan et al. 2008) which yields the
spectroscopic redshifts, velocity dispersions, and the stellar
masses of 1.7× 104 galaxies. From these galaxies we select
our lenses using criteria that are detailed below.

The spectroscopic fibre within which the velocity dis-
persion is measured has a fixed size. The physical region
where the velocity dispersion is averaged is therefore dif-
ferent for a sample of galaxies with different sizes and red-
shifts. To account for this, we follow Bezanson et al. (2011)
and scale the observed spectroscopic velocity dispersion to a
fixed size of Re/8 using σspec = σap

spec(8.0rap/Re)0.066, with
rap=1.5′′ the radius of the SDSS spectroscopic fiber, Re

the effective radius in the r-band, and σap
spec the observed

velocity dispersion. This correction is based on the best-
fit relation determined using 40 galaxies in the SAURON
sample (Cappellari et al. 2006). However, the spectroscopic
velocity dispersions provided in the DR7 spectroscopic cat-
alogues are generally noisy for late-type galaxies. To obtain
more robust velocity dispersion estimates for these galaxies,
we also predict the velocity dispersion based on quantities
that are better determined following Bezanson et al. (2011):

σmod =

√
GM∗

0.557KV (n)Re
(1)

with M∗ the stellar mass, n the Sérsic index and KV (n)
a term that includes the effects of structure on stellar dy-

1 http://www.mpa-garching.mpg.de/SDSS/DR7/
2 http://sdss.physics.nyu.edu/vagc/
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namics, and can be approximated by (Bertin et al. 2002)

KV (n) ∼=
73.32

10.465 + (n− 0.94)2
+ 0.954. (2)

The equation for σmod is based on the results of Taylor et al.
(2010), who demonstrated that the structure-corrected dy-
namical mass is linearly related to the stellar mass for a
selection of low-redshift galaxies in the SDSS.

The stellar mass estimates in the MPA-JHU DR7 cat-
alogues are based on the model magnitudes. The Sérsic
index and the effective radius in Equation (1), however,
correspond to a different flux, i.e. the Sérsic model flux,
which is the total flux of the best fit Sérsic model. This
flux is also provided in the NYU-VAGC catalogue, and dif-
fers slightly from the model flux. To calculate σmod consis-
tently, we therefore scale the stellar mass with the ratio of
the model flux to the Sérsic model flux.

Bezanson et al. (2011) find that the model and the ob-
served velocity dispersion correlate very well in the range
60 km s−1 < σ < 300 km s−1, for galaxies in the redshift
range 0.05 < z < 0.07, and for a few galaxies with redshifts
1 < z < 2.5. The SDSS spectroscopic sample extends to
z ∼ 0.5, and therefore contains many more massive galax-
ies. To determine whether the velocity dispersions correlate
well in this range too, we compare the dispersions for the
complete SDSS spectroscopic sample in Figure 1. We find
that the velocity dispersions agree well, though at z > 0.2
the range in velocity dispersion becomes too small to assess
whether the velocity dispersions are still correlated.

To study whether the spectroscopic velocity dispersion
and the model velocity dispersion agree equally well for
different galaxy types, we split the galaxies based on their
frac dev parameter from the SDSS photometric catalogues.
This parameter is determined by simultaneously fitting
frac deV times the best-fitting De Vaucouleur profile plus
(1-frac deV ) times the best-fitting exponential profile to
an object’s brightness profile. The frac dev parameter is
therefore a measure of the slope of the brightness profile of
a galaxy; the brightness profile has a high concentra-
tion for lenses with frac dev > 0.5, i.e. they are bulge
dominated, which is typical for early-type galaxies.
The brightness profiles of lenses with frac dev < 0.5
have a low concentration, and they are disk domi-
nated as is generally the case for late-type galaxies.
We select all galaxies with redshifts z < 0.2, and show
the comparison in Figure 2. We find that for the galaxies
with high concentration (bulge dominated) bright-
ness profiles, the spectroscopic and model velocity disper-
sion agree very well. For those with low concentration
brightness profiles, however, we find that the spectro-
scopic velocity dispersion is ∼0.1 dex higher than the model
velocity dispersion. This is not surprising: Taylor et al.
(2010) found that the relation between the stellar mass and
the structure-corrected dynamical mass has a weak depen-
dence on the Sérsic index, i.e. the ratio of the stellar mass
and the dynamical mass increases with increasing Sérsic
index (see Figure 14 in Taylor et al. 2010). The offset in
the relation between spectroscopic and model velocity dis-
persion for galaxies with low concentration brightness
profiles is a direct consequence. It might be caused by the
contribution of the disk velocity of spiral galaxies to the
spectroscopic velocity dispersion. One could in principle ap-
ply a Sérsic index dependent correction, but we choose to
use only galaxies with high concentration brightness

Fig. 2. Comparison of the spectroscopic velocity dispersions
to the model velocity dispersions for galaxies with low con-
centration brightness profiles (left) and with high con-
centration brightness profiles (right) in the redshift range
0 < z < 0.2. For the latter, the dispersions agree very well, but
for the former, we find that the spectroscopic velocity disper-
sion is roughly 0.1 dex higher than the model velocity dispersion.

Fig. 3. Model velocity dispersion (left) and spectroscopic veloc-
ity dispersion (right) as a function of stellar mass. The dashed
lines indicate the selection cuts for the lenses.

profiles, because there are very few lenses with low con-
centration brightness profiles in the velocity dispersion
range we are interested in. As a test we repeated the anal-
ysis including all lenses, and found that it did not affect
our conclusions.

In Figure 3, we plot the spectroscopic and model ve-
locity dispersion as a function of stellar mass. We only se-
lect galaxies with redshifts z < 0.2; at higher redshifts,
the range in velocity dispersions is too small to establish
whether the correlation works well. The three lens sam-
ples we use are indicated by the dashed lines. We select
all galaxies with high concentration brightness pro-
file with a stellar mass 10.8 < log(M∗) < 11.5 in units
of h−1

70 M#; all with a model velocity dispersion 180
km s−1 < σmod < 300 km s−1; and all with a spectro-
scopic velocity dispersion 180 km s−1 < σspec < 300
km s−1 and δσspec/σspec < 0.15.With these criteria we se-
lect 4735, 4218 and 4317 lenses respectively, and they form
the lens samples of this study.

2.2. Data reduction

The RCS2 is a nearly 900 square degree imaging
survey in three bands (g′, r′ and z′) carried out with the
Canada-France-Hawaii Telescope (CFHT) using the 1
square degree camera MegaCam. The photometric calibra-
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Fig. 4. Best-fit lensing velocity dispersion as a function of spec-
troscopic velocity dispersion (left panel, black), model velocity
dispersion (left panel, orange) and stellar mass (right panel).
Dashed lines indicate the best-fit linear relation between the
observable and σlens. The linear relations are used to remove
the dependence of the lensing signal on these observables.

Table 1. Best-fit powerlaw parameters that describe the rela-
tion between the galaxy property and the lensing velocity disper-
sion in the indicated range. Details of the fitting are described
in the text.

σmod amod bmod

[km/s] [km/s] [km/s]

180 < σmod < 300 44± 96 141± 108
100 < σmod < 400 93± 49 80± 50

σspec aspec bspec
[km/s] [km/s] [km/s]

180 < σspec < 300 176± 86 −5± 100
100 < σspec < 400 129± 42 45± 45

log(M∗) astel bstel
[h−1

70 M#] [km/s] [km/s]

10.8 < log(M∗) < 11.5 134± 71 179± 15
10.5 < log(M∗) < 12.0 118± 44 178± 12

• Finally, we determine the difference between the resid-
ual lensing signal of the high and low stellar mass bin,
δ(∆Σ − ∆Σtrend), which is shown in the bottom-left
panel.

When we subtract two SIS profiles with different am-
plitudes from each other, the result is also an SIS pro-
file. Therefore, to quantify the residuals, we fit an SIS to
δ(∆Σ − ∆Σtrend) on the same scales, and determine the

Table 2. The residual Einstein radius, obtained by fitting an SIS
profile to δ(∆Σ − ∆Σtrend) between 50 h−1

70 kpc and 1 h−1
70 Mpc

for a mean lens redshift of z = 0.13. The bracketed values show
the results for a different linear relation between the observable
and σlens, as detailed in the text.

removed residual rresE [ h−1
70 kpc]

trend dependence

σmod M∗ 0.88± 0.25 (0.78± 0.25)
M∗ σmod −0.18± 0.24 (−0.12± 0.24)
σspec M∗ 0.30± 0.25 (0.42± 0.25)
M∗ σspec 0.37± 0.24 (0.42± 0.24)

residual Einstein radius, rresE . These values can be found in
Table 2.

Similarly, we determine the dependence of the lens-
ing signal on spectroscopic velocity dispersion and stel-
lar mass. For the spectroscopic velocity dispersion, we fit
σlens = aspec × (σspec/200km s−1) + bspec and for the stel-
lar mass, we fit σlens = astel × log(M∗/1011 h

−1
70 M#) + bstel.

The best-fit parameters are shown in Table 1. These trends
are removed from the lensing signals, and the residuals are
shown in Figure 5 (middle panel).

In the bottom panel of the first column of Figure 5,
we observe that after we have removed the lensing
signal dependence on model velocity dispersion,
δ(∆Σ−∆Σtrend) is still positive on small scales, and
therefore the lensing signal has a residual depen-
dence on stellar mass. In the panel next to it, where
we have removed the dependence on stellar mass,
we find that the difference between the residuals of
the model velocity samples is consistent with zero.
These trends are reflected by the values for rresE in Table 2.
The third and fourth columns of Figure 5 show that if we re-
move the dependence on spectroscopic velocity dispersion,
the difference of the residual signal of the high and low stel-
lar mass sample is consistent with the difference between
the residual signal of the high and low spectroscopic veloc-
ity dispersion samples after we removed the dependence on
stellar mass.

These results suggest that the stellar mass is a better
tracer of the lensing signal of galaxies than the model ve-
locity dispersion. Furthermore, the stellar mass and the
spectroscopic velocity dispersion trace the lensing signal
equally well, as the residual Einstein radii are consistent.
As a consistency test, we have also looked at the resid-
ual dependence on model velocity dispersion after removing
the trend with spectroscopic velocity dispersion, and vice
versa. These trends confirm our previous findings: the spec-
troscopic velocity dispersion is more sensitive to the lensing
signal of galaxies than the model velocity dispersion.

There is a weak indication that the lensing signal has
a residual dependence on stellar mass after we remove
the trend with spectroscopic velocity dispersion, and vice
versa. This would imply that both the stellar mass and
the velocity dispersion contain independent information on
the projected distribution of dark matter around galaxies.
Unfortunately, we do not have sufficient signal-to-noise to
obtain a clear detection.

The results depend on the linear relations we have fit to
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Shapes of DM halos

Numerical simulations show that halos are not 
spherical. This is an important prediction that 
can be tested using gravitational lensing. It can 
also be used to rule out alternative models of 
gravity that do not require dark matter.

Dynamical and strong lensing studies can only 
probe the inner regions where baryons are 
important.
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Kazantzidis et al. (2004):
Baryon physics can lead to 
more spherical halos.

This needs to be tested 
obsrvationally!
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Fig. 2. Ellipticity distribution of the g′r′z′-colour selected
lens samples. The dashed lines indicate the ellipticity cuts
we apply to exclude the roundest and most elliptical lenses.
The ellipticity distributions of the ‘all’ and the ‘blue’ sample
are similar, but the ‘red’ sample contains relatively more
round galaxies.

where ∆Σ(r) = Σ̄(< r) − Σ̄(r) is the difference between
the mean projected surface density enclosed by r and the
mean projected surface density at a radius r, and Σcrit is
the critical surface density:

Σcrit =
c2

4πG

Ds

DlDls
, (2)

with Dl, Ds and Dls the angular diameter distance to
the lens, the source, and between the lens and the source
respectively. Since we lack redshifts, we select galaxies
with 22 < mr′ < 24 and a reliable shape estimate as
sources. We obtain the approximate source redshift distri-
bution by applying identical magnitude cuts to the pho-
tometric redshift catalogues of the Canada-France-Hawaii-
Telescope Legacy Survey (CFHTLS) “Deep Survey” fields
(Ilbert et al. 2006), and find a median source redshift of
zs = 0.74. This redshift distribution is not exactly identical
to the one of the sources due to the additional shape param-
eter cuts applied to the source sample, which are weakly
dependent on apparent magnitude, but the difference is
negligble. To convert the tangential shear to ∆Σ, we use
the average critical surface density that is determined by
integrating over the source redshift distribution:

〈Σcrit〉 =
c2

4πG

1

Anorm

∫ ∞

zl

dzs p(zs)
Ds

DlDls
;

Anorm =

∫ ∞

0
dzs p(zs),

(3)

with p(zs) the redshift distribution of the sources, and zl
the mean redshift of the lens sample used to determine

Fig. 3. Schematic of a lens galaxy. The tangential shear is
measured in regions A and B, the cross shear is measured
in regions C and D. The cross shear is subtracted from the
tangential shear to correct for systematic contributions to
the shear.

Dl and Dls. We also measure the cross shear, γ×, the
component of the shear in the direction of 45◦ from the
lens-source separation vector. The azimuthally averaged
cross shear signal should vanish since gravitational lensing
does not produce it. If this signal is non-zero, however,
it indicates the presence of systematics in the shape
catalogues. As the lenses are large and their light may
contaminate the lensing signal near the lenses, we only
consider the signal on scales larger than 0.1 arcmin for
lenses with mr′ > 19, and scales larger than 0.2 arcmin
for lenses with mr′ < 19. These criteria are based on the
reduction of the source number density near the lenses,
as discussed in Appendix D. Hence the smallest scales we
probe is 28 kpc for the ‘all’ and ‘blue’ sample, and 34 kpc
for the ‘red’ sample at the mean lens redshift. To remove
contributions of systematic shear (from, e.g., the image
masks), we subtract the signal computed around random
points from the signal computed around the real lenses
(see van Uitert et al. 2011).

The lensing signal around triaxial dark matter haloes
has an azimuthal dependence. If galaxies are preferentially
aligned or oriented at a 90◦ angle (anti-aligned) with re-
spect to the dark matter distribution, the lensing signal
along the galaxies’ major axis is respectively larger or
smaller than along the minor axis, and this dependence
can be determined.

To measure the anisotropy in the signal, we first fol-
low the approach used by Parker et al. (2007). For each
lens, the tangential shear is measured separately using the
sources that lie within 45◦ of the semi-major axis (γt,B),
and using those that lie within 45◦ of the semi-minor axis
(γt,A) (indicated by B and A in Figure 3, respectively). The
ratio of the shears captures the anisotropy of the signal:

fmm(r) =
γt,B(r)

γt,A(r)
. (4)

A value of fmm that is significantly larger (smaller) than
unity at small scales indicates that the dark matter haloes
are (anti-)aligned with the galaxies. Systematic contribu-
tions to the shear, however, may bias the anisotropy of the
lensing signal. If the systematic shear is fairly constant on
the scales where we measure the signal, it can be removed
following Mandelbaum et al. (2006a). In this approach, the
cross shear component computed in the regions that are
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along the galaxies’ major axis is respectively larger or
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can be determined.
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rotated by 45◦ with respect to the major/minor axes (re-
gion C and D in Figure 3), γ×,C−D ≡ (γ×,C − γ×,D)/2, is
subtracted from the tangential shear. Spurious shear sig-
nals contribute equally to γt,A, γt,B and γ×,C−D, and are
therefore removed. The corrected ratio then becomes:

f corr
mm (r) =

γt,B(r) + γ×,C−D(r)

γt,A(r) − γ×,C−D(r)
. (5)

If γ×,C−D is zero, the errors on f corr
mm approximately increase

by a factor
√
1 + 1/

√
2; if γ×,C−D is non-zero, however, the

errors of f corr
mm can either become larger or smaller than

those of fmm.
Alternatively, we can assume that the differential sur-

face density distribution can be described by an isotropic
part plus an azimuthally varying part (Mandelbaum et al.
2006a):

∆Σmodel(r) = ∆Σiso(r)[1 + 2feg cos(2∆θ)], (6)

where eg is the observed ellipticity of the lens, ∆θ is the an-
gle from the major axis, and f is the ratio of the amplitude
of the anisotropy of the lensing signal and the ellipticity of
the galaxy, which is the parameter we want to determine.
Mandelbaum et al. (2006a) show that the azimuthally vary-
ing part is given by:

f∆Σiso(r) =

∑
iwi∆Σieg,i cos(2∆θi)

2
∑

i wie2g,i cos
2(2∆θi)

, (7)

with i the index of the lens-source pairs, wi the weight ap-
plied to the ellipticity estimate of each source galaxy, which
is calculated from the shape noise, and eg,i the ellipticity of
the lens. This ellipticity is also determined using the KSB
method, and it is a measure of (1 − R2)/(1 + R2) with R
the axis ratio (R ≤ 1) if the lens has elliptical isophotes. To
remove contributions from systematic shear, we also mea-
sure

f45∆Σiso(r) =

∑
iwi∆Σi,45eg,i cos(2∆θi + π/2)

2
∑

i wie2g,i cos
2(2∆θi + π/2)

, (8)

where Σi,45 is the projected surface density measured
by rotating the source galaxies by 45◦. The systematic
shear corrected halo ellipticity estimator is then given by
(f − f45)∆Σiso(r). The average values of fmm, f corr

mm and
(f − f45) within a certain range of projected separations
are determined by calculating the ratio of two measure-
ments for each radial bin, and subsequently averaging that
ratio within the range of interest. We assume that the er-
rors of each measurement are Gaussian. Consequently, the
probability distribution of the ratio is asymmetric, which
we have to account for. We describe how to calculate the
mean and the errors of the ratio for a radial bin, and how
to average that ratio within a certain range of projected
separations, in Appendix C. Note that to convert f , the
anisotropy in the shear field, to fh = eh/eg, the ratio of the
ellipticity of the dark matter halo and the ellipticity of the
galaxy, we have to adopt a density profile (e.g. f/fh=0.25
for a singular isothermal ellipsoid, see Mandelbaum et al.
2006a).

It is clear from Figure 2 that the ellipticity distribu-
tions of the red and blue lens samples are different. It is
unclear, however, whether the underlying ellipticity distri-
bution of the dark matter haloes differs as well. If the un-
derlying distribution is similar for both samples, the pro-
jected dark matter halo ellipticity cannot depend linearly

on the galaxy ellipticity. Hence Equation (6) might not be
optimal, and could depend differently on eg. We therefore
generalise Equation (7) to

f∆Σiso(r) = A

∑
iwi∆Σieαg,i cos(2∆θi)

2
∑

i wie2αg,i cos
2(2∆θi)

, (9)

A =
Σie2αg,i
Σieαg,i

Σieg,i
Σie2g,i

(10)

and calculate it for different values of α. Equation (8)
changes similarly. The factor A in Equation (9) scales each
measurement of f to the ‘standard’ of α = 1 as used in
Mandelbaum et al. (2006a), which eases a comparison of f
for different values of α. The optimal weight results in the
best signal-to-noise of the measurement.

The different halo ellipticity estimators can in princi-
ple be used to study the relation between the ellipticity of
the galaxy and the ellipticity of their dark matter hosts.
In particular, Equation (5) is defined such that it depends
on the average dark matter halo ellipticity, whilst Equation
(9) is sensitive to the relation between the galaxy elliptic-
ity and the dark matter ellipticity. Hence by comparing the
f∆Σiso(r) for different values of α, we gain insight in the re-
lation between the ellipticity of the galaxies and their dark
matter haloes. Note that as an alternative, we could weight
Equation (5) with the lens ellipticity.

It is useful to assess the signal-to-noise we expect to
obtain for the shear anisotropy measurement compared to
the signal-to-noise of the tangential shear itself. For this
purpose, we write Equation (6) in its most basic form:

∆Σmodel(r) = ∆Σiso(r)[1 + f̄ cos(2∆θ)], (11)

which has the following solution for the anisotropic part:

f̄∆Σiso =

∑
iwi∆Σi cos(2∆θi)∑

iwi cos2(2∆θi)
. (12)

If the dark matter halo is described by a singular isother-
mal ellipsoid (SIE; see Mandelbaum et al. 2006a), and if
the galaxy is perfectly aligned with the halo, we find
f̄ = eh/2. Hence the anisotropic signal is a factor eh/2
lower than the isotropic signal. To assess the relative
size of the error of f̄∆Σiso compared to Σiso, we insert
Equation (11) into Equation (12), define a new weight w̃i ≡
wi cos2(2∆θi), and determine the error using σf̄∆Σiso

=

1/
√∑

i w̃i. Since wi and cos2(2∆θi) are uncorrelated, it

follows that σf̄∆Σiso
= 1/

√∑
iwi〈cos2(2∆θ)〉 =

√
2σ∆Σiso ,

with σ∆Σiso = 1/
√∑

i wi the error on ∆Σiso. Hence the er-

ror of f̄∆Σiso is a factor
√
2 larger than the error of ∆Σiso.

Consequently, the signal-to-noise of the anisotropic part of
the lensing signal, (S/N)ani, is related to the signal-to-noise
of the isotropic part, (S/N)iso, as:

(S/N)ani =
0.15√

2

(
eh

0.3

)
(S/N)iso. (13)

In the best-case scenario, the expected signal-to-noise of the
shear anisotropy is an order of magnitude lower than the
signal-to-noise of the azimuthally averaged shear. Applying
the correction to remove systematic contributions increases
the errors of the shear anisotropy by another factor of

√
2. If

the dark matter is described by an elliptical NFW, the sig-
nal decreases rapidly with increasing separation (see Figure
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rotated by 45◦ with respect to the major/minor axes (re-
gion C and D in Figure 3), γ×,C−D ≡ (γ×,C − γ×,D)/2, is
subtracted from the tangential shear. Spurious shear sig-
nals contribute equally to γt,A, γt,B and γ×,C−D, and are
therefore removed. The corrected ratio then becomes:

f corr
mm (r) =

γt,B(r) + γ×,C−D(r)

γt,A(r) − γ×,C−D(r)
. (5)

If γ×,C−D is zero, the errors on f corr
mm approximately increase

by a factor
√
1 + 1/

√
2; if γ×,C−D is non-zero, however, the

errors of f corr
mm can either become larger or smaller than

those of fmm.
Alternatively, we can assume that the differential sur-

face density distribution can be described by an isotropic
part plus an azimuthally varying part (Mandelbaum et al.
2006a):

∆Σmodel(r) = ∆Σiso(r)[1 + 2feg cos(2∆θ)], (6)

where eg is the observed ellipticity of the lens, ∆θ is the an-
gle from the major axis, and f is the ratio of the amplitude
of the anisotropy of the lensing signal and the ellipticity of
the galaxy, which is the parameter we want to determine.
Mandelbaum et al. (2006a) show that the azimuthally vary-
ing part is given by:

f∆Σiso(r) =

∑
iwi∆Σieg,i cos(2∆θi)

2
∑

i wie2g,i cos
2(2∆θi)

, (7)

with i the index of the lens-source pairs, wi the weight ap-
plied to the ellipticity estimate of each source galaxy, which
is calculated from the shape noise, and eg,i the ellipticity of
the lens. This ellipticity is also determined using the KSB
method, and it is a measure of (1 − R2)/(1 + R2) with R
the axis ratio (R ≤ 1) if the lens has elliptical isophotes. To
remove contributions from systematic shear, we also mea-
sure

f45∆Σiso(r) =

∑
iwi∆Σi,45eg,i cos(2∆θi + π/2)

2
∑

i wie2g,i cos
2(2∆θi + π/2)

, (8)

where Σi,45 is the projected surface density measured
by rotating the source galaxies by 45◦. The systematic
shear corrected halo ellipticity estimator is then given by
(f − f45)∆Σiso(r). The average values of fmm, f corr

mm and
(f − f45) within a certain range of projected separations
are determined by calculating the ratio of two measure-
ments for each radial bin, and subsequently averaging that
ratio within the range of interest. We assume that the er-
rors of each measurement are Gaussian. Consequently, the
probability distribution of the ratio is asymmetric, which
we have to account for. We describe how to calculate the
mean and the errors of the ratio for a radial bin, and how
to average that ratio within a certain range of projected
separations, in Appendix C. Note that to convert f , the
anisotropy in the shear field, to fh = eh/eg, the ratio of the
ellipticity of the dark matter halo and the ellipticity of the
galaxy, we have to adopt a density profile (e.g. f/fh=0.25
for a singular isothermal ellipsoid, see Mandelbaum et al.
2006a).

It is clear from Figure 2 that the ellipticity distribu-
tions of the red and blue lens samples are different. It is
unclear, however, whether the underlying ellipticity distri-
bution of the dark matter haloes differs as well. If the un-
derlying distribution is similar for both samples, the pro-
jected dark matter halo ellipticity cannot depend linearly

on the galaxy ellipticity. Hence Equation (6) might not be
optimal, and could depend differently on eg. We therefore
generalise Equation (7) to

f∆Σiso(r) = A

∑
iwi∆Σieαg,i cos(2∆θi)

2
∑

i wie2αg,i cos
2(2∆θi)

, (9)

A =
Σie2αg,i
Σieαg,i

Σieg,i
Σie2g,i

(10)

and calculate it for different values of α. Equation (8)
changes similarly. The factor A in Equation (9) scales each
measurement of f to the ‘standard’ of α = 1 as used in
Mandelbaum et al. (2006a), which eases a comparison of f
for different values of α. The optimal weight results in the
best signal-to-noise of the measurement.

The different halo ellipticity estimators can in princi-
ple be used to study the relation between the ellipticity of
the galaxy and the ellipticity of their dark matter hosts.
In particular, Equation (5) is defined such that it depends
on the average dark matter halo ellipticity, whilst Equation
(9) is sensitive to the relation between the galaxy elliptic-
ity and the dark matter ellipticity. Hence by comparing the
f∆Σiso(r) for different values of α, we gain insight in the re-
lation between the ellipticity of the galaxies and their dark
matter haloes. Note that as an alternative, we could weight
Equation (5) with the lens ellipticity.

It is useful to assess the signal-to-noise we expect to
obtain for the shear anisotropy measurement compared to
the signal-to-noise of the tangential shear itself. For this
purpose, we write Equation (6) in its most basic form:

∆Σmodel(r) = ∆Σiso(r)[1 + f̄ cos(2∆θ)], (11)

which has the following solution for the anisotropic part:

f̄∆Σiso =

∑
iwi∆Σi cos(2∆θi)∑

iwi cos2(2∆θi)
. (12)

If the dark matter halo is described by a singular isother-
mal ellipsoid (SIE; see Mandelbaum et al. 2006a), and if
the galaxy is perfectly aligned with the halo, we find
f̄ = eh/2. Hence the anisotropic signal is a factor eh/2
lower than the isotropic signal. To assess the relative
size of the error of f̄∆Σiso compared to Σiso, we insert
Equation (11) into Equation (12), define a new weight w̃i ≡
wi cos2(2∆θi), and determine the error using σf̄∆Σiso

=

1/
√∑

i w̃i. Since wi and cos2(2∆θi) are uncorrelated, it

follows that σf̄∆Σiso
= 1/

√∑
iwi〈cos2(2∆θ)〉 =

√
2σ∆Σiso ,

with σ∆Σiso = 1/
√∑

i wi the error on ∆Σiso. Hence the er-

ror of f̄∆Σiso is a factor
√
2 larger than the error of ∆Σiso.

Consequently, the signal-to-noise of the anisotropic part of
the lensing signal, (S/N)ani, is related to the signal-to-noise
of the isotropic part, (S/N)iso, as:

(S/N)ani =
0.15√

2

(
eh

0.3

)
(S/N)iso. (13)

In the best-case scenario, the expected signal-to-noise of the
shear anisotropy is an order of magnitude lower than the
signal-to-noise of the azimuthally averaged shear. Applying
the correction to remove systematic contributions increases
the errors of the shear anisotropy by another factor of

√
2. If

the dark matter is described by an elliptical NFW, the sig-
nal decreases rapidly with increasing separation (see Figure

6
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Mandelbaum et al. (2006) have shown that the azimuthally 
varying part is given by:
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rotated by 45◦ with respect to the major/minor axes (re-
gion C and D in Figure 3), γ×,C−D ≡ (γ×,C − γ×,D)/2, is
subtracted from the tangential shear. Spurious shear sig-
nals contribute equally to γt,A, γt,B and γ×,C−D, and are
therefore removed. The corrected ratio then becomes:

f corr
mm (r) =

γt,B(r) + γ×,C−D(r)

γt,A(r) − γ×,C−D(r)
. (5)

If γ×,C−D is zero, the errors on f corr
mm approximately increase

by a factor
√
1 + 1/

√
2; if γ×,C−D is non-zero, however, the

errors of f corr
mm can either become larger or smaller than

those of fmm.
Alternatively, we can assume that the differential sur-

face density distribution can be described by an isotropic
part plus an azimuthally varying part (Mandelbaum et al.
2006a):

∆Σmodel(r) = ∆Σiso(r)[1 + 2feg cos(2∆θ)], (6)

where eg is the observed ellipticity of the lens, ∆θ is the an-
gle from the major axis, and f is the ratio of the amplitude
of the anisotropy of the lensing signal and the ellipticity of
the galaxy, which is the parameter we want to determine.
Mandelbaum et al. (2006a) show that the azimuthally vary-
ing part is given by:

f∆Σiso(r) =

∑
iwi∆Σieg,i cos(2∆θi)

2
∑

i wie2g,i cos
2(2∆θi)

, (7)

with i the index of the lens-source pairs, wi the weight ap-
plied to the ellipticity estimate of each source galaxy, which
is calculated from the shape noise, and eg,i the ellipticity of
the lens. This ellipticity is also determined using the KSB
method, and it is a measure of (1 − R2)/(1 + R2) with R
the axis ratio (R ≤ 1) if the lens has elliptical isophotes. To
remove contributions from systematic shear, we also mea-
sure

f45∆Σiso(r) =

∑
iwi∆Σi,45eg,i cos(2∆θi + π/2)

2
∑

i wie2g,i cos
2(2∆θi + π/2)

, (8)

where Σi,45 is the projected surface density measured
by rotating the source galaxies by 45◦. The systematic
shear corrected halo ellipticity estimator is then given by
(f − f45)∆Σiso(r). The average values of fmm, f corr

mm and
(f − f45) within a certain range of projected separations
are determined by calculating the ratio of two measure-
ments for each radial bin, and subsequently averaging that
ratio within the range of interest. We assume that the er-
rors of each measurement are Gaussian. Consequently, the
probability distribution of the ratio is asymmetric, which
we have to account for. We describe how to calculate the
mean and the errors of the ratio for a radial bin, and how
to average that ratio within a certain range of projected
separations, in Appendix C. Note that to convert f , the
anisotropy in the shear field, to fh = eh/eg, the ratio of the
ellipticity of the dark matter halo and the ellipticity of the
galaxy, we have to adopt a density profile (e.g. f/fh=0.25
for a singular isothermal ellipsoid, see Mandelbaum et al.
2006a).

It is clear from Figure 2 that the ellipticity distribu-
tions of the red and blue lens samples are different. It is
unclear, however, whether the underlying ellipticity distri-
bution of the dark matter haloes differs as well. If the un-
derlying distribution is similar for both samples, the pro-
jected dark matter halo ellipticity cannot depend linearly

on the galaxy ellipticity. Hence Equation (6) might not be
optimal, and could depend differently on eg. We therefore
generalise Equation (7) to

f∆Σiso(r) = A

∑
iwi∆Σieαg,i cos(2∆θi)

2
∑

i wie2αg,i cos
2(2∆θi)

, (9)

A =
Σie2αg,i
Σieαg,i

Σieg,i
Σie2g,i

(10)

and calculate it for different values of α. Equation (8)
changes similarly. The factor A in Equation (9) scales each
measurement of f to the ‘standard’ of α = 1 as used in
Mandelbaum et al. (2006a), which eases a comparison of f
for different values of α. The optimal weight results in the
best signal-to-noise of the measurement.

The different halo ellipticity estimators can in princi-
ple be used to study the relation between the ellipticity of
the galaxy and the ellipticity of their dark matter hosts.
In particular, Equation (5) is defined such that it depends
on the average dark matter halo ellipticity, whilst Equation
(9) is sensitive to the relation between the galaxy elliptic-
ity and the dark matter ellipticity. Hence by comparing the
f∆Σiso(r) for different values of α, we gain insight in the re-
lation between the ellipticity of the galaxies and their dark
matter haloes. Note that as an alternative, we could weight
Equation (5) with the lens ellipticity.

It is useful to assess the signal-to-noise we expect to
obtain for the shear anisotropy measurement compared to
the signal-to-noise of the tangential shear itself. For this
purpose, we write Equation (6) in its most basic form:

∆Σmodel(r) = ∆Σiso(r)[1 + f̄ cos(2∆θ)], (11)

which has the following solution for the anisotropic part:

f̄∆Σiso =

∑
iwi∆Σi cos(2∆θi)∑

iwi cos2(2∆θi)
. (12)

If the dark matter halo is described by a singular isother-
mal ellipsoid (SIE; see Mandelbaum et al. 2006a), and if
the galaxy is perfectly aligned with the halo, we find
f̄ = eh/2. Hence the anisotropic signal is a factor eh/2
lower than the isotropic signal. To assess the relative
size of the error of f̄∆Σiso compared to Σiso, we insert
Equation (11) into Equation (12), define a new weight w̃i ≡
wi cos2(2∆θi), and determine the error using σf̄∆Σiso

=

1/
√∑

i w̃i. Since wi and cos2(2∆θi) are uncorrelated, it

follows that σf̄∆Σiso
= 1/

√∑
iwi〈cos2(2∆θ)〉 =

√
2σ∆Σiso ,

with σ∆Σiso = 1/
√∑

i wi the error on ∆Σiso. Hence the er-

ror of f̄∆Σiso is a factor
√
2 larger than the error of ∆Σiso.

Consequently, the signal-to-noise of the anisotropic part of
the lensing signal, (S/N)ani, is related to the signal-to-noise
of the isotropic part, (S/N)iso, as:

(S/N)ani =
0.15√

2

(
eh

0.3

)
(S/N)iso. (13)

In the best-case scenario, the expected signal-to-noise of the
shear anisotropy is an order of magnitude lower than the
signal-to-noise of the azimuthally averaged shear. Applying
the correction to remove systematic contributions increases
the errors of the shear anisotropy by another factor of

√
2. If

the dark matter is described by an elliptical NFW, the sig-
nal decreases rapidly with increasing separation (see Figure

6
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rotated by 45◦ with respect to the major/minor axes (re-
gion C and D in Figure 3), γ×,C−D ≡ (γ×,C − γ×,D)/2, is
subtracted from the tangential shear. Spurious shear sig-
nals contribute equally to γt,A, γt,B and γ×,C−D, and are
therefore removed. The corrected ratio then becomes:

f corr
mm (r) =

γt,B(r) + γ×,C−D(r)

γt,A(r) − γ×,C−D(r)
. (5)

If γ×,C−D is zero, the errors on f corr
mm approximately increase

by a factor
√
1 + 1/

√
2; if γ×,C−D is non-zero, however, the

errors of f corr
mm can either become larger or smaller than

those of fmm.
Alternatively, we can assume that the differential sur-

face density distribution can be described by an isotropic
part plus an azimuthally varying part (Mandelbaum et al.
2006a):

∆Σmodel(r) = ∆Σiso(r)[1 + 2feg cos(2∆θ)], (6)

where eg is the observed ellipticity of the lens, ∆θ is the an-
gle from the major axis, and f is the ratio of the amplitude
of the anisotropy of the lensing signal and the ellipticity of
the galaxy, which is the parameter we want to determine.
Mandelbaum et al. (2006a) show that the azimuthally vary-
ing part is given by:

f∆Σiso(r) =

∑
iwi∆Σieg,i cos(2∆θi)

2
∑

i wie2g,i cos
2(2∆θi)

, (7)

with i the index of the lens-source pairs, wi the weight ap-
plied to the ellipticity estimate of each source galaxy, which
is calculated from the shape noise, and eg,i the ellipticity of
the lens. This ellipticity is also determined using the KSB
method, and it is a measure of (1 − R2)/(1 + R2) with R
the axis ratio (R ≤ 1) if the lens has elliptical isophotes. To
remove contributions from systematic shear, we also mea-
sure

f45∆Σiso(r) =

∑
iwi∆Σi,45eg,i cos(2∆θi + π/2)

2
∑

i wie2g,i cos
2(2∆θi + π/2)

, (8)

where Σi,45 is the projected surface density measured
by rotating the source galaxies by 45◦. The systematic
shear corrected halo ellipticity estimator is then given by
(f − f45)∆Σiso(r). The average values of fmm, f corr

mm and
(f − f45) within a certain range of projected separations
are determined by calculating the ratio of two measure-
ments for each radial bin, and subsequently averaging that
ratio within the range of interest. We assume that the er-
rors of each measurement are Gaussian. Consequently, the
probability distribution of the ratio is asymmetric, which
we have to account for. We describe how to calculate the
mean and the errors of the ratio for a radial bin, and how
to average that ratio within a certain range of projected
separations, in Appendix C. Note that to convert f , the
anisotropy in the shear field, to fh = eh/eg, the ratio of the
ellipticity of the dark matter halo and the ellipticity of the
galaxy, we have to adopt a density profile (e.g. f/fh=0.25
for a singular isothermal ellipsoid, see Mandelbaum et al.
2006a).

It is clear from Figure 2 that the ellipticity distribu-
tions of the red and blue lens samples are different. It is
unclear, however, whether the underlying ellipticity distri-
bution of the dark matter haloes differs as well. If the un-
derlying distribution is similar for both samples, the pro-
jected dark matter halo ellipticity cannot depend linearly

on the galaxy ellipticity. Hence Equation (6) might not be
optimal, and could depend differently on eg. We therefore
generalise Equation (7) to

f∆Σiso(r) = A

∑
iwi∆Σieαg,i cos(2∆θi)

2
∑

i wie2αg,i cos
2(2∆θi)

, (9)

A =
Σie2αg,i
Σieαg,i

Σieg,i
Σie2g,i

(10)

and calculate it for different values of α. Equation (8)
changes similarly. The factor A in Equation (9) scales each
measurement of f to the ‘standard’ of α = 1 as used in
Mandelbaum et al. (2006a), which eases a comparison of f
for different values of α. The optimal weight results in the
best signal-to-noise of the measurement.

The different halo ellipticity estimators can in princi-
ple be used to study the relation between the ellipticity of
the galaxy and the ellipticity of their dark matter hosts.
In particular, Equation (5) is defined such that it depends
on the average dark matter halo ellipticity, whilst Equation
(9) is sensitive to the relation between the galaxy elliptic-
ity and the dark matter ellipticity. Hence by comparing the
f∆Σiso(r) for different values of α, we gain insight in the re-
lation between the ellipticity of the galaxies and their dark
matter haloes. Note that as an alternative, we could weight
Equation (5) with the lens ellipticity.

It is useful to assess the signal-to-noise we expect to
obtain for the shear anisotropy measurement compared to
the signal-to-noise of the tangential shear itself. For this
purpose, we write Equation (6) in its most basic form:

∆Σmodel(r) = ∆Σiso(r)[1 + f̄ cos(2∆θ)], (11)

which has the following solution for the anisotropic part:

f̄∆Σiso =

∑
iwi∆Σi cos(2∆θi)∑

iwi cos2(2∆θi)
. (12)

If the dark matter halo is described by a singular isother-
mal ellipsoid (SIE; see Mandelbaum et al. 2006a), and if
the galaxy is perfectly aligned with the halo, we find
f̄ = eh/2. Hence the anisotropic signal is a factor eh/2
lower than the isotropic signal. To assess the relative
size of the error of f̄∆Σiso compared to Σiso, we insert
Equation (11) into Equation (12), define a new weight w̃i ≡
wi cos2(2∆θi), and determine the error using σf̄∆Σiso

=

1/
√∑

i w̃i. Since wi and cos2(2∆θi) are uncorrelated, it

follows that σf̄∆Σiso
= 1/

√∑
iwi〈cos2(2∆θ)〉 =

√
2σ∆Σiso ,

with σ∆Σiso = 1/
√∑

i wi the error on ∆Σiso. Hence the er-

ror of f̄∆Σiso is a factor
√
2 larger than the error of ∆Σiso.

Consequently, the signal-to-noise of the anisotropic part of
the lensing signal, (S/N)ani, is related to the signal-to-noise
of the isotropic part, (S/N)iso, as:

(S/N)ani =
0.15√

2

(
eh

0.3

)
(S/N)iso. (13)

In the best-case scenario, the expected signal-to-noise of the
shear anisotropy is an order of magnitude lower than the
signal-to-noise of the azimuthally averaged shear. Applying
the correction to remove systematic contributions increases
the errors of the shear anisotropy by another factor of

√
2. If

the dark matter is described by an elliptical NFW, the sig-
nal decreases rapidly with increasing separation (see Figure

6
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rotated by 45◦ with respect to the major/minor axes (re-
gion C and D in Figure 3), γ×,C−D ≡ (γ×,C − γ×,D)/2, is
subtracted from the tangential shear. Spurious shear sig-
nals contribute equally to γt,A, γt,B and γ×,C−D, and are
therefore removed. The corrected ratio then becomes:

f corr
mm (r) =

γt,B(r) + γ×,C−D(r)

γt,A(r) − γ×,C−D(r)
. (5)

If γ×,C−D is zero, the errors on f corr
mm approximately increase

by a factor
√
1 + 1/

√
2; if γ×,C−D is non-zero, however, the

errors of f corr
mm can either become larger or smaller than

those of fmm.
Alternatively, we can assume that the differential sur-

face density distribution can be described by an isotropic
part plus an azimuthally varying part (Mandelbaum et al.
2006a):

∆Σmodel(r) = ∆Σiso(r)[1 + 2feg cos(2∆θ)], (6)

where eg is the observed ellipticity of the lens, ∆θ is the an-
gle from the major axis, and f is the ratio of the amplitude
of the anisotropy of the lensing signal and the ellipticity of
the galaxy, which is the parameter we want to determine.
Mandelbaum et al. (2006a) show that the azimuthally vary-
ing part is given by:

f∆Σiso(r) =

∑
iwi∆Σieg,i cos(2∆θi)

2
∑

i wie2g,i cos
2(2∆θi)

, (7)

with i the index of the lens-source pairs, wi the weight ap-
plied to the ellipticity estimate of each source galaxy, which
is calculated from the shape noise, and eg,i the ellipticity of
the lens. This ellipticity is also determined using the KSB
method, and it is a measure of (1 − R2)/(1 + R2) with R
the axis ratio (R ≤ 1) if the lens has elliptical isophotes. To
remove contributions from systematic shear, we also mea-
sure

f45∆Σiso(r) =

∑
iwi∆Σi,45eg,i cos(2∆θi + π/2)

2
∑

i wie2g,i cos
2(2∆θi + π/2)

, (8)

where Σi,45 is the projected surface density measured
by rotating the source galaxies by 45◦. The systematic
shear corrected halo ellipticity estimator is then given by
(f − f45)∆Σiso(r). The average values of fmm, f corr

mm and
(f − f45) within a certain range of projected separations
are determined by calculating the ratio of two measure-
ments for each radial bin, and subsequently averaging that
ratio within the range of interest. We assume that the er-
rors of each measurement are Gaussian. Consequently, the
probability distribution of the ratio is asymmetric, which
we have to account for. We describe how to calculate the
mean and the errors of the ratio for a radial bin, and how
to average that ratio within a certain range of projected
separations, in Appendix C. Note that to convert f , the
anisotropy in the shear field, to fh = eh/eg, the ratio of the
ellipticity of the dark matter halo and the ellipticity of the
galaxy, we have to adopt a density profile (e.g. f/fh=0.25
for a singular isothermal ellipsoid, see Mandelbaum et al.
2006a).

It is clear from Figure 2 that the ellipticity distribu-
tions of the red and blue lens samples are different. It is
unclear, however, whether the underlying ellipticity distri-
bution of the dark matter haloes differs as well. If the un-
derlying distribution is similar for both samples, the pro-
jected dark matter halo ellipticity cannot depend linearly

on the galaxy ellipticity. Hence Equation (6) might not be
optimal, and could depend differently on eg. We therefore
generalise Equation (7) to

f∆Σiso(r) = A

∑
iwi∆Σieαg,i cos(2∆θi)

2
∑

i wie2αg,i cos
2(2∆θi)

, (9)

A =
Σie2αg,i
Σieαg,i

Σieg,i
Σie2g,i

(10)

and calculate it for different values of α. Equation (8)
changes similarly. The factor A in Equation (9) scales each
measurement of f to the ‘standard’ of α = 1 as used in
Mandelbaum et al. (2006a), which eases a comparison of f
for different values of α. The optimal weight results in the
best signal-to-noise of the measurement.

The different halo ellipticity estimators can in princi-
ple be used to study the relation between the ellipticity of
the galaxy and the ellipticity of their dark matter hosts.
In particular, Equation (5) is defined such that it depends
on the average dark matter halo ellipticity, whilst Equation
(9) is sensitive to the relation between the galaxy elliptic-
ity and the dark matter ellipticity. Hence by comparing the
f∆Σiso(r) for different values of α, we gain insight in the re-
lation between the ellipticity of the galaxies and their dark
matter haloes. Note that as an alternative, we could weight
Equation (5) with the lens ellipticity.

It is useful to assess the signal-to-noise we expect to
obtain for the shear anisotropy measurement compared to
the signal-to-noise of the tangential shear itself. For this
purpose, we write Equation (6) in its most basic form:

∆Σmodel(r) = ∆Σiso(r)[1 + f̄ cos(2∆θ)], (11)

which has the following solution for the anisotropic part:

f̄∆Σiso =

∑
iwi∆Σi cos(2∆θi)∑

iwi cos2(2∆θi)
. (12)

If the dark matter halo is described by a singular isother-
mal ellipsoid (SIE; see Mandelbaum et al. 2006a), and if
the galaxy is perfectly aligned with the halo, we find
f̄ = eh/2. Hence the anisotropic signal is a factor eh/2
lower than the isotropic signal. To assess the relative
size of the error of f̄∆Σiso compared to Σiso, we insert
Equation (11) into Equation (12), define a new weight w̃i ≡
wi cos2(2∆θi), and determine the error using σf̄∆Σiso

=

1/
√∑

i w̃i. Since wi and cos2(2∆θi) are uncorrelated, it

follows that σf̄∆Σiso
= 1/

√∑
iwi〈cos2(2∆θ)〉 =

√
2σ∆Σiso ,

with σ∆Σiso = 1/
√∑

i wi the error on ∆Σiso. Hence the er-

ror of f̄∆Σiso is a factor
√
2 larger than the error of ∆Σiso.

Consequently, the signal-to-noise of the anisotropic part of
the lensing signal, (S/N)ani, is related to the signal-to-noise
of the isotropic part, (S/N)iso, as:

(S/N)ani =
0.15√

2

(
eh

0.3

)
(S/N)iso. (13)

In the best-case scenario, the expected signal-to-noise of the
shear anisotropy is an order of magnitude lower than the
signal-to-noise of the azimuthally averaged shear. Applying
the correction to remove systematic contributions increases
the errors of the shear anisotropy by another factor of

√
2. If

the dark matter is described by an elliptical NFW, the sig-
nal decreases rapidly with increasing separation (see Figure

6
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If the halo is perfectly aligned with the lens then 
f=eh/2 and the anisotropic signal is lower by this 
factor compared to the isotropic signal. 

Evaluating the other contributions leads to:

This is a difficult measurement!
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. (5)
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1 + 1/

√
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is calculated from the shape noise, and eg,i the ellipticity of
the lens. This ellipticity is also determined using the KSB
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bution of the dark matter haloes differs as well. If the un-
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and calculate it for different values of α. Equation (8)
changes similarly. The factor A in Equation (9) scales each
measurement of f to the ‘standard’ of α = 1 as used in
Mandelbaum et al. (2006a), which eases a comparison of f
for different values of α. The optimal weight results in the
best signal-to-noise of the measurement.

The different halo ellipticity estimators can in princi-
ple be used to study the relation between the ellipticity of
the galaxy and the ellipticity of their dark matter hosts.
In particular, Equation (5) is defined such that it depends
on the average dark matter halo ellipticity, whilst Equation
(9) is sensitive to the relation between the galaxy elliptic-
ity and the dark matter ellipticity. Hence by comparing the
f∆Σiso(r) for different values of α, we gain insight in the re-
lation between the ellipticity of the galaxies and their dark
matter haloes. Note that as an alternative, we could weight
Equation (5) with the lens ellipticity.

It is useful to assess the signal-to-noise we expect to
obtain for the shear anisotropy measurement compared to
the signal-to-noise of the tangential shear itself. For this
purpose, we write Equation (6) in its most basic form:

∆Σmodel(r) = ∆Σiso(r)[1 + f̄ cos(2∆θ)], (11)

which has the following solution for the anisotropic part:

f̄∆Σiso =
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iwi∆Σi cos(2∆θi)∑

iwi cos2(2∆θi)
. (12)

If the dark matter halo is described by a singular isother-
mal ellipsoid (SIE; see Mandelbaum et al. 2006a), and if
the galaxy is perfectly aligned with the halo, we find
f̄ = eh/2. Hence the anisotropic signal is a factor eh/2
lower than the isotropic signal. To assess the relative
size of the error of f̄∆Σiso compared to Σiso, we insert
Equation (11) into Equation (12), define a new weight w̃i ≡
wi cos2(2∆θi), and determine the error using σf̄∆Σiso

=
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i w̃i. Since wi and cos2(2∆θi) are uncorrelated, it

follows that σf̄∆Σiso
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of the isotropic part, (S/N)iso, as:
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In the best-case scenario, the expected signal-to-noise of the
shear anisotropy is an order of magnitude lower than the
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the errors of the shear anisotropy by another factor of
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2. If

the dark matter is described by an elliptical NFW, the sig-
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Comparison against our model in equation (4) shows that our f =

eh/4eg, so that for eh = eg( f h = 1) we expect f = 0.25. Dividing

the measured f by the predicted SIS value f / f h = 0.25 then allows

us to compute the measured f h from our f value assuming the SIS

density profile.

More generally, for a power-law non-SIS model, we find

f =
fh

4

[

(α − 2)(α2 − 2α + 4)

α(α − 4)

]

, (16)

so for α = 0.8–0.9 (a typical value in the actual data at small trans-

verse separations) f ∼ 0.33 f h.

We are also interested in computing f 45 for these profiles. By

comparison with previous equations, we find

f45 = fh

[

(2 − α)(1 − α)

α(α − 4)

]

=
4(α − 1)

α2 − 2α + 4
f . (17)

Consequently, the expected signal with lenses and sources rotated

by π/4 can be predicted relative to the unrotated signal, and the

comparison of the two is an important consistency check. For α ∼

0.8–0.9 as is found in the data, f 45/ f ∼ −0.26 to −0.13, that is, the

rotated signal is smaller than the unrotated one and with opposite

sign. As will be described in Section 3.3, to eliminate contributions

from systematics to f "#, we actually will measure f − f 45, which

for the general power-law profile is

f − f45 =
(α − 2)(α − 4)

α2 − 2α + 4
f =

fh

4

[

(α − 2)2

α

]

. (18)

We also consider non-power law density profiles. The first such

profile that we will consider is the TIS (Brainerd et al. 1996), which

takes the form

ρ(r ) ∝
1

r 2
(

r 2
s + r 2

) (19)

(note that what we call rs here is often called s; we use rs for simplic-

ity of notation since it also appears in the NFW profile). This profile

yields κ ∝ r−1 for r $ r s and ∝ r−3 for r % r s. While analytic

expressions can be derived for the shear in the spherical case, nu-

merical integration must be used when r is replaced by an elliptical

coordinate. Fortunately, κ and γ can be computed for this model

using GRAVLENS2 (Keeton 2001) via subtraction of the shear from

an elliptical κ ∝ (r 2 + s2)−1/2 model from a κ ∝ r−1 model (due to

linearity of the shear), with r being replaced by an elliptical coor-

dinate. We can use the predictions for those quantities to compute

f − f 45 by finding, for a profile with ellipticity e,

"(r ) ≡ γt(r , θ = 0) − γt(r , θ = π/2)

"45(r ) ≡ γ45(r , θ = π/4) − γ45(r , θ = 3π/4)

T (r ) ≡ γt(r , θ = 0) + γt(r , θ = π/2)

f (r ) =
"(r )

2eT (r )

f45(r ) =
"45(r )

2eT (r )
. (20)

The plot in Fig. 1 shows the results for f , f 45, and f − f 45 as

a function of r/r s for the TIS over a wide range of scales. (This

plot was computed using e = 0.02, for which the variation of the

shear with azimuthal angle is dominated by the first-order cos (2θ )

2The latest version may be found via the link at http://cfa-www.harvard.

edu/castles/

Figure 1. Plot of predicted f (r )/ f h and f 45(r )/ f h for an elliptical TIS

density profile dark matter halo; the maximum radius shown, 3r s, is larger

than the scales used in this paper. Horizontal lines indicate the SIS predictions

f / f h = 0.25 and f 45/ f h = 0.

term; at more realistic values like e = 0.3, higher order terms may

contribute as much as 18 per cent of the value of this first-order

term. However, as will be shown, since our results include statistical

uncertainty larger than this value, we will henceforth neglect higher

order terms.) Note that f for the TIS is a declining function of

transverse separation, and for the smallest scales shown on the plot

approaches the SIS prediction f / f h = 0.25. Because f 45 is so large,

f − f 45 is quite close to zero for r ∼ 0.6r s to the largest scales

shown on the plot, r ∼ 3r s.

We also consider the NFW profile (Navarro, Frenk & White

1996), which takes the form

ρ =
ρs

(r/rs)(1 + r/rs)2
, (21)

where r s = r v/c (concentration parameter). While the shear for

the spherical NFW model can be computed analytically (Wright &

Brainerd 2000), the additional complication of ellipticity necessi-

tates the use of numerical integration to get the shear. So, we again

use γ from GRAVLENS to compute f and f 45. A plot of f (r) for this

model is shown in Fig. 2. As shown, the NFW model gives decreas-

ing f (r) as for the TIS model. While at r = r s, the NFW model gives

f / f h ∼ 0.3 (slightly larger than the SIS) and f 45 $ f , f decreases

at larger radii and f 45 increases so that f − f 45 is quite small for r
larger than about 2r s.

For the sake of clarity, Table 1 summarizes the definitions of all

ellipticity-related parameters used in this paper.

3 DATA

The data used for this paper come from the SDSS (York et al. 2000),

an ongoing survey that will eventually image approximately one

quarter of the sky (10 000 deg2). Imaging data are taken in drift-

scan mode in five filters, u, g, r , i and z, centred at 355, 469, 617,

748 and 893 nm, respectively (Fukugita et al. 1996, Smith et al.

2002), using a wide-field CCD (Gunn et al. 1998) with photometric

monitor (Hogg et al. 2001). After the computation of an astrometric
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Figure 2. Plot of predicted f (r )/ f h and f 45(r )/ f h for an elliptical NFW

density profile dark matter halo. The horizontal lines indicate the SIS pre-

dictions f / f h = 0.25 and f 45/ f h = 0.

Table 1. Definitions of all measures of projected ellipticities (of dark

matter halo and source distributions) used in this paper.

f Ellipticity of !" = !" iso [1 + 2 f eg cos (2!θ )]

f h Ellipticity of halo relative to light distribution,

eh/eg

f 45 Ellipticity of !"45 = 2 f 45!" isoeg sin (2!θ )

f γ Ellipticity of shear before boosting;

!= f if boost has azimuthal dependence

f int Ellipticity of distribution of

physically associated ‘sources’

f mag Ellipticity of magnification bias

δN/N ∝ κ ∝ [1 + 2 f mageg cos (2!θ )]

f eff Effective ellipticity of f int, f mag

taking into account dilution by isotropic

source distribution

solution (Pier et al. 2003), the imaging data are processed by a se-

quence of pipelines, collectively called PHOTO, that estimate the PSF

and sky brightness, identify objects, and measure their properties.

The software pipeline and photometric quality assessment are de-

scribed in Ivezić et al. (2004). Bright galaxies and other interesting

objects are selected for spectroscopy according to specific criteria

(Eisenstein et al. 2001; Richards et al. 2002; Strauss et al. 2002).

The SDSS has had four major data releases: the Early Data Release

or EDR (Stoughton et al. 2002), DR1 (Abazajian et al. 2003), DR2

(Abazajian et al. 2004), and DR3 (Abazajian et al. 2005).

The lens and source catalogues are very similar to those described

in M05, except for the inclusion of the fainter lenses with photo-

metric redshifts. Thus the description here will be brief, with the

exception of the few differences from that work which will be de-

scribed in more detail.

3.1 Lens sample

While M05 used only 3 × 105 spectroscopic galaxies (r < 17.77)

as lenses, this work uses a larger sample of two million lenses as

faint as r = 19 (model magnitude) with photometric redshifts from

KPHOTOZ v3 2 (Blanton et al. 2003a) in the range 0.02 < z < 0.5.

There are several reasons for this change. First, in order to detect

a possibly small azimuthal variation in the tangential ellipticity,

we need a much larger sample of lenses. Because of the higher

number density of lenses when we include these fainter lenses,

and because of the larger photometric area coverage, the use of a

fainter flux limit increases the size of our lens sample by a factor of

roughly 8. Secondly, while a lensing analysis aimed at determining

the signal amplitude suffers from significant calibration uncertainty

when galaxies without spectroscopic redshifts are used as lenses

(Kleinheinrich et al. 2005), this work is primarily concerned with

the ratio of f !" to !", so errors in signal calibration are irrelevant.

There is one possible error in the detection of f that could be af-

fected by the use of photometric redshifts. The photometric redshifts

are used for each lens to determine DA(z) and consequently the trans-

verse separation between lenses and sources. If f is a constant value

independent of radius for the projected mass distribution, then er-

rors in the computed transverse separation do not matter, since they

will affect !" and f!" in the same way. However, if f decreases

with radius, and errors in the photometric redshifts tend to go in

one direction (non-zero average bias), then the measured f can be

systematically affected. If the photometric redshifts tend to be bi-

ased high, then they will overestimate the value of r, and lead to an

overestimate of f ; if they are biased low, they will underestimate the

value of r and consequently of f . Were it not for this problem, we

would make a larger lens sample by going to fainter magnitudes, but

the bias and scatter in the photometric redshifts at fainter magnitudes

make this impractical. As shown in M05 using data from DEEP2,

for r < 19, the photometric redshifts are not notably biased, and

have scatter !z ∼ 0.04. Since DA(z) is not linear in redshift and f is

not linear in r, in principle, even with no bias and a scatter of !z ∼

0.04, the errors in r may bias our results, since we use r = θDA(z)

(1 + z). However, calculations indicate that this potential bias is

well below the statistical error.

The area covered by the full catalogue is roughly 6200 deg2.

Shape measurements were obtained for roughly 96 per cent of lenses

passing the magnitude cut in this region, where many of the failures

were due to saturated centres or other problems for very bright

galaxies.

The lenses were split into luminosity bins one model magnitude

wide; the notation for the bins here is the same as in M05, but we

only use the four brightest bins from that paper, for which the sig-

nal was detected with high S/N. The luminosities were computed

using the photometric redshift to get the distance modulus, and k-

corrections are from KCORRECT v1 11 (Blanton et al. 2003a). As

in M05, a luminosity evolution correction consistent with Blan-

ton et al. (2003b) was applied, shifting all r-band magnitudes by

+1.6(z − 0.1). Table 2 includes information about the luminosity

bins, including the numbers of lenses and parameters of the redshift

and magnitude distribution. The effective redshifts and luminosities

are computed using the same weights as are used in the computation

of the lensing signal. Information is shown for red and blue sam-

ples separately, where colour separation will be described shortly.
In addition to the real lens catalogue, our analysis also requires

catalogues of random lens positions. These were created by dis-

tributing the random lenses uniformly across the survey area, since

the photometric survey at r < 19 is fairly uniform and the density of

sources at bright magnitudes does not vary significantly with seeing

(at fainter magnitudes, where star–galaxy separation is more dif-

ficult, the density of sources does not show the expected increase

with magnitude, and shows significant variation with seeing).
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Ellipticity signal only appreciable on small scales. This is where 
flexion measurements can help. 
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Dubinski 

The signal is lowered even further if the halo is 
misaligned with the light distribution.
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Fig. 12. Anisotropy of the lensing signal averaged between
1 and 200 arcsec, for a Gaussian distributed position angle
difference between the dark matter and the light distribu-
tion with zero mean and width σθ. Large values for σθ as
have been reported in the literature lead to significant re-
ductions in the shear anisotropy.

this knowledge as well for a correct interpretation.

Our results underline the need for photometric redshifts
- and consequently luminosities - for the lenses. Without
photometric redshifts, we can only select lenses based on
their colours and magnitudes. To achieve sufficient signal-
to-noise in order to obtain competitive constraints on the
average halo ellipticity, we have to select large numbers
of galaxies that cover a broad range of luminosities and
redshifts. If the average halo ellipticity depends on the
luminosity of a galaxy (as the results from Mandelbaum
et al. 2006a suggest), the signal-to-noise of the shear
anisotropy measurements decrease, and may even average
out in the worst case scenario. If luminosities are available,
we can not only select lenses in narrow luminosity ranges,
but also weigh the lensing measurement with luminosity,
which improves the signal-to-noise of the lensing measure-
ment. The lack of photometric redshifts also forces us to
stack the lensing signal as a function of angular separation,
rather than physical, which decreases the signal-to-noise
as well. This is particular disadvantageous as the shear
anisotropy signal of an elliptical NFW profile drops very
rapidly with increasing radius, and the signal may be
smeared out and become undetectable. We note that a
preliminary photometric redshift catalogue exists for the
RCS2 for the area that has also been observed in the
i′-band, but it only covers the redshift range z > 0.4 due
to the absence of observations in the u-band, which limits
its usefulness for this study.

A new technique has recently been proposed to improve
halo ellipticity measurements: the use of a higher order

distortion of lensing known as flexion (Hawken & Bridle
2009; Er & Schneider 2011; Er et al. 2011a,b). Although
the measurement of the flexion signal is difficult for galaxy-
scale potentials, the first positive detections have already
been reported (Velander et al. 2011). Using mock simu-
lations of clusters with SIE and elliptical NFW profiles,
Er et al. (2011b) find that flexion is more sensitive to the
halo ellipticity than the shear; this may be true as well
for stacked galaxy potentials. Furthermore, the systematic
errors in flexion measurements differ from those in shear.
Hence we anticipate that additional useful constraints can
be obtained with flexion.

6. Conclusion

We present measurements of the anisotropy of the
weak lensing signal around galaxies using data from the
Red-sequence Cluster Survey 2 (RCS2). We define three
lens samples: the ‘all’ sample contains all galaxies in the
range 19 < mr′ < 21.5, whereas the ‘red’ and ‘blue’
samples are dominated by massive low-redshift early-type
and late-type galaxies, respectively. To study the environ-
mental dependence of the lensing signal, we also subdivide
each lens sample into an isolated and clustered part, and
analyse them separately.

We address the impact of several complications on the
shear anisotropy measurements, including residual PSF
systematics in the shape catalogues, multiple deflections,
the clustering of lenses, and correlations between their
intrinsic shapes. We run a set of idealised simulations to
estimate the impact these might have on real data, and
find them to be small, but not entirely negligible. We
demonstrate that the impact of these complications can
be reduced by a careful selection of the lens sample, i.e.
low-redshift, massive and elliptical galaxies, as has been
done in this work.

We also measure the distribution of physically asso-
ciated galaxies around the lens samples. We find that
these satellites predominantly reside near the major axis
of the lenses. The results of the ‘red’ sample are in good
agreement with previously reported values, whilst the
constraints of the ‘all’ and ‘blue’ sample cannot be easily
compared as they consist of a mixture of early-type and
late-type galaxies.

The shear anisotropy is quantified by the anisotropy of
the galaxy-mass cross-correlation function, 〈f − f45〉, and
by the ratio of the projected dark matter halo ellipticity
and the observed galaxy ellipticity, fh. For the ‘all’ sample
we find that 〈f − f45〉 = 0.23 ± 0.12, and fh = 1.50+1.03

−1.01
for an elliptical NFW profile, which for a mean lens
ellipticity of 0.25 corresponds to a projected halo ellipticity
of eh = 0.38+0.26

−0.25 if the halo and the lens are perfectly
aligned. Note that various studies indicate that this may
not be the case. These constraints provide weak support
that galaxies are embedded in, and preferentially aligned
with, triaxial dark matter haloes. For isolated galaxies,
the average shear anisotropy is larger than for clustered
galaxies; for elliptical NFW profiles, we find fh = 4.73+2.17

−2.05

and fh = 0.90+1.17
−1.15, respectively. The decrease of the

lensing anisotropy signal around clustered galaxies may
be due to the stripping of dark matter haloes in dense
environments.

We do not detect a significant shear anisotropy for
the average ‘red’ lens. The shear anisotropy for the most

19
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Fig. 6. Lensing signal multiplied with the projected separation in arcmin as a function of angular distance from the
lens, for the ‘all’ lens sample (left-hand panels), the ‘red’ lens sample (middle panels) and the ‘blue’ lens sample (right-
hand panels). In the top panels, the green squares (blue triangles) show the average r∆Σ along the major (minor) axis
(quadrants B (A) in Figure 3). The dashed lines indicate the best fit NFW profile times the projected separation, fitted
to the azimuthally averaged lensing signal on scales between 50 and 500 kpc using the mean lens redshift. In the middle
panel, the green squares (blue triangles) show the cross shear signal averaged in quadrant D (C) of Figure 3. In the bottom
panels, 1/fmm and 1/f corr

mm are shown by the red squares and black triangles, respectively. The dotted lines indicate the
virial radius from the best-fit NFW profiles. The shear ratio does not provide clear signs for the alignment between
galaxies and their dark matter haloes.

shape catalogues. These residuals affect both the ellipticity
estimates of the lens and the source galaxies, albeit with
a different amount. Lens galaxies are typically large and
bright, while source galaxies are small and faint, and hence
harder to correct for. Regardless of that, PSF residuals
tend to align the lens and source galaxies. If not accounted
for, it could add a false anti-alignment signal to the shear
anisotropy measurement (see Hoekstra et al. 2004).

We correct for PSF residual systematics in the cata-
logues by subtracting the cross shear signal in the quad-
rants that are rotated by 45 degrees with respect to the
major and minor axes (γx,C−D and f45∆iso(r) in f corr

mm and
(f − f45), respectively). To quantify how much PSF resid-

uals actually contribute to these correction terms, and test
whether they are properly removed, we introduce on pur-
pose an additional bias in the PSF correction, and recalcu-
late the shapes of the galaxies. Usually, the ellipticities of
galaxies in the KSB method are computed as follows:

eg =
1

Pγ

[
ε− (1 + b)×

P sm

P sm"
ε"
]
, (21)

with Pγ the shear polarisability, P sm the smear susceptibil-
ity tensor, and ε the polarizations (Kaiser et al. 1995). The
starred quantities are determined using the PSF stars. The
bias b is normally equal to zero, but to mimic an imper-
fect PSF correction we set it to −0.05, and recalculate the

10

van U
itert et al. (2012)
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Table 3. The best-fit values for the anisotropy of the galaxy-mass cross-correlations function, 〈f − f45〉, and the ratio of
the dark matter halo ellipticity and the galaxy ellipticity, fh, for an SIE and an elliptical NFW profile.

Sample α 〈feff〉 〈f − f45〉 fh(SIE) fh(NFW)

All 0.0 1.3± 0.6× 10−3 0.19± 0.10 0.47± 0.37 0.96+0.83
−0.80

All 0.5 1.1± 0.7× 10−3 0.21+0.11
−0.10 0.57± 0.40 1.19+0.89

−0.85

All 1.0 0.8± 0.8× 10−3 0.23± 0.12 0.70± 0.46 1.50+1.03
−1.01

All 1.5 0.6± 1.0× 10−3 0.26± 0.15 0.83± 0.55 1.80+1.23
−1.19

All 2.0 0.4± 1.2× 10−3 0.29± 0.17 0.97± 0.65 2.12+1.45
−1.42

Red 0.0 11.9 ± 1.8× 10−3 0.13± 0.15 0.00± 0.58 −0.19+1.09
−1.08

Red 0.5 11.3 ± 2.1× 10−3 0.19± 0.16 0.05± 0.60 −0.14+1.12
−1.10

Red 1.0 9.3± 2.5× 10−3 0.28± 0.18 0.25± 0.70 0.20+1.34
−1.31

Red 1.5 7.2± 3.1× 10−3 0.40± 0.22 0.61± 0.86 0.87+1.67
−1.63

Red 2.0 5.2± 4.0× 10−3 0.54± 0.27 1.09± 1.07 1.82+2.12
−2.08

Blue 0.0 1.5± 1.4× 10−3 −0.16+0.18
−0.19 −0.56± 0.68 −1.24+1.62

−1.65

Blue 0.5 2.0± 1.6× 10−3 −0.25± 0.19 −0.75± 0.70 −1.62+1.69
−1.72

Blue 1.0 2.3± 1.9× 10−3 −0.35+0.21
−0.22 −1.01± 0.81 −2.17+1.97

−2.03

Blue 1.5 2.5± 2.3× 10−3 −0.45± 0.26 −1.24± 0.96 −2.67+2.36
−2.44

Blue 2.0 2.5± 2.7× 10−3 −0.53+0.31
−0.32 −1.44± 1.17 −3.06+2.85

−2.95

the numerically integrated values of f/fh and f45/fh as a
function of r/rs from Mandelbaum et al. (2006a) (shown
in Figure 2 of that paper), which have been kindly pro-
vided by Rachel Mandelbaum. Since our lens galaxies span
a broad range in redshifts, we first determine the redshift-
averaged lensing model by integrating the elliptical NFW
profiles over the redshift distribution of each lens sample
(shown in Figure 1), and weigh each lens redshift bin with
the lensing efficiency 〈Dls/Ds〉 that is averaged over the
source redshift distribution. Note that this is an important
correction; for the ‘all’ sample, the integrated profile results
in about 50% larger values for (f − f45) compared to the
profile computed using the mean lens redshift. For the ‘red’
and ‘blue’ sample, the difference is smaller because their
redshift distributions are narrower. Also note that the SIE
profiles do not have to be corrected, since the azimuthally
averaged lensing signal and the anisotropic part are simi-
larly affected when we integrate them over the lens redshift
distribution because both scale as r−1. The best-fit values
of fh are therefore unaffected.

The best fit values of fh for the elliptical NFW pro-
files are less significant than 〈f − f45〉 for the same lensing
measurements. The reason is that the elliptical NFW fit is
very sensitive to the signal close to the lens, but not to the
signal at larger separations. We find that for the ‘all’ and
‘red’ sample, (f −f45) actually turns slightly negative close
to the lens, rather than increasing strongly as would have
been expected for an elliptical NFW profile that is aligned
with the lens. Although this might be just caused by noise,
it could also indicate that a single elliptical NFW profile
does not describe the shear anisotropy signal well.

Finally, we note that for the ‘all’ sample 〈f − f45〉∆Σiso

turns negative at projected separations >5 arcmin. A sim-
ilar trend can be observed in Figure 6, where the inverse of
the corrected shear ratio of the ‘all’ sample is slightly larger
than unity. We cannot directly interpret this as the result of
an anti-alignment of galaxies with the large-scale structure,
as we found in the previous section that multiple deflec-

tions and the clustering of galaxies produce a similar trend
at these scales, and we cannot disentangle the effects. To
constrain the average halo ellipticities of galaxies we only
use the lensing signal on scales <1 arcmin, however, where
the effect of multiple deflections and clustering of galax-
ies can be safely ignored, and a non-zero signal reflects an
anisotropy of the projected gravitational potential.

5.1. Environmental dependence

To study whether the lensing anisotropy depends
on the lens environment we measure the signal for the
isolated and clustered lens sample. In Figure 11 we show
(f − f45)∆Σiso for the w ∝ e1.0 bin, which is the same
weight as used in Mandelbaum et al. (2006a) and hence
enables a direct comparison. We determine 〈f − f45〉 and
fit fh for the elliptical density profiles, and show the results
in Table 4.

The lensing anisotropy for the isolated ‘all’ lenses is
positive, and the values of (f − f45)∆Σiso and fh are larger
than those of the clustered sample by almost ∼2σ. For the
‘red’ and the ‘blue’ lenses, we find that on small scales,
the lensing anisotropy is more negative for the clustered
sample. When we average the signals within the virial
radius, or fit the elliptical density profiles, we find that
this difference is not statistically significant.

5.2. Interpretation

The shear anisotropy measurements provide weak
support that the average galaxy is preferentially aligned
with its triaxial dark matter host. The significance of the
detection for the ‘all’ sample does not depend on how we
weigh the measurement with the observed galaxy elliptic-
ity, which indicates that more elliptical galaxies do not
reside in, or are better aligned with, more elliptical dark
matter haloes. We find that the errors on 〈f −f45〉 increase

16
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Higher-order statistics

The galaxy-galaxy lensing provides information 
about the mean density profile around an 
ensemble of galaxies.

To study environmental differences, we can pre-
select lenses, or we can examine these statistically 
using 3-point statistics:

- lensing signal around a pair of lenses of a given separation
- correlation of lensing signal around a lens (more like GGL)
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Figure 1. Illustration of the parametrisation of the G3L three-point correlators G̃±(ϑ1,ϑ2,φ3) (left panel), and the lens-lens-shear
correlation, G̃(ϑ1,ϑ2,φ3) (right panel). The figure is copied from Schneider & Watts (2005).

Fourier space at a angular wave number of ! =
√
2, which

determines the characteristic angular scale selected by an
aperture radius of θap.

2.3 Aperture statistics estimators

We briefly summarise the means by which the G3L aperture
statistics are estimated. For a more detailed outline of the
adopted method, its computationally optimised implemen-
tation as well as verification, we refer the reader to Sect. 3
of Simon et al. (2008).

The information contained in the aperture statistics is
also contained inside two classes of three-point correlation
functions (Schneider & Watts 2005), which are relatively
straightforward to estimate. Once the correlation functions
have been determined, they can be transformed to the corre-
sponding aperture statistics by an integral transformation.
The estimation process thus proceeds in two basic steps: The
first step estimates one three-point correlation function for
each variant of the aperture statistics by averaging over simi-
lar triangles formed by three galaxies: (a) the source tangen-
tial ellipticity relative to the midpoint of the line connecting
two lenses, i.e., for 〈N 2Map〉 one estimates the correlator

G̃(ϑ1,ϑ2,φ3) =
1

n2
g

〈
ng(θ1)ng(θ2)γ

(
θ3;

ϕ1 + ϕ2

2

)〉
, (14)

and (b) the tangential ellipticities of two sources relative
to the line connecting the sources as function of separation
from one lens, i.e., for 〈NM2

ap〉 one estimates the correlator:

G̃±(ϑ1,ϑ2,φ3) =
1
ng

〈
γ(θ1;ϕ1)γ

±(θ2;ϕ2)ng(θ3)

〉
. (15)

The meaning of the notation is illustrated in Fig. 1. By γ±

in Eq. (15) we mean a complex conjugate γ∗ in the case of

G̃+ and γ otherwise.
Both correlation functions are estimated inside bins of

similar triangles, i.e., lens-source triples within a configura-
tion of comparable edge lengths ϑ1,2 and opening angles φ3,
by summing over all relevant lens-lens-source triplets. Any

triple of three galaxy positions [θi,θj ,θk] that meets the
criteria of a relevant triangle is flagged by ∆ϑ1ϑ2φ3

ijk = 1 and

∆ϑ1ϑ2φ3
ijk = 0 otherwise. For estimating G̃ we utilise

G̃est(ϑ1,ϑ2,φ3) = (16)

−
Nd∑

i=1

Nd∑

j=1

Ns∑

k=1
wk εk e

−i(ϕi+ϕj)
[
1 + ω(|θi − θj |)

]
∆ϑ1ϑ2φ3

ijk

Nd∑

i=1

Nd∑

j=1

Ns∑

k=1
wk∆

ϑ1ϑ2φ3
ijk

,

or for G̃± the estimator

G̃est
± (ϑ1,ϑ2,φ3) = (17)

Nd∑

i=1

Ns∑

j=1

Ns∑

k=1
wj wk εjε

±
k e

−2iϕj e±2iϕk∆ϑ1ϑ2φ3
ijk

Nd∑

i=1

Ns∑

j=1

Ns∑

k=1
wj wk∆

ϑ1ϑ2φ3
ijk

,

where Nd and Ns are the number of lenses and sources wi

are statistical weights of sources, ϕi are polar angles of the
position vectors of galaxies with respect to the coordinate
origin, εi are the source ellipticities, and

ω(|∆θ|) =
〈
κg(θ)κg(θ +∆θ)

〉
(18)

is the angular two-point clustering of the lenses (e.g. Peebles
1980). In this paper, the angular clustering of lenses is esti-
mated by means of the estimator in Landy & Szalay (1993)

prior to the estimation of G̃ and then interpolated.
In a second step, we transform the estimates of G̃ and

G̃± to the aperture statistics by devising the transformation
integrals Eqs. (63), (57), and (59) in Schneider & Watts
(2005). The transformation automatically removes uncon-
nected second-order terms from the triple correlators, re-
sulting in an aperture statistics that is only determined by
pure (connected) third-order correlation terms.

c© 2008 RAS, MNRAS 000, 1–??

The 3-point signal does not vanish if 
- the surface density around a pair of galaxies differs from that around 
individual galaxies (sensitive to environment).
- the matter 2-point correlations close to lenses differs from correlations 
independent of lens positions (sensitive to halo properties).
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Figure 4. Measurements of the E-mode aperture statistics 〈N 2Map〉(θ) (top figure) and 〈NM2
ap〉(θ) (bottom figure) as function of

aperture scale radius θ. The left column panels depict measurements for the low-z bin, the right column panels the high-z bin. Different
lines refer to different lens samples (Table 1). Note that the values get biased for θ ! 1′ due to inefficient sampling of the G3L correlation
functions for small-scale triangles. Error bars indicate the 1σ standard deviation of the mean of all pointings considered. Missing data
points are outside the plotting range but consistent with zero. Numbers at the top indicate the effective k =

√
2/(fk(z̄)θ) of the probed

(equilateral) bispectrum. Measurements of 〈NM2
ap〉(θ) for the high-z stellar mass samples are mainly upper limits only; L4 is the only

significantly non-zero signal. Lines are connecting the data points to guide the eye.
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CFHTLenS measurements by Simon et al. (in prep.)
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(equilateral) bispectrum. Measurements of 〈NM2
ap〉(θ) for the high-z stellar mass samples are mainly upper limits only; L4 is the only

significantly non-zero signal. Lines are connecting the data points to guide the eye.
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CFHTLenS measurements by Simon et al. (in prep.)



Higher-order statistics

Excess convergence around lenses with different 
separations from Simon et al. (2008)



Do not waste data

The study of isolated galaxies or limiting the analysis to 
small scales simplifies the interpretation, but limits the 
analysis to low density.  The sample is not very 
representative. Can we do better?

Redshift information is “expensive”, so why waste it?



The halo model

Ingredients of the model
- galaxies are host or satellite
- density profiles for hosts & satellites
- prescription of the clustering of halos
- prescription of the occupation of halos
- every dark matter particle resides in a halo
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The Halo-Model

The halo model shares some features with the 
maximum-likelihood approach discussed earlier, but 
there are differences:

It is statistical in nature:
- it predicts the radial dependence of the signal
- it does not make use of the observed positions of lenses
- it naturally can account for central and satellite galaxies. 



A closer look at stacking
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How to interpret the signal?

Stacking

Because of stacking the lensing signal is difficult to interpret

∆Σ(R|L) =
R

P (M |L)∆Σ(R|M )dM

∆Σ(R|M ) = (1−fsat)∆Σcen(R|M )+fsat∆Σsat(R|M )

P (M |L) and fsat(L) can be computed from Φ(L|M )

UsingΦ(L|M ) constrained from clustering data,

we can predict the lensing signal∆Σ(R|L1, L2)

Stacking according to an observed galaxy property 

haloes of different  masses
central and satellite galaxies } Mixed together

This complicates the interpretation
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Figure 5. Galaxy-galaxy lensing signal around lenses which have been split into luminosity bins according to Table 1, modelled using the halo model described
in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, ∆Σ, of the red (blue) lenses, and the solid line is the
best-fit halo model. Triangles represent negative points that are included unaltered in the model fitting procedure, but that have here been moved up to positive
values as a reference. The dotted error bars are the unaltered error bars belonging to the negative points. The squares represent distance bins containing no
objects. For a detailed decomposition into the halo model components, please refer to Appendix C.

Table 1. Details of the luminosity bins. (1) Absolute magnitude range; (2)
Number of lenses; (3) Mean redshift; (4) Fraction of lenses that are blue.

Sample Mr′
(1) nlens

(2) 〈z〉(3) fblue(4)

L1 [−21.0,−20.0] 90293 0.30 0.70
L2 [−21.5,−21.0] 32271 0.30 0.45
L3 [−22.0,−21.5] 22475 0.30 0.32
L4 [−22.5,−22.0] 12552 0.30 0.20
L5 [−23.0,−22.5] 5439 0.30 0.11
L6 [−23.5,−23.0] 1762 0.30 0.06
L7 [−24.0,−23.5] 349 0.30 0.03
L8 [−24.5,−24.0] 77 0.30 0.09

with our halo model using a χ2 analysis. Only the halo mass M200

and the satellite fraction α are left as free parameters while we keep
all other variables fixed. When fitting, we assume that the co-
variance matrix of the lensing measurements is diagonal. Off-
diagonal elements are generally present due to cosmic variance
and shape noise, but Choi et al. (2012) find that for a lens sam-
ple at a similar redshift range as our lenses the covariance ma-
trix is diagonal up to ∼1 Mpc, which is about the largest scale
we include in our fits. Furthermore, Figure 7.2 from the PhD
thesis of Jens Rödiger3 shows that the off-diagonal elements
are rather small. Hence we do not expect that the off-diagonal

3 http://hss.ulb.uni-bonn.de/2009/1790/1790.htm

elements in the χ2 fit have significant impact on the best fit pa-
rameters. The results are shown in Figure 5 for all luminosity bins
and for each red and blue lens sample, with details of the fitted halo
model parameters quoted in Table 2. The halo masses quoted in this
table have been corrected for various contamination effects as de-
tailed in Section 4.1 and Appendix A. Note that the number of blue
lenses in the two highest-luminosity bins, L7 and L8, is too low to
constrain the halo mass. In the following sections, these two bins
have therefore been removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with lu-
minosity for both red and blue samples indicating an increased
halo mass. In general, for identical luminosity selections blue
galaxies have less massive haloes than red galaxies. For the red
sample, lower luminosity bins display a slight bump at scales of
∼ 1h−1

70 Mpc. This is due to the satellite 1-halo term becoming
significant and indicates that a large fraction of the galaxies in those
bins are in fact satellite galaxies inside a larger halo. On the other
hand, brighter red galaxies are more likely to be centrally located
in a halo. The blue galaxy halo models also display a bump for the
lower luminosity bins, but this feature is at larger scales than the
satellite 1-halo term. The signal breakdown shown in Figure C2
(Appendix C) reveals that this bump is due to the central 2-halo
term arising from the contribution from nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at large scales. This may be an indicator that our
description of the galaxy bias, while accurate for red lenses, results
in too high a bias for blue lenses. Currently we do not have enough
data available to investigate this effect in detail, but in the future
this should be explored further.

c© 2012 RAS, MNRAS 000, 1–24

Velander et al. (in prep.)



Modeling the stacking

�⇥(R|L) =
�

Pc(M |L)�⇥c(R|M)dM

+
�

Ps(M |L)�⇥s(R|M)dM

central

satellite

�⇥c(R|M)

�dm(r|M)

Dark matter halo density 
profile 

�⇥s(R|M)

�dm(r|M)� ns(r|M)

Convolution of the halo density 
profile and the number density 
distribution of galaxies

+ contributions from the clustering of lenses (2-halo term)



Modeling the stacking
Bayes’ theorem:

Ps(M |L)dM = �s(L|M)n(M)
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mass scale at which galaxy formation is most efficient. At
lower masses 〈M/L19.5〉M increases dramatically, indicat-
ing that galaxy formation is unable to make galaxies with
0.1Mr−5 log h ≤ −19.5 in such low mass haloes. At the high
mass end, the mass-to-light ratio also increases, though less
rapidly, indicating that some processes, possibly including
AGN feedback, cause galaxy formation to also become rela-
tively inefficient in massive haloes.

Finally, we have repeated the same exercise for the
WMAP1 cosmology, yielding an equally good fit to the data
(not shown here). The fact that both cosmologies allow an
equally good fit to these data, despite the large differences in
halo mass function and halo bias, illustrates that Φ(L) and
r0(L) alone allow a fair amount of freedom in cosmological
parameters (cf. van den Bosch, Mo & Yang 2003b). However,
as we will see below, the WMAP1 and WMAP3 cosmologies
predict significantly different signals for the galaxy-galaxy
lensing.

5 RESULTS

Our model predicts the excess surface density,∆Σ, as a func-
tion of the comoving separation in the sky, R. We recall that
the procedure to calculate this quantity consists of four main
steps for every luminosity bin. We first calculate the 4 terms
defining the galaxy-dark matter power spectrum. They al-
ready encode all the physical information entering in our
model. We thus inverse Fourier transform the total power

spectrum:

ξg,dm(r) =
1

2π2

Z
Pg,dm(k)

sin(kr)
kr

k2 dk , (46)

obtaining the galaxy-dark matter cross correlation, ξg,dm(r).
By projecting it via eq. (4), we find the matter surface den-
sity, Σ(R), and by using its average inside R we calculate
the excess surface density, ∆Σ(R).

Fig. 3 shows ∆Σ(R) for the different luminosity bins
introduced in Table 1. The result is shown up to relatively
large scale such that the transition between one and two
halo is always displayed. Note that the brighter galaxies have
a higher and smoothly decreasing signal up to large scales
whereas the fainter galaxies show a more structured signal
clearly indicating transitions between the different terms. It
is clear that the signal increases from faint to bright galaxies,
reflecting the fact that brighter galaxies live on average in
more massive haloes. The convergence of all the lines at large
scales (R ∼ 30h−1 Mpc) highlights the idea that only the
average density of the Universe is probed at those scales.

Based on the split of the power spectrum into four
terms, we can define four terms for the ESD:

∆Σ(R) = ∆Σ1h,c(R) +∆Σ1h,s(R)

+ ∆Σ2h,c(R) +∆Σ2h,s(R) . (47)

To calculate each of this term, we apply the procedure al-
ready explained above: given the power spectrum, we in-
verse Fourier transform it, and via eq. (4) and (3) we obtain
the corresponding ESD. It is worth noticing that the single
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4. HALO MODEL

Galaxies form in the gravitational potential of dark
matter haloes and therefore trace the large scale dis-
tribution of matter in the universe. The quantity that
describes the relation between galaxies and dark mat-
ter is referred to as galaxy biasing. The description of
galaxy biasing is non-trivial as the physics governing
galaxy formation is complex, and the bias may depend on
the dark matter halo mass, environment, scale and red-
shift (e.g. Cresswell & Percival 2009; Coupon et al. 2011;
Kovač et al. 2011). To gain insight into the relation between
galaxies and dark matter the weak lensing signal around
galaxies can be used, as it measures the correlation be-
tween the galaxies and the surrounding dark matter distri-
bution. These lensing measurements provide constraints for
models of the large scale distribution of matter, which are
commonly described with the power spectrum of the den-
sity fluctuations (e.g. Peacock & Dodds 1996; Smith et al.
2003). For a given power spectrum, the lensing signal can
be computed directly (Guzik & Seljak 2001):

γt(θ) = 6π2

(

H0

c

)2

ΩM

∫ ∞

0
dχW1(χ)

f(χ)

a(χ)

×
∫

dkkP (k,χ, θ)J2(kr(χ)θ),

(8)

with χ the radial distance (in a flat universe, χ = a−1 DA

with a the scale factor and DA the angular diameter dis-
tance), W1(χ) the normalized radial distribution of the
lenses, f(χ) =

∫∞

χ dχ′g(χ,χ′)W2(χ′), with W2(χ′) the ra-
dial distribution of the sources, and

g(χ,χ′) =
DlDls

Dsa(zL)
. (9)

P (k) is the power spectrum under consideration, and J2
is the second Bessel function of the first kind. Instead of
using a single power spectrum to describe the distribution
of matter in the universe, it is beneficial to consider the
various components that contribute, as is done in the halo
model. This allows a simultaneous study of the halo masses
of galaxies and of their clustering properties.

In the halo model the mass distribution in the universe
is described as a distinct number of dark matter haloes
that are clustered. As the large scale spatial distribution
of haloes is unlikely to affect the physics inside individual
haloes, and vice versa, the description of the model can be
separated into two steps: the halo mass function and the
bias at large scales, and the halo occupation distribution at
small scales.

The large scale distribution of haloes can be described
by the halo number density. In the Press-Schechter ap-
proach (Press & Schechter 1974) the dark matter haloes
are assumed to form by spherical collapse. This, however,
leads to a halo number density that overestimates the abun-
dance of galaxies below the non-linear mass scale. Better
agreement with numerical simulations of hierarchical struc-
ture formation comes from the assumption of ellipsoidal
rather that spherical collapse (Sheth et al. 2001). The num-
ber density of bound objects is generally written as

nh(M, z)dM =
ρ̄

M
f(ν)dν, (10)

where nh(M, z) is the halo mass function which depends on
the halo mass M and redshift z, and ρ̄ is the mean matter
density of the universe at redshift z. Unless explicitly stated
otherwise we use M = M200. The peak height ν is given by

ν =

(

δsc(z)

σ(M, z)

)2

, (11)

with δsc(z) the critical overdensity required for spherical
collapse at redshift z, and σ(M, z) the rms of the density
fluctuation field on the scale R = (3M/4πρ̄)1/3, extrap-
olated to z using linear theory. In the case of ellipsoidal
collapse, f(ν) is given by (Sheth et al. 2001)

f(ν) = A (1 + (aν)−p) ν−1/2e−aν/2, (12)

with a = 0.707, p = 0.3, and A = 0.13683 a constant
that is determined by requiring

∫

f(ν)dν = 1 (i.e. mass
conservation).

How the haloes trace the mass is given by the halo-
to-mass bias, which is defined as the ratio of the power
spectrum of the halo distribution to the power spectrum of
the matter distribution. We use an analytical formula for
the bias as given by Sheth et al. (2001), but incorporate
the adjustments described in Tinker et al. (2005):

b(ν) = 1 +
1√
aδsc

×
[√

a(aν) +
√
ab(aν)1−c −

(aν)c

(aν)c + b(1− c)(1− c/2)

]

,

(13)

with a = 0.707, b = 0.35 and c = 0.80. The scale depen-
dence of the bias is given by

b2(ν, r) = b2(ν)
[1 + 1.17ξm(r)]1.49

[1 + 0.69ξm(r)]2.09
, (14)

where ξm(r) is the matter correlation function, which
in turn is the Fourier transform of the non-linear power
spectrum PNL(k) from Smith et al. (2003), and r is the
distance to the centre of the halo.

To describe how the galaxies and dark matter are dis-
tributed within the haloes, we closely follow the approach
outlined in Guzik & Seljak (2002) and Mandelbaum et al.
(2005b). Galaxies living inside dark matter haloes are
divided into two classes; they are either a central galaxy
located in the central halo, or a satellite galaxy located in
a subhalo inside the central halo. The fraction of satellites
in a certain sample of galaxies is denoted by α. The
number of satellites in a central halo is described by the
halo occupation distribution (HOD). Galaxy formation
simulations (e.g. Zheng et al. 2005; Kravtsov et al. 2004)
show that the HOD is well approximated by a powerlaw
Ns(M) ∝ M ε with ε = 1, which is cut off below a certain
minimal halo mass. Rather than this steep cut off, we
follow Mandelbaum et al. (2005b) and assume a more
gradual transition, and use ε = 2 for halo masses smaller
than Mchar, whilst ε = 1 for halo masses larger than Mchar,
where Mchar = 3Mh. Mh is the typical halo mass of a
certain set of galaxies (for example the galaxies selected
in a luminosity bin). The amplitude is determined by
normalizing to the total number of satellites in the set.
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4.1. Lensing signal from the halo model

We now proceed to explain how the lensing signal is com-
puted. The ensemble averaged tangential shear is the sum
of the signal around central galaxies and satellites, since we
cannot distinguish between them. We compute each contri-
bution separately, starting with the signal around central
galaxies. It is assumed that the central galaxies are located
at the centre of the dark matter haloes. Two terms con-
tribute to the lensing signal around central galaxies: the sig-
nal coming from the halo where the galaxy resides (γ1h

t,cent),

and the signal from nearby haloes (γ2h
t,cent). Hence the total

signal around central galaxies is given by

γt,cent = γ1h
t,cent + γ2h

t,cent. (15)

The density profiles of the central haloes are assumed to
be NFW, which we compute using the mass-concentration
relation from Duffy et al. (2008) given by Equation 7. By
picking a central halo mass we can thus compute the tan-
gential shear of the central halo term directly, as spectro-
scopic redshifts are available for all lenses.

The calculation of γ2h
t,cent requires the power spectrum

describing the correlation between the galaxy in the central
halo and the dark matter of nearby haloes:

P 2h
cent(k,Mh, r) = bg(Mh, r)

PNL(k)

(2π)3

×
∫ Mlim

0
dνf(ν)b(ν, r)ydm(k,M),

(16)

with bg(Mh, r) the bias of the central galaxy, PNL(k) the
non-linear power spectrum from Smith et al. (2003), and
ydm(k,M) the radial Fourier transform of the central halo
density profile divided by mass:

ydm(k,M) =
1

M

∫ r200

0
dr4πr2ρdm(r,M)

sin(kr)

kr
, (17)

which we calculate using the analytical formula given in
Pielorz et al. (2010).

The dark matter profiles of adjacent haloes cannot over-
lap, which is prevented by implementing halo exclusion.
Different approaches to halo exclusion have been used in the
literature. For example, Cacciato et al. (2009) set the two-
halo correlation function to zero below r180, which leads to
a sharp truncation in the halo models. We follow the ap-
proach of Tinker et al. (2005), which leads to a more natu-
ral smooth cut-off: the integral in Equation 16 is cut off for
masses greater than Mlim which is chosen such that the r200
of the central halo does not overlap with the r200 of nearby
haloes: r200(Mh) + r200(Mlim) = r. It should be noted that
this choice, as any other halo exclusion approach, is an ap-
proximation. Ultimately, numerical simulations should be
used to provide improved estimates for P 2h

cent.
The contribution of the satellites to the lensing signal

consists of three terms: the signal from the subhalo where
the satellite resides (γtrunc

t,sat ), the signal from the central halo

in which the subhalo resides (γ1h
t,sat), and the signal from

nearby haloes (γ2h
t,sat). Hence the total signal around satel-

lites is given by

γt,sat = γtrunc
t,sat + γ1h

t,sat + γ2h
t,sat. (18)

First we compute the lensing signal of the subhalo, γtrunc
t,sat ,

following Mandelbaum et al. (2005b). The density profile

is assumed to follow an NFW profile in the inner regions.
The outer regions of the subhalo are tidally stripped of its
dark matter by the central halo. Due to this stripping the
lensing signal is proportional to r−2 at radii larger than the
truncation radius. Based on good agreement with numerical
simulations, Mandelbaum et al. (2005b) chose a truncation
radius of 0.4r200, and we use the same. This choice corre-
sponds to roughly 50% of the dark matter being stripped
from the subhalo.

To compute the lensing signal induced by the halo where
the subhalo resides, we calculate the power spectrum de-
scribing the correlation between the subhalo and the dark
matter profile of the central halo:

P 1h
sat(k,Mh) =

1

(2π)3n̄

∫

dνf(ν)Ns(M,Mh)

×ydm(k,M)yg(k,M),
(19)

with n̄ the mean galaxy number density, which can be de-
termined using n̄ = ρ̄

∫

dνf(ν)Ns(M,Mh)
M , and yg the ra-

dial Fourier transform of the radial distribution of satellites
around the central halo. We assume that the radial distri-
bution of satellites follows an NFW profile with a concen-
tration cg, given by the mass-concentration relation from
Duffy et al. (2008). To asses the sensitivity to the shape of
the radial distribution of the satellites, we also calculate the
γ1h
t,sat term using a cg that is varied by a factor of two. We

find that this change mainly impacts the model signal at
small scales: for a larger (smaller) concentration, the signal
increases (decreases). At scales larger than a few hundred
kpc, the change of the model signal is negligible. When we
fit these adjusted models to the data, we find that the best
fit model parameters do not change significantly. We con-
clude that the signal-to-noise of our data currently does not
enable us to discriminate between halo models with differ-
ent radial distributions of satellite galaxies.

Finally we compute the contribution from nearby haloes
to the lensing signal around satellite galaxies:

P 2h
sat(k,Mh, r) =

PNL(k)

(2π)3

∫ Mlim

0
dνf(ν)b(ν, r)ydm(k,M)

×
ρ̄

n̄

∫

dνf(ν)b(ν, r)
Ns(M,Mh)

M
yg(k,M).

(20)

The three power spectra are converted into their respective
shear signals using Equation 8, and the contributions from
the central galaxies and satellites are combined to yield

γt = (1− α) γt,cent + α γt,sat, (21)

where α is the fraction of satellites of the sample. The
resulting model is compared to the data.

The lens sample is selected to cover a range in an ob-
servable, such as luminosity or stellar mass, as the relation
between the mean observable and the lensing mass is a use-
ful constraint for simulations. The dark matter haloes of the
lenses from such a sample have different masses, however,
and it is therefore important to account for the scatter in
the observable-halo mass relation. If the halo mass distri-
bution is well-known, this can be done by integrating the
models over the distribution of halo masses. Unfortunately,
the distribution is generally not accurately known as the
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We now proceed to explain how the lensing signal is com-
puted. The ensemble averaged tangential shear is the sum
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galaxies. It is assumed that the central galaxies are located
at the centre of the dark matter haloes. Two terms con-
tribute to the lensing signal around central galaxies: the sig-
nal coming from the halo where the galaxy resides (γ1h

t,cent),

and the signal from nearby haloes (γ2h
t,cent). Hence the total

signal around central galaxies is given by
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t,cent + γ2h

t,cent. (15)

The density profiles of the central haloes are assumed to
be NFW, which we compute using the mass-concentration
relation from Duffy et al. (2008) given by Equation 7. By
picking a central halo mass we can thus compute the tan-
gential shear of the central halo term directly, as spectro-
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t,cent requires the power spectrum

describing the correlation between the galaxy in the central
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with bg(Mh, r) the bias of the central galaxy, PNL(k) the
non-linear power spectrum from Smith et al. (2003), and
ydm(k,M) the radial Fourier transform of the central halo
density profile divided by mass:
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which we calculate using the analytical formula given in
Pielorz et al. (2010).

The dark matter profiles of adjacent haloes cannot over-
lap, which is prevented by implementing halo exclusion.
Different approaches to halo exclusion have been used in the
literature. For example, Cacciato et al. (2009) set the two-
halo correlation function to zero below r180, which leads to
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masses greater than Mlim which is chosen such that the r200
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lites is given by

γt,sat = γtrunc
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t,sat. (18)

First we compute the lensing signal of the subhalo, γtrunc
t,sat ,

following Mandelbaum et al. (2005b). The density profile

is assumed to follow an NFW profile in the inner regions.
The outer regions of the subhalo are tidally stripped of its
dark matter by the central halo. Due to this stripping the
lensing signal is proportional to r−2 at radii larger than the
truncation radius. Based on good agreement with numerical
simulations, Mandelbaum et al. (2005b) chose a truncation
radius of 0.4r200, and we use the same. This choice corre-
sponds to roughly 50% of the dark matter being stripped
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gential shear of the central halo term directly, as spectro-
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which we calculate using the analytical formula given in
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lap, which is prevented by implementing halo exclusion.
Different approaches to halo exclusion have been used in the
literature. For example, Cacciato et al. (2009) set the two-
halo correlation function to zero below r180, which leads to
a sharp truncation in the halo models. We follow the ap-
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masses greater than Mlim which is chosen such that the r200
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haloes: r200(Mh) + r200(Mlim) = r. It should be noted that
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fit model parameters do not change significantly. We con-
clude that the signal-to-noise of our data currently does not
enable us to discriminate between halo models with differ-
ent radial distributions of satellite galaxies.

Finally we compute the contribution from nearby haloes
to the lensing signal around satellite galaxies:

P 2h
sat(k,Mh, r) =

PNL(k)

(2π)3

∫ Mlim

0
dνf(ν)b(ν, r)ydm(k,M)

×
ρ̄

n̄

∫

dνf(ν)b(ν, r)
Ns(M,Mh)

M
yg(k,M).

(20)

The three power spectra are converted into their respective
shear signals using Equation 8, and the contributions from
the central galaxies and satellites are combined to yield

γt = (1− α) γt,cent + α γt,sat, (21)

where α is the fraction of satellites of the sample. The
resulting model is compared to the data.

The lens sample is selected to cover a range in an ob-
servable, such as luminosity or stellar mass, as the relation
between the mean observable and the lensing mass is a use-
ful constraint for simulations. The dark matter haloes of the
lenses from such a sample have different masses, however,
and it is therefore important to account for the scatter in
the observable-halo mass relation. If the halo mass distri-
bution is well-known, this can be done by integrating the
models over the distribution of halo masses. Unfortunately,
the distribution is generally not accurately known as the
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4.1. Lensing signal from the halo model

We now proceed to explain how the lensing signal is com-
puted. The ensemble averaged tangential shear is the sum
of the signal around central galaxies and satellites, since we
cannot distinguish between them. We compute each contri-
bution separately, starting with the signal around central
galaxies. It is assumed that the central galaxies are located
at the centre of the dark matter haloes. Two terms con-
tribute to the lensing signal around central galaxies: the sig-
nal coming from the halo where the galaxy resides (γ1h

t,cent),

and the signal from nearby haloes (γ2h
t,cent). Hence the total

signal around central galaxies is given by

γt,cent = γ1h
t,cent + γ2h

t,cent. (15)

The density profiles of the central haloes are assumed to
be NFW, which we compute using the mass-concentration
relation from Duffy et al. (2008) given by Equation 7. By
picking a central halo mass we can thus compute the tan-
gential shear of the central halo term directly, as spectro-
scopic redshifts are available for all lenses.

The calculation of γ2h
t,cent requires the power spectrum

describing the correlation between the galaxy in the central
halo and the dark matter of nearby haloes:

P 2h
cent(k,Mh, r) = bg(Mh, r)

PNL(k)

(2π)3

×
∫ Mlim

0
dνf(ν)b(ν, r)ydm(k,M),

(16)

with bg(Mh, r) the bias of the central galaxy, PNL(k) the
non-linear power spectrum from Smith et al. (2003), and
ydm(k,M) the radial Fourier transform of the central halo
density profile divided by mass:

ydm(k,M) =
1

M

∫ r200

0
dr4πr2ρdm(r,M)

sin(kr)

kr
, (17)

which we calculate using the analytical formula given in
Pielorz et al. (2010).

The dark matter profiles of adjacent haloes cannot over-
lap, which is prevented by implementing halo exclusion.
Different approaches to halo exclusion have been used in the
literature. For example, Cacciato et al. (2009) set the two-
halo correlation function to zero below r180, which leads to
a sharp truncation in the halo models. We follow the ap-
proach of Tinker et al. (2005), which leads to a more natu-
ral smooth cut-off: the integral in Equation 16 is cut off for
masses greater than Mlim which is chosen such that the r200
of the central halo does not overlap with the r200 of nearby
haloes: r200(Mh) + r200(Mlim) = r. It should be noted that
this choice, as any other halo exclusion approach, is an ap-
proximation. Ultimately, numerical simulations should be
used to provide improved estimates for P 2h

cent.
The contribution of the satellites to the lensing signal

consists of three terms: the signal from the subhalo where
the satellite resides (γtrunc

t,sat ), the signal from the central halo

in which the subhalo resides (γ1h
t,sat), and the signal from

nearby haloes (γ2h
t,sat). Hence the total signal around satel-

lites is given by

γt,sat = γtrunc
t,sat + γ1h

t,sat + γ2h
t,sat. (18)

First we compute the lensing signal of the subhalo, γtrunc
t,sat ,

following Mandelbaum et al. (2005b). The density profile

is assumed to follow an NFW profile in the inner regions.
The outer regions of the subhalo are tidally stripped of its
dark matter by the central halo. Due to this stripping the
lensing signal is proportional to r−2 at radii larger than the
truncation radius. Based on good agreement with numerical
simulations, Mandelbaum et al. (2005b) chose a truncation
radius of 0.4r200, and we use the same. This choice corre-
sponds to roughly 50% of the dark matter being stripped
from the subhalo.

To compute the lensing signal induced by the halo where
the subhalo resides, we calculate the power spectrum de-
scribing the correlation between the subhalo and the dark
matter profile of the central halo:

P 1h
sat(k,Mh) =

1

(2π)3n̄

∫

dνf(ν)Ns(M,Mh)

×ydm(k,M)yg(k,M),
(19)

with n̄ the mean galaxy number density, which can be de-
termined using n̄ = ρ̄

∫

dνf(ν)Ns(M,Mh)
M , and yg the ra-

dial Fourier transform of the radial distribution of satellites
around the central halo. We assume that the radial distri-
bution of satellites follows an NFW profile with a concen-
tration cg, given by the mass-concentration relation from
Duffy et al. (2008). To asses the sensitivity to the shape of
the radial distribution of the satellites, we also calculate the
γ1h
t,sat term using a cg that is varied by a factor of two. We

find that this change mainly impacts the model signal at
small scales: for a larger (smaller) concentration, the signal
increases (decreases). At scales larger than a few hundred
kpc, the change of the model signal is negligible. When we
fit these adjusted models to the data, we find that the best
fit model parameters do not change significantly. We con-
clude that the signal-to-noise of our data currently does not
enable us to discriminate between halo models with differ-
ent radial distributions of satellite galaxies.

Finally we compute the contribution from nearby haloes
to the lensing signal around satellite galaxies:

P 2h
sat(k,Mh, r) =

PNL(k)

(2π)3

∫ Mlim

0
dνf(ν)b(ν, r)ydm(k,M)

×
ρ̄

n̄

∫

dνf(ν)b(ν, r)
Ns(M,Mh)

M
yg(k,M).

(20)

The three power spectra are converted into their respective
shear signals using Equation 8, and the contributions from
the central galaxies and satellites are combined to yield

γt = (1− α) γt,cent + α γt,sat, (21)

where α is the fraction of satellites of the sample. The
resulting model is compared to the data.

The lens sample is selected to cover a range in an ob-
servable, such as luminosity or stellar mass, as the relation
between the mean observable and the lensing mass is a use-
ful constraint for simulations. The dark matter haloes of the
lenses from such a sample have different masses, however,
and it is therefore important to account for the scatter in
the observable-halo mass relation. If the halo mass distri-
bution is well-known, this can be done by integrating the
models over the distribution of halo masses. Unfortunately,
the distribution is generally not accurately known as the
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4.1. Lensing signal from the halo model

We now proceed to explain how the lensing signal is com-
puted. The ensemble averaged tangential shear is the sum
of the signal around central galaxies and satellites, since we
cannot distinguish between them. We compute each contri-
bution separately, starting with the signal around central
galaxies. It is assumed that the central galaxies are located
at the centre of the dark matter haloes. Two terms con-
tribute to the lensing signal around central galaxies: the sig-
nal coming from the halo where the galaxy resides (γ1h

t,cent),

and the signal from nearby haloes (γ2h
t,cent). Hence the total

signal around central galaxies is given by

γt,cent = γ1h
t,cent + γ2h

t,cent. (15)

The density profiles of the central haloes are assumed to
be NFW, which we compute using the mass-concentration
relation from Duffy et al. (2008) given by Equation 7. By
picking a central halo mass we can thus compute the tan-
gential shear of the central halo term directly, as spectro-
scopic redshifts are available for all lenses.

The calculation of γ2h
t,cent requires the power spectrum

describing the correlation between the galaxy in the central
halo and the dark matter of nearby haloes:

P 2h
cent(k,Mh, r) = bg(Mh, r)

PNL(k)

(2π)3

×
∫ Mlim

0
dνf(ν)b(ν, r)ydm(k,M),

(16)

with bg(Mh, r) the bias of the central galaxy, PNL(k) the
non-linear power spectrum from Smith et al. (2003), and
ydm(k,M) the radial Fourier transform of the central halo
density profile divided by mass:

ydm(k,M) =
1

M

∫ r200

0
dr4πr2ρdm(r,M)

sin(kr)

kr
, (17)

which we calculate using the analytical formula given in
Pielorz et al. (2010).

The dark matter profiles of adjacent haloes cannot over-
lap, which is prevented by implementing halo exclusion.
Different approaches to halo exclusion have been used in the
literature. For example, Cacciato et al. (2009) set the two-
halo correlation function to zero below r180, which leads to
a sharp truncation in the halo models. We follow the ap-
proach of Tinker et al. (2005), which leads to a more natu-
ral smooth cut-off: the integral in Equation 16 is cut off for
masses greater than Mlim which is chosen such that the r200
of the central halo does not overlap with the r200 of nearby
haloes: r200(Mh) + r200(Mlim) = r. It should be noted that
this choice, as any other halo exclusion approach, is an ap-
proximation. Ultimately, numerical simulations should be
used to provide improved estimates for P 2h

cent.
The contribution of the satellites to the lensing signal

consists of three terms: the signal from the subhalo where
the satellite resides (γtrunc

t,sat ), the signal from the central halo

in which the subhalo resides (γ1h
t,sat), and the signal from

nearby haloes (γ2h
t,sat). Hence the total signal around satel-

lites is given by

γt,sat = γtrunc
t,sat + γ1h

t,sat + γ2h
t,sat. (18)

First we compute the lensing signal of the subhalo, γtrunc
t,sat ,

following Mandelbaum et al. (2005b). The density profile

is assumed to follow an NFW profile in the inner regions.
The outer regions of the subhalo are tidally stripped of its
dark matter by the central halo. Due to this stripping the
lensing signal is proportional to r−2 at radii larger than the
truncation radius. Based on good agreement with numerical
simulations, Mandelbaum et al. (2005b) chose a truncation
radius of 0.4r200, and we use the same. This choice corre-
sponds to roughly 50% of the dark matter being stripped
from the subhalo.

To compute the lensing signal induced by the halo where
the subhalo resides, we calculate the power spectrum de-
scribing the correlation between the subhalo and the dark
matter profile of the central halo:

P 1h
sat(k,Mh) =

1

(2π)3n̄

∫

dνf(ν)Ns(M,Mh)

×ydm(k,M)yg(k,M),
(19)

with n̄ the mean galaxy number density, which can be de-
termined using n̄ = ρ̄

∫

dνf(ν)Ns(M,Mh)
M , and yg the ra-

dial Fourier transform of the radial distribution of satellites
around the central halo. We assume that the radial distri-
bution of satellites follows an NFW profile with a concen-
tration cg, given by the mass-concentration relation from
Duffy et al. (2008). To asses the sensitivity to the shape of
the radial distribution of the satellites, we also calculate the
γ1h
t,sat term using a cg that is varied by a factor of two. We

find that this change mainly impacts the model signal at
small scales: for a larger (smaller) concentration, the signal
increases (decreases). At scales larger than a few hundred
kpc, the change of the model signal is negligible. When we
fit these adjusted models to the data, we find that the best
fit model parameters do not change significantly. We con-
clude that the signal-to-noise of our data currently does not
enable us to discriminate between halo models with differ-
ent radial distributions of satellite galaxies.

Finally we compute the contribution from nearby haloes
to the lensing signal around satellite galaxies:

P 2h
sat(k,Mh, r) =

PNL(k)

(2π)3

∫ Mlim

0
dνf(ν)b(ν, r)ydm(k,M)

×
ρ̄

n̄

∫

dνf(ν)b(ν, r)
Ns(M,Mh)

M
yg(k,M).

(20)

The three power spectra are converted into their respective
shear signals using Equation 8, and the contributions from
the central galaxies and satellites are combined to yield

γt = (1− α) γt,cent + α γt,sat, (21)

where α is the fraction of satellites of the sample. The
resulting model is compared to the data.

The lens sample is selected to cover a range in an ob-
servable, such as luminosity or stellar mass, as the relation
between the mean observable and the lensing mass is a use-
ful constraint for simulations. The dark matter haloes of the
lenses from such a sample have different masses, however,
and it is therefore important to account for the scatter in
the observable-halo mass relation. If the halo mass distri-
bution is well-known, this can be done by integrating the
models over the distribution of halo masses. Unfortunately,
the distribution is generally not accurately known as the
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4.1. Lensing signal from the halo model

We now proceed to explain how the lensing signal is com-
puted. The ensemble averaged tangential shear is the sum
of the signal around central galaxies and satellites, since we
cannot distinguish between them. We compute each contri-
bution separately, starting with the signal around central
galaxies. It is assumed that the central galaxies are located
at the centre of the dark matter haloes. Two terms con-
tribute to the lensing signal around central galaxies: the sig-
nal coming from the halo where the galaxy resides (γ1h

t,cent),

and the signal from nearby haloes (γ2h
t,cent). Hence the total

signal around central galaxies is given by

γt,cent = γ1h
t,cent + γ2h

t,cent. (15)

The density profiles of the central haloes are assumed to
be NFW, which we compute using the mass-concentration
relation from Duffy et al. (2008) given by Equation 7. By
picking a central halo mass we can thus compute the tan-
gential shear of the central halo term directly, as spectro-
scopic redshifts are available for all lenses.

The calculation of γ2h
t,cent requires the power spectrum

describing the correlation between the galaxy in the central
halo and the dark matter of nearby haloes:

P 2h
cent(k,Mh, r) = bg(Mh, r)

PNL(k)

(2π)3

×
∫ Mlim

0
dνf(ν)b(ν, r)ydm(k,M),

(16)

with bg(Mh, r) the bias of the central galaxy, PNL(k) the
non-linear power spectrum from Smith et al. (2003), and
ydm(k,M) the radial Fourier transform of the central halo
density profile divided by mass:

ydm(k,M) =
1

M

∫ r200

0
dr4πr2ρdm(r,M)

sin(kr)

kr
, (17)

which we calculate using the analytical formula given in
Pielorz et al. (2010).

The dark matter profiles of adjacent haloes cannot over-
lap, which is prevented by implementing halo exclusion.
Different approaches to halo exclusion have been used in the
literature. For example, Cacciato et al. (2009) set the two-
halo correlation function to zero below r180, which leads to
a sharp truncation in the halo models. We follow the ap-
proach of Tinker et al. (2005), which leads to a more natu-
ral smooth cut-off: the integral in Equation 16 is cut off for
masses greater than Mlim which is chosen such that the r200
of the central halo does not overlap with the r200 of nearby
haloes: r200(Mh) + r200(Mlim) = r. It should be noted that
this choice, as any other halo exclusion approach, is an ap-
proximation. Ultimately, numerical simulations should be
used to provide improved estimates for P 2h

cent.
The contribution of the satellites to the lensing signal

consists of three terms: the signal from the subhalo where
the satellite resides (γtrunc

t,sat ), the signal from the central halo

in which the subhalo resides (γ1h
t,sat), and the signal from

nearby haloes (γ2h
t,sat). Hence the total signal around satel-

lites is given by

γt,sat = γtrunc
t,sat + γ1h

t,sat + γ2h
t,sat. (18)

First we compute the lensing signal of the subhalo, γtrunc
t,sat ,

following Mandelbaum et al. (2005b). The density profile

is assumed to follow an NFW profile in the inner regions.
The outer regions of the subhalo are tidally stripped of its
dark matter by the central halo. Due to this stripping the
lensing signal is proportional to r−2 at radii larger than the
truncation radius. Based on good agreement with numerical
simulations, Mandelbaum et al. (2005b) chose a truncation
radius of 0.4r200, and we use the same. This choice corre-
sponds to roughly 50% of the dark matter being stripped
from the subhalo.

To compute the lensing signal induced by the halo where
the subhalo resides, we calculate the power spectrum de-
scribing the correlation between the subhalo and the dark
matter profile of the central halo:

P 1h
sat(k,Mh) =

1

(2π)3n̄

∫

dνf(ν)Ns(M,Mh)

×ydm(k,M)yg(k,M),
(19)

with n̄ the mean galaxy number density, which can be de-
termined using n̄ = ρ̄

∫

dνf(ν)Ns(M,Mh)
M , and yg the ra-

dial Fourier transform of the radial distribution of satellites
around the central halo. We assume that the radial distri-
bution of satellites follows an NFW profile with a concen-
tration cg, given by the mass-concentration relation from
Duffy et al. (2008). To asses the sensitivity to the shape of
the radial distribution of the satellites, we also calculate the
γ1h
t,sat term using a cg that is varied by a factor of two. We

find that this change mainly impacts the model signal at
small scales: for a larger (smaller) concentration, the signal
increases (decreases). At scales larger than a few hundred
kpc, the change of the model signal is negligible. When we
fit these adjusted models to the data, we find that the best
fit model parameters do not change significantly. We con-
clude that the signal-to-noise of our data currently does not
enable us to discriminate between halo models with differ-
ent radial distributions of satellite galaxies.

Finally we compute the contribution from nearby haloes
to the lensing signal around satellite galaxies:

P 2h
sat(k,Mh, r) =

PNL(k)

(2π)3

∫ Mlim

0
dνf(ν)b(ν, r)ydm(k,M)

×
ρ̄

n̄

∫

dνf(ν)b(ν, r)
Ns(M,Mh)

M
yg(k,M).

(20)

The three power spectra are converted into their respective
shear signals using Equation 8, and the contributions from
the central galaxies and satellites are combined to yield

γt = (1− α) γt,cent + α γt,sat, (21)

where α is the fraction of satellites of the sample. The
resulting model is compared to the data.

The lens sample is selected to cover a range in an ob-
servable, such as luminosity or stellar mass, as the relation
between the mean observable and the lensing mass is a use-
ful constraint for simulations. The dark matter haloes of the
lenses from such a sample have different masses, however,
and it is therefore important to account for the scatter in
the observable-halo mass relation. If the halo mass distri-
bution is well-known, this can be done by integrating the
models over the distribution of halo masses. Unfortunately,
the distribution is generally not accurately known as the

9

6 CFHTLenS

Figure 3. Illustration of the halo model used in this paper. Here we have
used a halo mass of M200 = 1012 h−1

70 M", a stellar mass of M∗ =

5× 1010 h−1
70 M" and a satellite fraction of α = 0.2. The lens redshift is

zlens = 0.5. Dark purple lines represent quantities tied to galaxies which
are centrally located in their haloes while light green lines correspond to
satellite quantities. The dark purple dash-dotted line is the baryonic com-
ponent, the light green dash-dotted line is the stripped satellite halo, dashed
lines are the 1-halo components induced by the main dark matter halo and
dotted lines are the 2-halo components originating from nearby haloes.

plete circular averages and will be present in the observed stacked
lensing signal as well. Because of our high sampling of this ran-
dom points signal, we can correct the observed signal measured in
each field by subtracting the signal around the random lenses. This
random points test is discussed in more detail in Mandelbaum et al.
(2005a).

3.2 The halo model

To accurately model the weak lensing signal observed around
galaxy-size haloes, we have to account for the fact that galaxies
generally reside in clustered environments. In this work we do this
by employing the halo model software first introduced in VU11.
For full details on the exact implementation we refer to VU11; here
we give a qualitative overview.

Our halo model builds on work presented in Guzik & Sel-
jak (2002) and Mandelbaum et al. (2005b), where the full lensing
signal is modelled by accounting for the central galaxies and their
satellites separately. We assume that a fraction (1−α) of our galaxy
sample reside at the centre of a dark matter halo, and the remaining
objects are satellite galaxies surrounded by subhaloes which in turn
reside inside a larger halo. In this context α is the satellite fraction
of a given sample.

The lensing signal induced by central galaxies consists of two
components: the signal arising from the main dark matter halo (the
1-halo term ∆Σ1h) and the contribution from neighbouring haloes
(the 2-halo term ∆Σ2h). The two components simply add to give
the lensing signal due to central galaxies:

∆Σcent = ∆Σ1h
cent +∆Σ2h

cent . (6)

In our model we assume that all main dark matter haloes are well
represented by an NFW density profile (Navarro, Frenk, & White
1996) with a mass-concentration relationship as given by Duffy
et al. (2008). The halo model parameters resulting from an analy-
sis such as ours (see, for example, Section 4) are not very sensitive
to the exact halo concentration, however, as discussed in VU11. To

compute the 2-halo term, we assume that the dependence of the
galaxy bias on mass follows the prescription from Sheth et al.
(2001), incorporating the adjustments described in Tinker et al.
(2005).

We model satellite galaxies as residing in subhaloes whose
spatial distribution follows the dark matter distribution of the
main halo. The subhaloes have been tidally stripped of dark
matter in the outer regions. Following Mandelbaum et al. (2005b)
we adopt a truncated NFW profile, choosing a truncation radius of
0.4r200 beyond which the lensing signal is proportional to r−2,
where r is the physical distance from the lens. This choice results
in about 50% of the subhalo dark matter being stripped, and we
acquire a satellite term which supplies signal on small scales. Thus
satellite galaxies add three further components to the total lensing
signal: the contribution from the stripped subhalo (∆Σstrip), the
satellite 1-halo term which is off-centred since the satellite galaxy is
not at the centre of the main halo, and the 2-halo term from nearby
haloes. Just as for the central galaxies, the three terms add to give
the satellite lensing signal:

∆Σsat = ∆Σstrip
sat +∆Σ1h

sat +∆Σ2h
sat . (7)

There is an additional contribution to the lensing signal, not
yet considered in the above equations. This is the signal induced by
the lens baryons (∆Σbar). This last term is a refinement to the halo
model presented in VU11, necessary since weak lensing measures
the total mass of a system and not just the dark matter mass. Fol-
lowing Leauthaud et al. (2011) we model the baryonic component
as a point source with a mass equal to the mean stellar mass of the
lenses in the sample:

∆Σbar =
〈M∗〉
πr2

. (8)

This term is fixed by the stellar mass of the lens, and we do not
fit it. Note that we ignore the baryonic term for neighbouring
haloes, but their contribution is negligible.

Finally, to obtain the total lensing signal of a galaxy sample
of which a fraction α are satellites we combine the baryon, central
and satellite galaxy signals, applying the appropriate proportions:

∆Σ = ∆Σbar + (1− α)∆Σcent + α∆Σsat . (9)

All components of our halo model are illustrated in Figure 3. In this
example the dark matter halo mass is M200 = 1 × 1012 h−1

70 M",
the stellar mass is M∗ = 5 × 1010 h−1

70 M", the satellite fraction
is α = 0.2, the lens redshift is zlens = 0.5 and Dls/Ds = 0.5. On
small scales the 1-halo components are prominent, while on large
scales the 2-halo components dominate.

4 LUMINOSITY TREND

The luminosity of a galaxy is an easily obtainable indicator of its
baryonic content. To investigate the relation between dark matter
halo mass and galaxy mass we therefore split the lenses into 8 bins
according to MegaCam absolute r′-band magnitudes as detailed in
Table 1 and illustrated in Figure 4. The choice of bin limits follow
the lens selection in VU11. This choice will allow us to compare
our results to the results shown in VU11 since the RCS2 data have
been obtained using the same filters and telescope. We also split
each luminosity bin into red and blue subsamples as described in
Section 2.1 and proceed to measure the galaxy-galaxy lensing sig-
nal for each sample, with errors obtained via bootstrapping over the
sources. We then fit the signal between 50h−1

70 kpc and 2h−1
70 Mpc
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Figure D1. Galaxy-galaxy lensing signal around red lenses which have been split into stellar mass bins according to Table 3, and modelled using the halo
model described in Section 3.2. The black dots are the measured differential surface density, ∆Σ, and the black line is the best-fit halo model with the separate
components displayed using the same convention as in Figure 3. Grey triangles represent negative points that are included unaltered in the model fitting
procedure, but that have here been moved up to positive values as a reference. The dotted error bars are the unaltered error bars belonging to the negative
points. The grey squares represent distance bins containing no objects.

Figure D2. Galaxy-galaxy lensing signal around blue lenses which have been split into stellar mass bins according to Table 3, and modelled using the halo
model described in Section 3.2. The black dots are the measured differential surface density, ∆Σ, and the black line is the best-fit halo model with the separate
components displayed using the same convention as in Figure 3. Grey triangles represent negative points that are included unaltered in the model fitting
procedure, but that have here been moved up to positive values as a reference. The dotted error bars are the unaltered error bars belonging to the negative
points. The grey squares represent distance bins containing no objects.

c© 2012 RAS, MNRAS 000, 1–24
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Red lenses
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Figure 9. Galaxy-galaxy lensing signal around lenses which have been split into stellar mass bins according to Table 3, modelled using the halo model
described in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, ∆Σ, of the red (blue) lenses, and the solid line
is the best-fit halo model. Triangles represent negative points that are included unaltered in the model fitting procedure, but that have here been moved up to
positive values as a reference. The dotted error bars are the unaltered error bars belonging to the negative points. The squares represent distance bins containing
no objects. For a detailed decomposition into the halo model components, please refer to Appendix D.

Table 3. Details of the stellar mass bins. (1) Stellar mass range [M!]; (2)
Number of lenses; (3) Mean redshift; (4) Fraction of lenses that are blue.

Sample log10 M∗(1) nlens
(2) 〈z〉(3) fblue(4)

S1 [9.00,9.50] 252830 0.29 0.978
S2 [9.50,10.00] 155872 0.30 0.818
S3 [10.00,10.50] 96818 0.30 0.387
S4 [10.50,11.00] 72710 0.30 0.045
S5 [11.00,11.25] 14970 0.30 0.003
S6 [11.25,11.50] 5024 0.30 0.001
S7 [11.50,11.75] 824 0.30 0.000
S8 [11.75,12.00] 890 0.30 0.000

as before, and fit on scales between 50h−1
70 kpc and 2h−1

70 Mpc
using our halo model with the halo mass M200 and the satellite
fraction α as free parameters. Similarly to the previous section, the
results are shown in Figure 9 for all stellar mass bins and for each
red and blue lens sample, with details of the fitted halo model pa-
rameters quoted in Table 4. There are no blue lenses available in the
two highest stellar mass bins, and in bins S5 and S6 the number of
blue lenses is too low to constrain the signal. We therefore remove
them from our analysis in the following sections.

The mean mass in each bin increases with increasing stellar
mass as expected, resulting in an increased signal amplitude. Simi-
lar to the luminosity samples in the previous section, the red lower-
mass bins display a bump at scales of ∼ 0.5h−1 Mpc. Here the
lowest bins contain less massive galaxies than the lowest luminos-

ity bins and the bump is more pronounced, indicating that most of
the galaxies in these low-mass samples are satellite galaxies. The
contribution from nearby haloes is again clearly visible in the best-
fit halo model of the lower-mass blue samples, though as noted in
Section 4, this may be due to an inaccurate galaxy bias description
for blue lenses.

5.1 Stellar mass scaling relations

Just as for the luminosity bins, we have to correct the halo mass
estimates for two scatter effects: one due to errors in the stellar
mass estimates and another due to halo masses not being evenly
distributed within a given bin. We describe the correction for these
effects in Appendix A3. The best-fit halo masses, once corrected
for these scatter effects, and satellite fractions for each stellar mass
bin are shown in Figure 10. The satellite fraction α as a function of
stellar mass is shown in the lower panel of Figure 10 for both red
and blue lenses. In the lower-mass bins, nearly all red lenses are
satellites while for higher masses, nearly all are located centrally in
their halo as expected. As discussed in Section 4.2, this fraction is
difficult to constrain for high masses due to the shape of the satellite
terms. We therefore apply the same uniform satellite fraction prior
to the high-stellar mass bins as we did to the high-luminosity bins,
allowing a maximum α of 20%. The overall low satellite fraction
for blue galaxies, suggesting together with low large-scale signal
that most blue galaxies are isolated, is consistent with the luminos-
ity results.

It is clear that the relation between dark matter halo and stellar
mass is different for red and blue lenses. To quantify the difference,

c© 2012 RAS, MNRAS 000, 1–24
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Table 4. Results from the halo model fit for the stellar mass bins. (1) Mean luminosity for red lenses [1010 h−2
70 L"]; (2) Mean stellar mass for red lenses

[1010 h−1
70 M"]; (3) Scatter-corrected best-fit mean halo mass for red lenses [1011 h−1

70 M"]; (4) Best-fit satellite fraction for red lenses; (5) Mean lumi-
nosity for blue lenses [1010 h−2

70 L"]; (6) Mean stellar mass for blue lenses [1010 h−1
70 M"]; (7) Scatter-corrected best-fit mean halo mass for blue lenses

[1011 h−1
70 M"]; (8) Best-fit satellite fraction for blue lenses. The fitted parameters are quoted with their 1σ errors. Note that the red results from the S1 and

S2 bins, and the blue results from the S5 and S6 bins, are not used for fitting the power law relation in Section 5.1.

Sample 〈Lred
r 〉(1) 〈Mred

∗ 〉(2) Mred
h

(3) αred(4) 〈Lblue
r 〉(5) 〈Mblue

∗ 〉(6) Mblue
h

(7) αblue(8)

S1 0.21 0.23 3.34+1.38
−1.03 1.00+0.00

−0.02 0.41 0.18 1.84+0.48
−0.41 0.04+0.01

−0.01

S2 0.43 0.66 2.72+1.59
−1.39 0.85+0.08

−0.06 1.11 0.54 3.31+0.67
−0.56 0.00+0.01

−0.00

S3 1.06 1.96 4.71+1.36
−1.05 0.48+0.03

−0.03 2.87 1.59 7.88+2.27
−1.90 0.05+0.03

−0.03

S4 2.49 5.65 19.7+2.40
−1.73 0.31+0.02

−0.03 7.12 4.30 18.3+8.15
−7.27 0.00+0.04

−0.00

S5 5.43 13.0 63.4+9.39
−9.44 0.28+0.06

−0.05 16.6 12.0 — —
S6 9.00 22.6 113+26.1

−23.3 0.28+0.09
−0.09 17.9 21.2 — —

S7 14.3 38.5 381+66.6
−56.7 0.20+0.00

−0.06 — — — —
S8 19.0 62.2 249+335

−214 0.00+0.20
−0.00 — — — —

Figure 10. Satellite fraction α and halo mass M200 as a function of stellar
mass. Dark purple (light green) dots represent the results for red (blue) lens
galaxies. Open circles show the points that have been excluded from the
power law fit because of a high satellite fraction. The dotted line in the
lower panel shows the α prior applied to the highest-stellar mass bins.

we fit a power law to the lensing signals in each bin simultaneously,
similarly to our treatment of the luminosity bins in the previous
section. The form of the power law is

M200 = M0,M

(
M∗

Mfid

)βM

(11)

with Mfid = 2 × 1011 h−1
70 M" a scaling factor chosen to be the

stellar mass of a fiducial galaxy as in VU11. We note here that for
the lowest red stellar mass bins, though the halo model fits the data
very well (see Figure 9), the sample consists of nearly 100% satel-
lite galaxies as mentioned above. The central halo mass associated
with these lenses is therefore effectively inferred from the satellite
term, and thus constrained indirectly by the halo model. The
modeling of the satellites is somewhat ad hoc and we therefore
exclude the two lowest stellar mass bins from our analysis.

Figure 11. Constraints on the power law fits shown in Figure 10. In dark
purple (light green) we show the constraints on the fit for red (blue) lenses,
with lines representing the 67.8%, 95.4% and 99.7% confidence limits and
stars representing the best-fit value.

The resulting best-fit values for red lenses are
M0,M = 1.02± 0.06× 1013 h−1

70 M" and βM = 1.40± 0.06,
and for blue lenses M0,M = 0.45+0.08

−0.07 × 1013 h−1
70 M" and

βM = 0.69± 0.05. We show the constraints and best-fit values in
Figure 11. The red lenses are clearly better constrained than the
blue due to the stronger signal generated by these generally more
massive galaxies. We note here that due to a lack of massive blue
lenses in our analysis, the two galaxy type results probe different
stellar mass ranges. The blue relation is limited to the low-stellar
mass end only while the red relation is constrained mostly at
higher stellar masses.

The baryon fraction, M∗/M200, is fairly constant between
stellar mass bins though it shows a minor tendency to decrease for
red lenses from 0.042 for S3 to 0.010 for S7. For blue lenses it con-
versely shows a slight increase from 0.010 for S1 to 0.023 for S4.
These numbers are indicators of the baryon conversion efficiency,

c© 2012 RAS, MNRAS 000, 1–24
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Table 2. Results from the halo model fit for the luminosity bins. (1) Mean luminosity for red lenses [1010 h−2
70 L"]; (2) Mean stellar mass for red lenses

[1010 h−1
70 M"]; (3) Scatter-corrected best-fit halo mass for red lenses [1011 h−1

70 M"]; (4) Best-fit satellite fraction for red lenses; (5) Mean luminosity for
blue lenses [1010 h−2

70 L"]; (6) Mean stellar mass for blue lenses [1010 h−1
70 M"]; (7) Scatter-corrected best-fit halo mass for blue lenses [1011 h−1

70 M"];
(8) Best-fit satellite fraction for blue lenses. The fitted parameters are quoted with their 1σ errors. Note that the blue results from the L7 and L8 bins, are not
used for fitting the power law relation in Section 4.1.

Sample 〈Lred
r 〉(1) 〈Mred

∗ 〉(2) Mred
h

(3) αred(4) 〈Lblue
r 〉(5) 〈Mblue

∗ 〉(6) Mblue
h

(7) αblue(8)

L1 0.92 1.84 3.72+1.07
−0.90 0.52+0.03

−0.04 1.08 0.50 3.61+0.63
−0.61 0.00+0.01

−0.00

L2 1.76 3.73 8.91+2.05
−1.67 0.36+0.04

−0.04 2.23 1.10 2.69+1.57
−1.31 0.05+0.04

−0.04

L3 2.77 5.98 16.9+2.96
−2.52 0.30+0.04

−0.03 3.53 1.83 9.72+2.52
−2.35 0.00+0.04

−0.00

L4 4.32 9.35 36.3+6.35
−4.69 0.19+0.04

−0.04 5.50 2.99 15.9+5.06
−5.64 0.00+0.08

−0.00

L5 6.76 15.0 63.4+7.74
−5.58 0.20+0.00

−0.02 8.48 4.67 17.2+12.0
−9.33 0.00+0.10

−0.00

L6 10.5 23.9 123+15.0
−13.4 0.20+0.00

−0.04 13.7 7.92 24.3+32.6
−22.7 0.00+0.20

−0.00

L7 16.5 36.3 369+64.5
−102 0.03+0.17

−0.03 20.9 11.7 — —
L8 25.4 19.1 785+298

−147 0.20+0.00
−0.20 36.6 6.49 — —

Figure 4. r′-band absolute magnitude distribution in the CFHTLenS cata-
logues for lenses with redshifts 0.2 ! zlens ! 0.4 (black solid histogram).
The distribution of red (blue) lenses is shown in dotted dark purple (dot-
dashed light green). Our lens bins are marked with vertical lines.

4.1 Luminosity scaling relations

Before determining the relation between halo mass and luminosity
we have to correct our raw halo mass estimates for two systematic
effects. Firstly, we rely on photometric redshift estimates which
have errors. We can therefore not be certain that a lens which is
thought to be at a certain redshift is actually at that redshift. If the
redshift is in fact different, then the derived luminosity will also be
different which means that the lens may have been placed in the
wrong bin. Though the lenses can scatter randomly according to
their individual redshift errors, the net effect will be to scatter lenses
from bins with higher abundances to those with lower abundances.
The measured halo mass will therefore be biased. To correct for
this effect we create mock lens catalogues and allow the objects to
scatter according to their redshift error distributions, as described
in more detail in Appendix A2. Secondly, the halo masses in a

Figure 6. Satellite fraction α and bias-corrected halo mass M200 as a func-
tion of r′-band luminosity. Dark purple (light green) dots represent the re-
sults for red (blue) lens galaxies, and the dash-dotted lines show the power
law scaling relations fit to the galaxy-galaxy lensing signal (rather than the
points shown) as described in the text. The dotted line in the lower panel
shows the α prior applied to the highest-luminosity bins.

given luminosity bin will not be evenly distributed, which means
that the measured halo mass does not necessarily correspond to the
mean halo mass; the correction for this effect is also detailed in Ap-
pendix A2. We then obtain a correction factor which we apply to
our halo masses.

The estimated halo masses for all luminosity bins, corrected
for the above scatter effects, are shown as a function of luminosity
in the top panel of Figure 6. Red lenses display a steeper relation-
ship between halo mass and luminosity than blue lenses, and the
higher luminosity bins contain too few blue lenses to adequately
constrain the mass. Following VU11, we fit a power law of the
form

M200 = M0,L

(
L
Lfid

)βL

(10)
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Table B.1. The values of σmh
assigned to the luminosity

and stellar mass bins, and the correction factors fcorr we
apply to convert the measured lensing mass into the mean
halo mass.

Sample σmh
(early) fcorr(early) σmh

(late) fcorr(late)

L1 0.20 1.07 0.25 1.10
L2 0.25 1.11 0.29 1.14
L3 0.30 1.17 0.30 1.15
L4 0.33 1.20 0.33 1.20
L5 0.37 1.26 0.34 1.21
L6 0.39 1.28 0.35 1.23
L7 0.40 1.28 0.35 1.22
L8 0.40 1.27 0.35 1.23

S1 0.15 1.03 0.10 1.01
S2 0.18 1.06 0.10 1.02
S3 0.26 1.12 0.10 1.02
S4 0.32 1.19 0.10 1.02
S5 0.36 1.24 0.10 1.02
S6 0.40 1.28 0.10 1.02
S7 0.40 1.27 - -

masses we use the NFW masses that have been corrected
for the scattering of objects between the bins.

There are further sources of uncertainty to consider
in future studies, and we list a few of them: luminosity
bins have a certain width, the luminosity function is not
constant inside a luminosity bin, and lens galaxies are
located at a range of redshifts. We expect that these
complications further broaden the conditional probability
function, which means that the correction factors we use
may be too low. These complications should be taken
into account to enable a detailed comparison between
observations and simulations.

Appendix C: Constraints on the satellite fraction
at high halo masses

The satellite fraction is not well constrained at the high lu-
minosity/stellar mass end. The reason for this is illustrated
in Figure C.1. In Figure C.1a we show the lensing signal of
the L6 luminosity bin, together with the five terms of the
halo model, using the standard truncation radius of 0.4r200
for the satellite galaxies. The satellite shear signal on scales
< 1h−1Mpc in the halo model is the sum of stripped satel-
lite term and the γ1h

t,sat term. It is clear that the shape of
the combined signal is very similar to the shape of the shear
signal coming from the central halo. As a result the error
on the satellite fraction is large. The satellite fraction and
the halo mass are anti-correlated, as we can see from Figure
C.2. The model either prefers a large mass and small satel-
lite fraction, or a small mass and large satellite fraction. To
reduce any bias in the best fit halo mass, we decrease the
allowed range for the satellite fractions to a uniform prior
between 0% and 20% for the highest stellar mass and lumi-
nosity bins, as almost all of the galaxies in these bins are
expected to be centrals.

Recent work by Limousin et al. (2009) shows that the
half mass radius of a subhalo is a strongly decreasing func-

Fig.C.1. The lensing signal of the L6 early-type bin, shown
together with the five components of the best fit halo model.
In the upper panel the truncation radius of the stripped
satellites is 0.4r200, and the shape of the combined satellite
1-halo terms mimicks the shape of the central NFW term.
In the lower panel the truncation radius is 0.2r200, changing
the shape of the combined satellite 1-halo terms. Note that
the halo model in the lower panel is not a fit, but serves
to illustrate the effect of choosing a different truncation
radius.

tion of projected cluster-centric distance. Furthermore, the
radial distribution of early-type satellites is more peaked
around the cluster centre than the radial distribution of
late-type satellites (e.g. Ann et al. 2008). Hence we expect
that the massive elliptical satellite galaxies, which prac-
tically always reside close to the centre of a cluster, are
stripped of a far larger fraction of their dark matter.

To determine whether we can observe a change in the
truncation radius of massive early-type satellite galaxies, we
make a selection of galaxies that are likely to be satellites
and study their shear profile. We consider early-types in
the mass range 1010.5 < M∗ < 1011.75M#, and divide them
in three mass bins; galaxies more massive than 1011.75M#

will almost exclusively be central galaxies and hence not
significantly stripped. To determine whether the galaxies
are satellites or centrals, we use the SDSS DR7 photomet-
ric redshift catalogue Photoz, which contains the photo-
metric redshifts of 260 million galaxies, and match them to
our source galaxy catalogue. The lenses that have a neigh-
bouring galaxy of the same luminosity or brighter within
750 kpc, and lie within the 1σ errors of the photometric
redshift of the source, are selected for the satellite sample.
The galaxies that do not have brighter neighbours within
1 Mpc and within the 1σ errors of the photometric redshift
are selected for the central sample. Note that we do not
aim to obtain samples that are complete, but we strive to
make a selection that enables us to quantitatively study the
differences in the lensing signal.

23

rtrunc=0.4r200

rtrunc=0.2r200

For massive galaxies we cannot model the satellite fraction well 
because the combined satellite term is very similar to the central signal.
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Fig. 5.— Best fit model for the z1 (0.22 < z < 0.48) redshift bin (blue solid line). Panels a) to f): amplitude of the angular correlation
function w as a function of angular separation θ (in arc-seconds) in stellar mass thresholds. Note that in this redshift bin, the amplitude
of w at large separations is artificially deflated by integral constraint (but this is accounted for in the fitted model). Panel g): COSMOS
SMF for M∗ > 108.7 M" (completeness limit for this redshift bin). For reference, in panel f), we also show the SDSS mass functions
from Li & White (2009) (triple schecter fit, black dashed line), Baldry et al. (2008) (green dash-dot line) and from Panter et al. (2007)
(orange, dash-dot-dot line). The dotted blue line in panel g) shows the SMF of satellite galaxies for the best fit model. Panels h) to n):
galaxy-galaxy lensing signal in stellar mass bins. Note that in panel m), there is a negative data point represented by a grey square (this
can occur due to noise and is not a concern). The lensing signal is decomposed into four components: the baryonic term (red dotted line),
the central one-halo term (green dashed line), the satellite one-halo term (orange dash-dot), and the two-halo term (grey dash-dot-dot-dot
line).
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Fig. 10.— Top panel: Inferred SHMR in the z1 redshift bin compared to other low redshift measurements from weak lensing (WL),
abundance matching (AM), satellite kinematics (SK), and the Tully Fisher relation (TF). The COSMOS z1 results are shown by the solid
dark blue line and the shaded grey region represents the one sigma error on the SHMR. This SHMR represents 〈log10(M∗(Mh))〉. With
the exception of Conroy et al. (2007), all data points either use or have been converted to this same averaging system . Overall, there is a
broad agreement between various probes. Detailed comparisons between various data-sets however, are limited by systematic differences in
stellar mass estimates due to varying assumptions (e.g., star formation histories, extinction laws, stellar population models). Bottom panel:
Dark-to-stellar mass ratio as a function of stellar mass. We observe a clear variation in M200b/M∗ with M200b/M∗ reaching a minimum of
Mh/M∗ ∼ 27 at M∗ ∼ 4.5× 1010 M" and M200b ∼ 1.2× 1012 M". The dark-to-stellar mass ratio rises sharply at M∗ > 5 × 1010 M" so
that a cluster of halo mass M200b ∼ 1015 M" will reach a ratio of M200b/M∗ ∼ 2000. Note that this ratio only refers to the ratio between
the halo mass and the stellar mass of the central galaxy. For example, in the case of clusters, we are comparing the ratio of the cluster halo
mass to stellar mass of the central Brightest Cluster Galaxy (BCG).

1013 − 1014 M!) in COSMOS for which we have cal-
ibrated the relationship between halo mass and X-ray
luminosity (LX) using g-g lensing. The expected scat-
ter in halo mass at fixed LX is of order 0.13 dex so the
sample presented in Leauthaud et al. (2010) is halo mass
selected to a good approximation. In parallel, George et
al. (in prep) have constructed an algorithm to identify
the central galaxies of these groups and have used the
weak lensing signal itself to optimize the algorithm by
maximizing the weak lensing signal at small radial sep-
arations from the central galaxy. The grey squares in
Figure 10 report the stellar mass of the central galaxy
versus Mh for groups at 0.22 < z < 0.48 and with a
high quality flag. These data points are directly compa-
rable to ours since we have used exactly the same stellar

masses and confirm that our results are consistent with
Leauthaud et al. (2010).
We present a similar exercise for a sample of X-ray lu-

minous clusters (A68, A209, A267, A383, A963, A1689,
A1763, A2218, A2390, A2219) from Hoekstra (2007) with
weak lensing masses from Mahdavi et al. (2008). The
central galaxies of these clusters have been studied in de-
tail by Bildfell et al. (2008). Using the same stellar mass
code and assumptions as in this paper, we have com-
puted stellar masses for the central cluster galaxies using
a compilation of optical data provided by Chris Bildfell.
The results are shown by the red asterisk points in Fig-
ure 10. Unfortunately, these mass estimates are based on
just two optical bands (B-band and R-band) and as such
will have larger uncertainties than the COSMOS stellar

Leauthaud et al. (2011)



The Halo-Model

Open questions:

- better description of satellites
distribution in host, density profile after tidal stripping

- can we make a 2D version? 
more optimal use of data



Galaxy biasing
Can we statistically relate the clustering 
of galaxies and dark matter?



Light ≠ Density!



Light ≠ Density!



Galaxy biasing

Cosmic shear measures the clustering of (dark) matter.
We can compare this clustering signal to that of galaxies.

Galaxy Biasing in the Halo Model 3

taken in this paper consists of introducing a method which
predicts features due to galaxy biasing observable via a com-
bination of galaxy clustering and galaxy lensing measure-
ments. One spin-off of this paper is a characterisation of the
length scale above which it is safe to assume that galaxy
bias is scale-independent. This is important for a number
of cosmological studies, such as testing GR via the method
advocated by Zhang et al. (2007) and used by Reyes et al.
(2010).

This paper is organized as follows. In §2 we re-visit the
classical concepts of galaxy biasing and we also formulate it
in the context of the halo model. In §3 we present a realistic
description of the halo occupation statistics and we describe
how its assumptions affect the value of galaxy bias param-
eters. In §4 we introduce the galaxy bias functions bg, Rgm

and Γgm in terms of two-point statistics. In §5 we analyze
different scenarios of the way galaxies may populate dark
matter haloes highlighting how these scenarios translate in
distinct features in the scale dependence of the galaxy bias
functions. In §6 we comment on existing observational at-
tempts to constrain galaxy bias. In §7 we discuss our results
and draw conclusions. Throughout this paper, we assume a
flat ΛCDM cosmology specified by the following cosmolog-
ical parameters: (Ωm,σ8, n, h) = (0.24, 0.74, 0.95, 0.73) sup-
ported by the results of the third year of the Wilkinson Mi-
crowave Anisotropy Probe (WMAP, Spergel et al. 2007).

2 GALAXY BIASING

Dekel & Lahav (1999) introduced a general formalism to
describe galaxy biasing. In particular, they introduced
convenient parameters to describe the non-linearity and
stochasticity of the relation between galaxies and matter.
A downside of their formalism, however, is that it is based
on the smoothed galaxy and matter density fields. This
smoothing blurs the interpretation of the associated two-
point statistics on small scales (smaller than the smoothing
length). In addition, the various bias parameters introduced
in DL99 do not have counterparts that are easily accessible
from observations, making it difficult to constrain the
amounts of non-linearity and/or stochasticty as defined
by DL99. In recent years, a more convenient method for
describing the bias and clustering properties of galaxies
has emerged in the form of halo occupation statistics
(e.g., Jing et al. 1998; Seljak 2000; Peacock & Smith
2000; Berlind & Weinberg 2002; Yang et al. 2003;
Collister & Lahav 2005; van den Bosch et al. 2007). In
this section, after a short recap of the classical description
of galaxy biasing, we reformulate the DL99 formalism in the
terminology of halo occupation statistics. This formulation
allows for a far more direct and intuitive interpretation of
the concepts of non-linearity and stochasticity.

2.1 Classical Description

Let ng(x) and ρm(x) indicate the local density fields of galax-
ies and matter at location x, respectively. The corresponding
overdensity fields are defined as

δg(x) =
ng(x)− n̄g

n̄g
and δm(x) =

ρm(x)− ρ̄m
ρ̄m

, (1)

where n̄g is the average number density of galaxies and ρ̄m
is the dark matter background density. Both these fields are
smoothed with a smoothing window which defines the term
‘local’. Galaxy bias is said to be linear and deterministic if

δg(x) = bgδm(x) , (2)

where bg is referred to as the galaxy bias parameter. Clearly,
such a biasing scheme is highly idealized. As emphasized in
DL99, the assumption of linear deterministic biasing must
brake down in deep voids if bg > 1 simply because δg ≥
−1. Furthermore, numerical simulations have shown that the
bias of dark matter haloes is both non-linear and stochastic
(e.g., Mo & White 1996; Somerville et al. 2001). Hence, it
is only natural that galaxies, which reside in dark matter
haloes, also are biased in a non-linear and stochastic manner.
Indeed, simulations of galaxy formation in a cosmological
context suggest a biasing relation that is non-linear, scale-
dependent and stochastic (see e.g. Somerville et al. 2001).
Here scale-dependence refers to the fact that the biasing
description depends on the smoothing scale used to define
δg and δm.

Based on these considerations, DL99 generalized the
concept of galaxy bias by considering the local biasing rela-
tion between galaxies and matter to be a random process,
specified by the biasing conditional distribution, P (δg|δm),
of having a galaxy overdensity δg at a given δm. They de-
fined the mean biasing function, b(δm), by the conditional
mean:

b(δm)δm ≡ 〈δg|δm〉 =
∫

δg P (δg|δm) dδg (3)

The function b(δm) allows for any possible non-linear biasing
and fully characterizes it, reducing to the special case of
linear biasing when b(δm) = bg is a constant independent
of δm. The stochasticity of galaxy bias is captured by the
random biasing field, ε, which is defined by

ε ≡ δg − 〈δg|δm〉 (4)

and has a vanishing local conditional mean, i.e., 〈ε|δm〉 = 0.
The variance of ε at a given δm defines the stochasticity
function 〈ε2|δm〉, whose average over δm specifies the overall
(global) stochasticity of the galaxy field,

〈ε2〉 =
∫

〈ε2|δm〉P (δm) dδm , (5)

with P (δm) the probability distribution function (PDF) of
δm. As mentioned in DL99, the quantity ε serves as an an-
alytical tool to account for stochasticity without identify-
ing its sources. The formalism presented in the next section
gives a natural framework within which the hidden sources
of stochasticity can be unveiled. In general, stochasticity is
expected to arise from: i) the relation between dark matter
haloes and the underlying dark matter density field; and ii)
the way galaxies populate dark matter haloes. The former is
better addressed using cosmological N-body simulations (see
e.g., Mo & White 1996; Catelan et al. 1998; Porciani et al.
1999; Sheth & Lemson 1999) and is not the goal of this pa-
per. Rather, we focus on the second source of stochasticity,
which we address using the analytical halo model comple-
mented with halo occupation statistics.
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Galaxy biasing

In practice on cannot not compare over-densities 
locally and instead we evaluate the ratio of the 
power spectra. 

Linear bias is expected to be a good approximation when 
smoothing the density field on sufficiently large scales:



Cross-correlation
The bias measures the relative variances of the 
matter and galaxy field. This only has meaning 
if the two fields are correlated.

The level of correlation can be obtained from the 
galaxy-mass cross-correlation function:



Galaxy biasing
It is possible to relate a “classical” description of bias to 
the ingredients of the halo model.

Galaxy Biasing in the Halo Model 3

taken in this paper consists of introducing a method which
predicts features due to galaxy biasing observable via a com-
bination of galaxy clustering and galaxy lensing measure-
ments. One spin-off of this paper is a characterisation of the
length scale above which it is safe to assume that galaxy
bias is scale-independent. This is important for a number
of cosmological studies, such as testing GR via the method
advocated by Zhang et al. (2007) and used by Reyes et al.
(2010).

This paper is organized as follows. In §2 we re-visit the
classical concepts of galaxy biasing and we also formulate it
in the context of the halo model. In §3 we present a realistic
description of the halo occupation statistics and we describe
how its assumptions affect the value of galaxy bias param-
eters. In §4 we introduce the galaxy bias functions bg, Rgm

and Γgm in terms of two-point statistics. In §5 we analyze
different scenarios of the way galaxies may populate dark
matter haloes highlighting how these scenarios translate in
distinct features in the scale dependence of the galaxy bias
functions. In §6 we comment on existing observational at-
tempts to constrain galaxy bias. In §7 we discuss our results
and draw conclusions. Throughout this paper, we assume a
flat ΛCDM cosmology specified by the following cosmolog-
ical parameters: (Ωm,σ8, n, h) = (0.24, 0.74, 0.95, 0.73) sup-
ported by the results of the third year of the Wilkinson Mi-
crowave Anisotropy Probe (WMAP, Spergel et al. 2007).

2 GALAXY BIASING

Dekel & Lahav (1999) introduced a general formalism to
describe galaxy biasing. In particular, they introduced
convenient parameters to describe the non-linearity and
stochasticity of the relation between galaxies and matter.
A downside of their formalism, however, is that it is based
on the smoothed galaxy and matter density fields. This
smoothing blurs the interpretation of the associated two-
point statistics on small scales (smaller than the smoothing
length). In addition, the various bias parameters introduced
in DL99 do not have counterparts that are easily accessible
from observations, making it difficult to constrain the
amounts of non-linearity and/or stochasticty as defined
by DL99. In recent years, a more convenient method for
describing the bias and clustering properties of galaxies
has emerged in the form of halo occupation statistics
(e.g., Jing et al. 1998; Seljak 2000; Peacock & Smith
2000; Berlind & Weinberg 2002; Yang et al. 2003;
Collister & Lahav 2005; van den Bosch et al. 2007). In
this section, after a short recap of the classical description
of galaxy biasing, we reformulate the DL99 formalism in the
terminology of halo occupation statistics. This formulation
allows for a far more direct and intuitive interpretation of
the concepts of non-linearity and stochasticity.

2.1 Classical Description

Let ng(x) and ρm(x) indicate the local density fields of galax-
ies and matter at location x, respectively. The corresponding
overdensity fields are defined as

δg(x) =
ng(x)− n̄g

n̄g
and δm(x) =

ρm(x)− ρ̄m
ρ̄m

, (1)

where n̄g is the average number density of galaxies and ρ̄m
is the dark matter background density. Both these fields are
smoothed with a smoothing window which defines the term
‘local’. Galaxy bias is said to be linear and deterministic if

δg(x) = bgδm(x) , (2)

where bg is referred to as the galaxy bias parameter. Clearly,
such a biasing scheme is highly idealized. As emphasized in
DL99, the assumption of linear deterministic biasing must
brake down in deep voids if bg > 1 simply because δg ≥
−1. Furthermore, numerical simulations have shown that the
bias of dark matter haloes is both non-linear and stochastic
(e.g., Mo & White 1996; Somerville et al. 2001). Hence, it
is only natural that galaxies, which reside in dark matter
haloes, also are biased in a non-linear and stochastic manner.
Indeed, simulations of galaxy formation in a cosmological
context suggest a biasing relation that is non-linear, scale-
dependent and stochastic (see e.g. Somerville et al. 2001).
Here scale-dependence refers to the fact that the biasing
description depends on the smoothing scale used to define
δg and δm.

Based on these considerations, DL99 generalized the
concept of galaxy bias by considering the local biasing rela-
tion between galaxies and matter to be a random process,
specified by the biasing conditional distribution, P (δg|δm),
of having a galaxy overdensity δg at a given δm. They de-
fined the mean biasing function, b(δm), by the conditional
mean:

b(δm)δm ≡ 〈δg|δm〉 =
∫

δg P (δg|δm) dδg (3)

The function b(δm) allows for any possible non-linear biasing
and fully characterizes it, reducing to the special case of
linear biasing when b(δm) = bg is a constant independent
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how its assumptions affect the value of galaxy bias param-
eters. In §4 we introduce the galaxy bias functions bg, Rgm

and Γgm in terms of two-point statistics. In §5 we analyze
different scenarios of the way galaxies may populate dark
matter haloes highlighting how these scenarios translate in
distinct features in the scale dependence of the galaxy bias
functions. In §6 we comment on existing observational at-
tempts to constrain galaxy bias. In §7 we discuss our results
and draw conclusions. Throughout this paper, we assume a
flat ΛCDM cosmology specified by the following cosmolog-
ical parameters: (Ωm,σ8, n, h) = (0.24, 0.74, 0.95, 0.73) sup-
ported by the results of the third year of the Wilkinson Mi-
crowave Anisotropy Probe (WMAP, Spergel et al. 2007).

2 GALAXY BIASING

Dekel & Lahav (1999) introduced a general formalism to
describe galaxy biasing. In particular, they introduced
convenient parameters to describe the non-linearity and
stochasticity of the relation between galaxies and matter.
A downside of their formalism, however, is that it is based
on the smoothed galaxy and matter density fields. This
smoothing blurs the interpretation of the associated two-
point statistics on small scales (smaller than the smoothing
length). In addition, the various bias parameters introduced
in DL99 do not have counterparts that are easily accessible
from observations, making it difficult to constrain the
amounts of non-linearity and/or stochasticty as defined
by DL99. In recent years, a more convenient method for
describing the bias and clustering properties of galaxies
has emerged in the form of halo occupation statistics
(e.g., Jing et al. 1998; Seljak 2000; Peacock & Smith
2000; Berlind & Weinberg 2002; Yang et al. 2003;
Collister & Lahav 2005; van den Bosch et al. 2007). In
this section, after a short recap of the classical description
of galaxy biasing, we reformulate the DL99 formalism in the
terminology of halo occupation statistics. This formulation
allows for a far more direct and intuitive interpretation of
the concepts of non-linearity and stochasticity.

2.1 Classical Description

Let ng(x) and ρm(x) indicate the local density fields of galax-
ies and matter at location x, respectively. The corresponding
overdensity fields are defined as

δg(x) =
ng(x)− n̄g

n̄g
and δm(x) =

ρm(x)− ρ̄m
ρ̄m

, (1)

where n̄g is the average number density of galaxies and ρ̄m
is the dark matter background density. Both these fields are
smoothed with a smoothing window which defines the term
‘local’. Galaxy bias is said to be linear and deterministic if

δg(x) = bgδm(x) , (2)

where bg is referred to as the galaxy bias parameter. Clearly,
such a biasing scheme is highly idealized. As emphasized in
DL99, the assumption of linear deterministic biasing must
brake down in deep voids if bg > 1 simply because δg ≥
−1. Furthermore, numerical simulations have shown that the
bias of dark matter haloes is both non-linear and stochastic
(e.g., Mo & White 1996; Somerville et al. 2001). Hence, it
is only natural that galaxies, which reside in dark matter
haloes, also are biased in a non-linear and stochastic manner.
Indeed, simulations of galaxy formation in a cosmological
context suggest a biasing relation that is non-linear, scale-
dependent and stochastic (see e.g. Somerville et al. 2001).
Here scale-dependence refers to the fact that the biasing
description depends on the smoothing scale used to define
δg and δm.

Based on these considerations, DL99 generalized the
concept of galaxy bias by considering the local biasing rela-
tion between galaxies and matter to be a random process,
specified by the biasing conditional distribution, P (δg|δm),
of having a galaxy overdensity δg at a given δm. They de-
fined the mean biasing function, b(δm), by the conditional
mean:

b(δm)δm ≡ 〈δg|δm〉 =
∫

δg P (δg|δm) dδg (3)

The function b(δm) allows for any possible non-linear biasing
and fully characterizes it, reducing to the special case of
linear biasing when b(δm) = bg is a constant independent
of δm. The stochasticity of galaxy bias is captured by the
random biasing field, ε, which is defined by

ε ≡ δg − 〈δg|δm〉 (4)

and has a vanishing local conditional mean, i.e., 〈ε|δm〉 = 0.
The variance of ε at a given δm defines the stochasticity
function 〈ε2|δm〉, whose average over δm specifies the overall
(global) stochasticity of the galaxy field,

〈ε2〉 =
∫

〈ε2|δm〉P (δm) dδm , (5)

with P (δm) the probability distribution function (PDF) of
δm. As mentioned in DL99, the quantity ε serves as an an-
alytical tool to account for stochasticity without identify-
ing its sources. The formalism presented in the next section
gives a natural framework within which the hidden sources
of stochasticity can be unveiled. In general, stochasticity is
expected to arise from: i) the relation between dark matter
haloes and the underlying dark matter density field; and ii)
the way galaxies populate dark matter haloes. The former is
better addressed using cosmological N-body simulations (see
e.g., Mo & White 1996; Catelan et al. 1998; Porciani et al.
1999; Sheth & Lemson 1999) and is not the goal of this pa-
per. Rather, we focus on the second source of stochasticity,
which we address using the analytical halo model comple-
mented with halo occupation statistics.



Galaxy biasing

4 Cacciato et al.

2.2 Non-linearity and Stochasticity of Halo

Occupation Statistics

We now reformulate the DL99 formalism in the language of
halo occupation statistics. Rather than using the overdensi-
ties δg and δm of the smoothed galaxy and matter density
fields, we use two new variables: the number of galaxies in a
dark matter halo, N , and the mass of that dark matter halo,
M . In particular, the relation between galaxies and dark
matter is now described by the halo occupation distribution
P (N |M), rather than the conditional distribution P (δg|δm).
The equivalent of the mean biasing function, b(δm), defined
in Eq. (3), now becomes

b(M) ≡ ρ̄m
n̄g

〈N |M〉
M

, (6)

where 〈N |M〉 is the mean of the halo occupation distribu-
tion, i.e.,

〈N |M〉 =
∞∑

N=0

N P (N |M) , (7)

and the factor ρ̄m/n̄g is required on dimensional grounds.
Following the same nomenclature as in DL99, linear, deter-
ministic biasing now corresponds to

N =
n̄g

ρ̄m
M , (8)

which yields b(M) = 1. Since N is an integer, whereas the
quantities on the rhs of Eq. (8) are real, it is immediately
clear that in our new formulation linear, deterministic bi-
asing is unphysical. Note, though, that this does not imply
that b(M) = 1 is unphysical; after all, b(M) = 1 can be es-
tablished by having 〈N |M〉 = (n̄g/ρ̄m)M , which is possible
(in practice). In this case, however, there must be non-zero
stochasticity. If, on the other hand, there is a deterministic
relation between N and M , then the bias cannot be linear
(i.e., b(M) $= 1).

Following DL99, we characterize the function b(M) by
the moments b̂ and b̃ defined by

b̂ ≡ 〈b(M)M2〉
σ2
M

, and b̃2 ≡ 〈b2(M)M2〉
σ2
M

. (9)

Here 〈...〉 indicates an average over dark matter haloes, i.e.,

〈A〉 ≡
∫
An(M) dM∫
n(M) dM

(10)

with n(M) the halo mass function, and σ2
M ≡ 〈M2〉. Galaxy

bias is linear if b̃/b̂ = 1. It is straightforward to see that this
is only possible if b(M) is independent of halo mass. Hence,
in our new formulation we have that linear bias corresponds
to halo occupation statistics for which 〈N |M〉 ∝ M .

Motivated by DL99, we define the random halo bias

εN ≡ N − 〈N |M〉 , (11)

for which the conditional mean vanishes, i.e., 〈εN |M〉 = 0.
The variance of εN for halos of a given mass defines the halo
stochasticity function

σ2
b(M) ≡

(
ρ̄m
n̄g

)2 〈ε2N |M〉
σ2
M

(12)

where, following DL99, the scaling by σ2
M is introduced for

convenience. By averaging over halos of all masses, we finally
obtain the stochasticity parameter

σ2
b ≡

(
ρ̄m
n̄g

)2 〈ε2N〉
σ2
M

(13)

Galaxy bias is said to be deterministic if σb = 0.
In addition to the bias parameters b̂ and b̃, which are

mass moments of the mean biasing function b(M), one can
also define other bias parameters. In particular, DL99 intro-
duced the ratio of the variances, bvar ≡ 〈δ2g〉/〈δ2m〉, which in
our reformulation becomes

bvar ≡
(
ρ̄m
n̄g

)2
σ2
N

σ2
M

=

(
ρ̄m
n̄g

)2 〈N2〉
〈M2〉

. (14)

Using Eq. (11) and the fact that 〈εN〉 = 0, one finds that

b2var = b̃2 + σ2
b . (15)

This equation, which is exactly the same as in DL99,
makes it explicit that the bias parameter bvar is sensitive to
both non-linearity and stochasticity. Combining Eqs. (14)
and (15) we have that

〈N2〉 =
(
ρ̄m
n̄g

)2 [
b̃2 + σ2

b

]
σ2
M . (16)

It is useful to compare this to the covariance

〈NM〉 = ρ̄m
n̄g

b̂σ2
M , (17)

which follows directly from Eqs. (6) and (9). Unlike the vari-
ance 〈N2〉, the covariance has no additional contribution
from the biasing scatter σb (see also DL99).

Finally, we define the linear correlation coefficient

r ≡ 〈NM〉
σN σM

. (18)

Using Eqs. (16)-(17), it is straightforward to see that we can
write

b̂ = bvar r . (19)

Hence, the first moment of the mean bias function b(M) is
simply the product of the ratio of variances, bvar, and the
linear correlation coefficient, r.

Using these parameters, we can now characterize a few
special cases. As already mentioned above, the discrete na-
ture of galaxies does not allow for a bias that is both linear
and deterministic. However, the halo occupation statistics
can in principle be such that the bias is linear and stochas-

tic, in which case

b̂ = b̃ = b(M) = 1 bvar = (1 + σ2
b)

1/2

σb $= 0 r = (1 + σ2
b)

−1/2 , (20)

so that bvar > 1, while r = 1/bvar < 1. In the case of non-
linear, deterministic biasing these relations reduce to

1 $= b̂ $= b̃ $= 1 bvar = b̃

σb = 0 r = b̂/b̃ $= 1 (21)

mean biasing function

mean HOD
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Hence, the first moment of the mean bias function b(M) is
simply the product of the ratio of variances, bvar, and the
linear correlation coefficient, r.

Using these parameters, we can now characterize a few
special cases. As already mentioned above, the discrete na-
ture of galaxies does not allow for a bias that is both linear
and deterministic. However, the halo occupation statistics
can in principle be such that the bias is linear and stochas-

tic, in which case

b̂ = b̃ = b(M) = 1 bvar = (1 + σ2
b)

1/2

σb $= 0 r = (1 + σ2
b)

−1/2 , (20)

so that bvar > 1, while r = 1/bvar < 1. In the case of non-
linear, deterministic biasing these relations reduce to

1 $= b̂ $= b̃ $= 1 bvar = b̃

σb = 0 r = b̂/b̃ $= 1 (21)
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halo occupation statistics. Rather than using the overdensi-
ties δg and δm of the smoothed galaxy and matter density
fields, we use two new variables: the number of galaxies in a
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tion, i.e.,

〈N |M〉 =
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N P (N |M) , (7)

and the factor ρ̄m/n̄g is required on dimensional grounds.
Following the same nomenclature as in DL99, linear, deter-
ministic biasing now corresponds to

N =
n̄g

ρ̄m
M , (8)

which yields b(M) = 1. Since N is an integer, whereas the
quantities on the rhs of Eq. (8) are real, it is immediately
clear that in our new formulation linear, deterministic bi-
asing is unphysical. Note, though, that this does not imply
that b(M) = 1 is unphysical; after all, b(M) = 1 can be es-
tablished by having 〈N |M〉 = (n̄g/ρ̄m)M , which is possible
(in practice). In this case, however, there must be non-zero
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relation between N and M , then the bias cannot be linear
(i.e., b(M) $= 1).

Following DL99, we characterize the function b(M) by
the moments b̂ and b̃ defined by

b̂ ≡ 〈b(M)M2〉
σ2
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, and b̃2 ≡ 〈b2(M)M2〉
σ2
M

. (9)

Here 〈...〉 indicates an average over dark matter haloes, i.e.,

〈A〉 ≡
∫
An(M) dM∫
n(M) dM

(10)

with n(M) the halo mass function, and σ2
M ≡ 〈M2〉. Galaxy

bias is linear if b̃/b̂ = 1. It is straightforward to see that this
is only possible if b(M) is independent of halo mass. Hence,
in our new formulation we have that linear bias corresponds
to halo occupation statistics for which 〈N |M〉 ∝ M .

Motivated by DL99, we define the random halo bias

εN ≡ N − 〈N |M〉 , (11)

for which the conditional mean vanishes, i.e., 〈εN |M〉 = 0.
The variance of εN for halos of a given mass defines the halo
stochasticity function

σ2
b(M) ≡

(
ρ̄m
n̄g

)2 〈ε2N |M〉
σ2
M

(12)

where, following DL99, the scaling by σ2
M is introduced for

convenience. By averaging over halos of all masses, we finally
obtain the stochasticity parameter

σ2
b ≡

(
ρ̄m
n̄g

)2 〈ε2N〉
σ2
M

(13)

Galaxy bias is said to be deterministic if σb = 0.
In addition to the bias parameters b̂ and b̃, which are

mass moments of the mean biasing function b(M), one can
also define other bias parameters. In particular, DL99 intro-
duced the ratio of the variances, bvar ≡ 〈δ2g〉/〈δ2m〉, which in
our reformulation becomes

bvar ≡
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=
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Using Eq. (11) and the fact that 〈εN〉 = 0, one finds that

b2var = b̃2 + σ2
b . (15)

This equation, which is exactly the same as in DL99,
makes it explicit that the bias parameter bvar is sensitive to
both non-linearity and stochasticity. Combining Eqs. (14)
and (15) we have that
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]
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It is useful to compare this to the covariance
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b̂σ2
M , (17)

which follows directly from Eqs. (6) and (9). Unlike the vari-
ance 〈N2〉, the covariance has no additional contribution
from the biasing scatter σb (see also DL99).

Finally, we define the linear correlation coefficient
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σN σM

. (18)

Using Eqs. (16)-(17), it is straightforward to see that we can
write

b̂ = bvar r . (19)

Hence, the first moment of the mean bias function b(M) is
simply the product of the ratio of variances, bvar, and the
linear correlation coefficient, r.

Using these parameters, we can now characterize a few
special cases. As already mentioned above, the discrete na-
ture of galaxies does not allow for a bias that is both linear
and deterministic. However, the halo occupation statistics
can in principle be such that the bias is linear and stochas-

tic, in which case
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bias is linear if                This implies b(M) is 
independent of mass and hence         
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bias is linear if b̃/b̂ = 1. It is straightforward to see that this
is only possible if b(M) is independent of halo mass. Hence,
in our new formulation we have that linear bias corresponds
to halo occupation statistics for which 〈N |M〉 ∝ M .

Motivated by DL99, we define the random halo bias
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for which the conditional mean vanishes, i.e., 〈εN |M〉 = 0.
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Galaxy bias is said to be deterministic if σb = 0.
In addition to the bias parameters b̂ and b̃, which are

mass moments of the mean biasing function b(M), one can
also define other bias parameters. In particular, DL99 intro-
duced the ratio of the variances, bvar ≡ 〈δ2g〉/〈δ2m〉, which in
our reformulation becomes

bvar ≡
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)2
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Using Eq. (11) and the fact that 〈εN〉 = 0, one finds that

b2var = b̃2 + σ2
b . (15)

This equation, which is exactly the same as in DL99,
makes it explicit that the bias parameter bvar is sensitive to
both non-linearity and stochasticity. Combining Eqs. (14)
and (15) we have that

〈N2〉 =
(
ρ̄m
n̄g

)2 [
b̃2 + σ2
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]
σ2
M . (16)

It is useful to compare this to the covariance

〈NM〉 = ρ̄m
n̄g

b̂σ2
M , (17)

which follows directly from Eqs. (6) and (9). Unlike the vari-
ance 〈N2〉, the covariance has no additional contribution
from the biasing scatter σb (see also DL99).

Finally, we define the linear correlation coefficient

r ≡ 〈NM〉
σN σM

. (18)

Using Eqs. (16)-(17), it is straightforward to see that we can
write

b̂ = bvar r . (19)

Hence, the first moment of the mean bias function b(M) is
simply the product of the ratio of variances, bvar, and the
linear correlation coefficient, r.

Using these parameters, we can now characterize a few
special cases. As already mentioned above, the discrete na-
ture of galaxies does not allow for a bias that is both linear
and deterministic. However, the halo occupation statistics
can in principle be such that the bias is linear and stochas-

tic, in which case

b̂ = b̃ = b(M) = 1 bvar = (1 + σ2
b)

1/2

σb $= 0 r = (1 + σ2
b)

−1/2 , (20)

so that bvar > 1, while r = 1/bvar < 1. In the case of non-
linear, deterministic biasing these relations reduce to

1 $= b̂ $= b̃ $= 1 bvar = b̃

σb = 0 r = b̂/b̃ $= 1 (21)

We can also define the halo stochasticity function

Averaging over all halo masses defines the 
stochasticity parameter
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Bias is deterministic if the stochasticity 
parameter is zero.
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The variance of εN for halos of a given mass defines the halo
stochasticity function

σ2
b(M) ≡

(
ρ̄m
n̄g

)2 〈ε2N |M〉
σ2
M

(12)

where, following DL99, the scaling by σ2
M is introduced for

convenience. By averaging over halos of all masses, we finally
obtain the stochasticity parameter

σ2
b ≡

(
ρ̄m
n̄g

)2 〈ε2N〉
σ2
M

(13)

Galaxy bias is said to be deterministic if σb = 0.
In addition to the bias parameters b̂ and b̃, which are

mass moments of the mean biasing function b(M), one can
also define other bias parameters. In particular, DL99 intro-
duced the ratio of the variances, bvar ≡ 〈δ2g〉/〈δ2m〉, which in
our reformulation becomes

bvar ≡
(
ρ̄m
n̄g

)2
σ2
N

σ2
M

=

(
ρ̄m
n̄g

)2 〈N2〉
〈M2〉

. (14)

Using Eq. (11) and the fact that 〈εN〉 = 0, one finds that

b2var = b̃2 + σ2
b . (15)

This equation, which is exactly the same as in DL99,
makes it explicit that the bias parameter bvar is sensitive to
both non-linearity and stochasticity. Combining Eqs. (14)
and (15) we have that

〈N2〉 =
(
ρ̄m
n̄g

)2 [
b̃2 + σ2

b

]
σ2
M . (16)

It is useful to compare this to the covariance

〈NM〉 = ρ̄m
n̄g

b̂σ2
M , (17)

which follows directly from Eqs. (6) and (9). Unlike the vari-
ance 〈N2〉, the covariance has no additional contribution
from the biasing scatter σb (see also DL99).

Finally, we define the linear correlation coefficient

r ≡ 〈NM〉
σN σM

. (18)

Using Eqs. (16)-(17), it is straightforward to see that we can
write

b̂ = bvar r . (19)

Hence, the first moment of the mean bias function b(M) is
simply the product of the ratio of variances, bvar, and the
linear correlation coefficient, r.

Using these parameters, we can now characterize a few
special cases. As already mentioned above, the discrete na-
ture of galaxies does not allow for a bias that is both linear
and deterministic. However, the halo occupation statistics
can in principle be such that the bias is linear and stochas-

tic, in which case

b̂ = b̃ = b(M) = 1 bvar = (1 + σ2
b)

1/2

σb $= 0 r = (1 + σ2
b)

−1/2 , (20)

so that bvar > 1, while r = 1/bvar < 1. In the case of non-
linear, deterministic biasing these relations reduce to

1 $= b̂ $= b̃ $= 1 bvar = b̃

σb = 0 r = b̂/b̃ $= 1 (21)

The ratio of the variances defines:
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Using Eqs. (16)-(17), it is straightforward to see that we can
write
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Using these parameters, we can now characterize a few
special cases. As already mentioned above, the discrete na-
ture of galaxies does not allow for a bias that is both linear
and deterministic. However, the halo occupation statistics
can in principle be such that the bias is linear and stochas-

tic, in which case

b̂ = b̃ = b(M) = 1 bvar = (1 + σ2
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1/2
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linear, deterministic biasing these relations reduce to
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which yields b(M) = 1. Since N is an integer, whereas the
quantities on the rhs of Eq. (8) are real, it is immediately
clear that in our new formulation linear, deterministic bi-
asing is unphysical. Note, though, that this does not imply
that b(M) = 1 is unphysical; after all, b(M) = 1 can be es-
tablished by having 〈N |M〉 = (n̄g/ρ̄m)M , which is possible
(in practice). In this case, however, there must be non-zero
stochasticity. If, on the other hand, there is a deterministic
relation between N and M , then the bias cannot be linear
(i.e., b(M) $= 1).

Following DL99, we characterize the function b(M) by
the moments b̂ and b̃ defined by

b̂ ≡ 〈b(M)M2〉
σ2
M

, and b̃2 ≡ 〈b2(M)M2〉
σ2
M

. (9)

Here 〈...〉 indicates an average over dark matter haloes, i.e.,

〈A〉 ≡
∫
An(M) dM∫
n(M) dM

(10)

with n(M) the halo mass function, and σ2
M ≡ 〈M2〉. Galaxy

bias is linear if b̃/b̂ = 1. It is straightforward to see that this
is only possible if b(M) is independent of halo mass. Hence,
in our new formulation we have that linear bias corresponds
to halo occupation statistics for which 〈N |M〉 ∝ M .

Motivated by DL99, we define the random halo bias

εN ≡ N − 〈N |M〉 , (11)

for which the conditional mean vanishes, i.e., 〈εN |M〉 = 0.
The variance of εN for halos of a given mass defines the halo
stochasticity function

σ2
b(M) ≡

(
ρ̄m
n̄g

)2 〈ε2N |M〉
σ2
M

(12)

where, following DL99, the scaling by σ2
M is introduced for

convenience. By averaging over halos of all masses, we finally
obtain the stochasticity parameter

σ2
b ≡

(
ρ̄m
n̄g

)2 〈ε2N〉
σ2
M

(13)

Galaxy bias is said to be deterministic if σb = 0.
In addition to the bias parameters b̂ and b̃, which are

mass moments of the mean biasing function b(M), one can
also define other bias parameters. In particular, DL99 intro-
duced the ratio of the variances, bvar ≡ 〈δ2g〉/〈δ2m〉, which in
our reformulation becomes

bvar ≡
(
ρ̄m
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)2
σ2
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=
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Using Eq. (11) and the fact that 〈εN〉 = 0, one finds that

b2var = b̃2 + σ2
b . (15)

This equation, which is exactly the same as in DL99,
makes it explicit that the bias parameter bvar is sensitive to
both non-linearity and stochasticity. Combining Eqs. (14)
and (15) we have that

〈N2〉 =
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]
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It is useful to compare this to the covariance
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which follows directly from Eqs. (6) and (9). Unlike the vari-
ance 〈N2〉, the covariance has no additional contribution
from the biasing scatter σb (see also DL99).

Finally, we define the linear correlation coefficient
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σN σM
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Using Eqs. (16)-(17), it is straightforward to see that we can
write

b̂ = bvar r . (19)

Hence, the first moment of the mean bias function b(M) is
simply the product of the ratio of variances, bvar, and the
linear correlation coefficient, r.

Using these parameters, we can now characterize a few
special cases. As already mentioned above, the discrete na-
ture of galaxies does not allow for a bias that is both linear
and deterministic. However, the halo occupation statistics
can in principle be such that the bias is linear and stochas-

tic, in which case

b̂ = b̃ = b(M) = 1 bvar = (1 + σ2
b)

1/2

σb $= 0 r = (1 + σ2
b)

−1/2 , (20)

so that bvar > 1, while r = 1/bvar < 1. In the case of non-
linear, deterministic biasing these relations reduce to

1 $= b̂ $= b̃ $= 1 bvar = b̃

σb = 0 r = b̂/b̃ $= 1 (21)
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Figure 6. Same as in Fig. 4. The reference model is indicated with the black solid lines, whereas other lines refer to models with lower
(αs = −1.6, magenta dashed lines) or higher (αs = −0.8, blue dot-dashed lines) value of the low mass end power-law index of the CLF
(see eq.[30] and discussion in §5.3).

that is most sensitive to changes in β. Since brighter galax-
ies reside in more massive (and therefore more extended)
haloes, changes in β impact the (projected) bias functions
on larger scales for brighter galaxies. Also, since the satel-
lite fraction increases with decreasing luminosity, the impact
of changes in β is larger for less luminous galaxies. Overall,
though, changes in β of 50 percent only have a fairly modest
impact on the (projected) bias functions. Since β is unlikely
to differ from unity by more than ∼ 20 percent, we conclude
that potential deviations from Poisson statistics are unlikely
to have a significant effect on galaxy biasing.

5.5 The Spatial Distribution of Satellites

In our fiducial reference model it is assumed that the number
density distribution of satellites within dark matter haloes
is identical to that of dark matter particles; i.e., we as-
sume that ũs(k|M) = ũh(k|M). The dark matter density

profiles are modelled as NFW (Navarro et al. 1997) pro-
files, with a concentration mass relation, ch(M), given by
Macciò et al. (2007). Whether the assumption that the num-
ber density distribution of satellite galaxies is well described
by the same NFW profile, and with the same concentration-
mass relation, is still unclear. In particular, numerous studies
have come up with conflicting claims (e.g., Beers & Tonry
1986; Carlberg et al. 1997; van der Marel et al. 2000;
Lin et al. 2004; van den Bosch et al. 2005b; Yang et al.
2005b; Chen 2009; More et al. 2009a; Nierenberg et al. 2011;
Watson et al. 2011; Guo et al. 2012). We therefore examine
the impact of changing the number density profiles of satel-
lites, which we parameterize via

fconc = cs/ch , (63)

where cs is the concentration parameter of the satellite num-
ber density profile. Note that fconc = 1 for our fiducial refer-
ence model. Figure 8 shows how changes in fconc impact the
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Figure 9. The scale dependence of the galaxy bias (top panel)
and the cross-correlation coefficient (bottom panel) as measured
with the aperture mass rechnique in the RCS survey (see discus-
sion in §6.1), properly accounting for PSF anisotropy (following
Van Waerbeke et al. 2005).

larger and more accurate SDSS data samples currently avail-
able. We advocate to perform such an analysis using the
projected surface densities (Eq. [57]), rather than the de-
projected 3D quantities used by Sheldon et al. (2004).

6.2 Suppressing the Scale Dependence of Galaxy

Bias

For some applications, it is desirable to have bias functions
with as little scale-dependence as possible. As discussed in
§5.1, because of the integration performed when calculat-
ing the observable, projected bias functions, signal on small
scales is mixed-in on large scales. This causes the scale above
which the bias functions are scale-independent to increase.
A constraint on the amount of scale-dependence therefore
means that a large fraction of the data would have to be
discarded. This can be mitigated, however, by defining alter-
native bias functions that circumvent mixing-in signal form
small scales. For instance, Reyes et al. (2010) used the quan-
tities

Υxy(rp) ≡ ∆Σxy(rp)−
(
rmin

rp

)2

∆Σxy(rmin) (68)

which are directly related to the excess surface densities de-
fined in Eq. (57), and where rmin is some fiducial length
scale. By rewriting Eq. (68) as

Υxy(rp) =
2
r2p

∫ rp

rmin

Σxy(R
′)R′ dR′ − Σxy(rp)

+

(
rmin

rp

)2

Σxy(rmin) (69)

it is immediately clear that Υxy does not include any con-
tribution from length scales smaller than rmin. Hence, one
could opt to define the projected bias functions (58)-(60) us-
ing Υxy(rp) rather than ∆Σxy(rp). In what follows we shall

indicate these new bias functions as b̂g, R̂gm and Γ̂gm, re-
spectively.

Reyes et al. (2010) used galaxy clustering, galaxy-
galaxy lensing and peculiar velocities of luminous red galax-
ies (LRGs) from the SDSS to measure the probe of gravity
(Zhang et al. 2007)

EG(rp) ≡
1

β̂

Υgm(rp)
Υgg(rp)

= f(Ωm) R̂gm(rp) , (70)

where β̂ = f(Ωm)/bg is the redshift distortion parameter
(not to be confused with the Poisson parameter β), which
can be measured from the redshift space correlation function
(e.g., Tegmark et al. 2006), f(Ωm) ≈ Ω0.55

m is the logarithmic
linear growth rate, and bg is the galaxy bias6. As long as

R̂gm(rp) = 1, which can be assured by picking a sufficiently
large rmin, it is clear that EG is a direct probe of f(Ωm),
which is sensitive to modifications of the law of gravity. In
their analysis, Reyes et al. (2010) adopt rmin = 1.5h−1Mpc.

We now use our models to investigate the amount of
scale dependence in R̂gm(rp) for various values of rmin.

Fig. 10 plots R̂gm(rp) − 1 for three different values of rmin

(different rows), and for three magnitude bins (different
columns). The solid curve corresponds to our fiducial refer-
ence model, while other curves correspond to several varia-
tions with respect to this model discussed in §5 (as indicated
in the bottom panels). The shaded area indicates the region

where scale dependence of R̂gm(rp) affects the measurement
of EG at less than five percent.

In the upper panels we set rmin = 0, for which R̂gm(rp)
reduces to Rgm(rp). As we have already seen, this CCC
reveals very strong scale-dependence, especially for bright
galaxies, making Rgm(rp) useless for measuring EG. For
rmin = 1.5h−1Mpc (panels in middle row), this scale depen-
dence is drastically reduced, in particular for the brightest
galaxies. Note, though, that depending on the exact val-
ues of αs, fconc and β the CCC R̂gm(rp) may still differ
from unity at the 10 to 20 percent level on small scales
(rp ∼ rmin). However, adopting rmin = 3h−1 Mpc (lower

panels) yields Γ̂gm(rp) = 1 to better than 5 percent accu-
racy for all luminosity bins, and with very little dependence
on uncertainties regarding the halo occupation statistics.
Hence, we conclude that the method used by Reyes et al.
(2010) succesfully suppresses the scale-dependence of galaxy
bias. For rmin = 1.5h−1 Mpc, which is the value adopted by
Reyes et al. (2010) in their analysis of LRGs in the SDSS,
our models suggest, though, that there may be some resid-
ual scale dependence on small scales at the 10-20 percent
level, depending on detailed aspects of the halo occupa-
tion statisitics. We find that robustly suppressing scale de-

6 Note that our definition of EG differs from that of Reyes et al.
(2010) by a factor Ωm,0, which is irrelevant for the discussion
here.
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Conclusions

Applications of the galaxy-mass correlation function

- tests key predictions of CDM structure formation
- important constraints on models of galaxy formation
- can improve constraints on cosmological parameters

Lots of data are coming!


