Marika Asgari in collaboration with Peter Schneider and Patrick Simon

COSMIC SHEAR TOMOGRAPHY AND EFFICIENT DATA COMPRESSION USING COSEBIS

COSMIC SHEAR

- Structures distort light in its path
- The shape of the galaxies are the first observable
- Studying cosmic shear, reveals the cosmological parameters
- Shear Correlation functions are one of the basic products of observations.

modes)

- The E-modes can be generated from lensing (The curl free modes)
- The B-modes have nonlensing origin
 (The divergence free

THE COSEBIS

- Complete Orthogonal Sets of E-/B-Integrals
- They are constructed by complete sets of bases for the filter function space
- The linear and logarithmic COSEBIs filters are polynomials
- The linear COSEBIs filter functions are the Legendre Polynomials of the 4th order and higher + two other lower order polynomials.
- **×** The logarithmic COSEBIs are polynomials in $ln(\theta)$
- A finite number of them is essentially sufficient to get the full information available

INFORMATION LEVEL VS. NUMBER OF COSEBIS MODES

- Fewer log-COSEBIs are needed to reach a saturated value compared to linear ones
- The lin- and log-COSEBIs reach the same saturated value
- The 2PCFs value is always lower

- **×** COSEBIs is a very compact way of cosmic shear analysis
- A relatively small number of COSEBIs modes is enough to reach the full information level
- Adding tomography greatly increases the information about the parameters up to a certain number of redshift bins
- 7 parameters can be constrained simultaneously with the data from the large surveys of the future
- Most of the cosmic shear information is in small scales
- **×** There is some independent information in large scales
- **x** LS constraints are tighter compared to MS
- LS needs more modes to converge
- Marginalizing over parameters mixes their behavior
- × Adding priors helps further tighten the constraints
- Each parameter behaves differently

E/B

$$\langle \hat{\kappa}(\boldsymbol{\ell})\hat{\kappa}^*(\boldsymbol{\ell}')\rangle = (2\pi)^2 \,\delta_{\mathrm{D}}(\boldsymbol{\ell}-\boldsymbol{\ell}') \,P_{\kappa}(\boldsymbol{\ell})$$

$$\kappa = \kappa^{\rm E} + {\rm i}\kappa^{\rm B}$$

$$\langle \hat{\kappa}^{\mathrm{E}}(\boldsymbol{\ell}) \hat{\kappa}^{\mathrm{E}*}(\boldsymbol{\ell}') \rangle = (2\pi)^2 \,\delta_{\mathrm{D}}(\boldsymbol{\ell} - \boldsymbol{\ell}') \,P_{\mathrm{E}}(\boldsymbol{\ell}) \langle \hat{\kappa}^{\mathrm{B}}(\boldsymbol{\ell}) \hat{\kappa}^{\mathrm{B}*}(\boldsymbol{\ell}') \rangle = (2\pi)^2 \,\delta_{\mathrm{D}}(\boldsymbol{\ell} - \boldsymbol{\ell}') \,P_{\mathrm{B}}(\boldsymbol{\ell}) \langle \hat{\kappa}^{\mathrm{E}}(\boldsymbol{\ell}) \hat{\kappa}^{\mathrm{B}*}(\boldsymbol{\ell}') \rangle = (2\pi)^2 \,\delta_{\mathrm{D}}(\boldsymbol{\ell} - \boldsymbol{\ell}') \,P_{\mathrm{EB}}(\boldsymbol{\ell})$$

CONSTRUCTING PRACTICAL STATISTICS II THE FILTER FUNCTIONS DEFINED ON FINITE INTERVALS

$$\int_0^\infty \mathrm{d}\vartheta \; \vartheta \, T_+(\vartheta) \, \mathrm{J}_0(\ell\vartheta) = \int_0^\infty \mathrm{d}\vartheta \; \vartheta \, T_-(\vartheta) \, \mathrm{J}_4(\ell\vartheta)$$

$$T_{+}(\vartheta) = T_{-}(\vartheta) + \int_{\vartheta}^{\infty} d\theta \ \theta \ T_{-}(\theta) \left(\frac{4}{\theta^{2}} - \frac{12\vartheta^{2}}{\theta^{4}}\right)$$
$$T_{-}(\vartheta) = T_{+}(\vartheta) + \int_{0}^{\vartheta} d\theta \ \theta \ T_{+}(\theta) \left(\frac{4}{\vartheta^{2}} - \frac{12\theta^{2}}{\vartheta^{4}}\right)$$

 There are infinite number of functions satisfying these conditions

$$\int_{\vartheta_{\min}}^{\vartheta_{\max}} \frac{\mathrm{d}\vartheta}{\vartheta} T_{-}(\vartheta) = 0 = \int_{\vartheta_{\min}}^{\vartheta_{\max}} \frac{\mathrm{d}\vartheta}{\vartheta^{3}} T_{-}(\vartheta)$$
$$\int_{\vartheta_{\min}}^{\vartheta_{\max}} \mathrm{d}\vartheta \,\vartheta T_{+}(\vartheta) = 0 = \int_{\vartheta_{\min}}^{\vartheta_{\max}} \mathrm{d}\vartheta \,\vartheta^{3} T_{+}(\vartheta)$$

CONSTRUCTING PRACTICAL STATISTICS

- * Any other estimator should be constructed from the correlations.
- × The general form:

$$E = \int_{0}^{\infty} d\vartheta \,\vartheta \left[\xi_{+}(\vartheta)T_{+}(\vartheta) + \xi_{-}(\vartheta)T_{-}(\vartheta)\right]$$
$$B = \int_{0}^{\infty} d\vartheta \,\vartheta \left[\xi_{+}(\vartheta)T_{+}(\vartheta) - \xi_{-}(\vartheta)T_{-}(\vartheta)\right]$$
$$\xi_{+}(\vartheta) = \int_{0}^{\infty} \frac{d\ell \,\ell}{2\pi} \,J_{0}(\ell\vartheta) \left[P_{\rm E}(\ell) + P_{\rm B}(\ell)\right]$$

$$\xi_{-}(\vartheta) = \int_{0}^{\infty} \frac{\mathrm{d}\ell \,\ell}{2\pi} \,\mathrm{J}_{4}(\ell\vartheta) \left[P_{\mathrm{E}}(\ell) - P_{\mathrm{B}}(\ell)\right]$$

$$\int_0^\infty \mathrm{d}\vartheta \; \vartheta \, T_+(\vartheta) \, \mathrm{J}_0(\ell\vartheta) = \int_0^\infty \mathrm{d}\vartheta \; \vartheta \, T_-(\vartheta) \, \mathrm{J}_4(\ell\vartheta)$$

THE MATHEMATICAL FORM

X

FILTER FUNCTIONS

 $\gamma \vartheta_{\max}$ $W_n(\ell) =$ $\mathrm{d}\vartheta \ \vartheta \ T_{+n}(\vartheta) \, \mathrm{J}_0(\ell\vartheta)$ $v_{\rm min}$

x The COSEBIs covariance is a band like matrix

$$C_{mn}^{\mathrm{X}} = \frac{1}{\pi A} \int_0^\infty \mathrm{d}\ell \,\ell \, W_m(\ell) W_n(\ell) \left(P_{\mathrm{X}}(\ell) + \frac{\sigma_{\epsilon}^2}{2\bar{n}} \right)^2$$

CORRELATION COEFFICIENTS

- Correlation coefficients are the normalized covariance elements
- Each pick corresponds to correlations between the same pair of COSEBIs modes
- 4 redshift bins and 15 COSEBIs modes are used here

STATISTICAL METHOD: FISHER ANALYSIS

- Fisher matrix is related to the log-likelihood function
- Quantifies the shape and size of the confidence regions

$$F_{ij} = \langle \mathfrak{L}_{,ij} \rangle = \frac{1}{2} \operatorname{Tr}[C^{-1} M_{ij}]$$

 $M_{ij} = \mathbf{E}_{,i} \; \mathbf{E}_{,j}^{\mathrm{T}} + \mathbf{E}_{,j} \; \mathbf{E}_{,i}^{\mathrm{T}}$

× Our figure-of-merit is a measure of the geometric mean of the standard deviations of the parameters $\sqrt{1-1} = \sqrt{1/n_p}$

$$f = \left(\frac{1}{\sqrt{\det F}}\right)^{1/r}$$

OTHER CRITERIA

- Prior: The parameter covariance of WMAP7 from a Population Monte Carlo (PMC) run by Martin Kilbinger is our prior
- × Angular ranges: [1':20'], [20':400'],[1':400']
- × Handling the parameters: fixing or marginalizing.

APERTURE MASS DISPERSION

RING STATISTICS

- Can be defined as E and B mode estimators
- The aperture has a finite support inside a circle
- The correlations must be measured to very small separations
- The Ring Statistics filters are defined on a finite interval
- The Ring Statistics cleanly separates E- and B-modes
- × The signal is low
- The filter functions are not mathematically beautiful

OLD METHODS FOR E-/B-SEPARATION

The motivation: Future Surveys

* Better precision
 * Larger fields of view
 * Deeper Images
 * More accurate redshifts

2 POINT CORRELATION FUNCTIONS (2PCFS)

× On average shear is zero on the sky

- We need to go to two point statistics and higher
- × The 2PCFs are

$$\xi_{\pm}(\theta) = \langle \gamma_{\rm t} \gamma_{\rm t} \rangle \left(\theta \right) \pm \langle \gamma_{\times} \gamma_{\times} \rangle \left(\theta \right)$$

- The E-modes can be generated from lensing (The curl free modes)
- The B-modes have non-lensing origin

(The divergence free modes)

$$\xi_{+}(\theta) = \int_{0}^{\infty} \frac{\mathrm{d}\ell\,\ell}{2\pi} \,\mathrm{J}_{0}(\ell\theta) \left[P_{\mathrm{E}}(\ell) + P_{\mathrm{B}}(\ell)\right]$$

$$\xi_{-}(\theta) = \int_{0}^{\infty} \frac{\mathrm{d}\ell\,\ell}{2\pi} \,\mathrm{J}_{4}(\ell\theta) \left[P_{\mathrm{E}}(\ell) - P_{\mathrm{B}}(\ell)\right]$$

$$E = \int_{0}^{\infty} \mathrm{d}\vartheta \,\vartheta \left[\xi_{+}(\vartheta)T_{+}(\vartheta) + \xi_{-}(\vartheta)T_{-}(\vartheta)\right]$$

$$B = \int_{0}^{\infty} \mathrm{d}\vartheta \,\vartheta \left[\xi_{+}(\vartheta)T_{+}(\vartheta) - \xi_{-}(\vartheta)T_{-}(\vartheta)\right]$$

$$\int_0^\infty \mathrm{d}\vartheta \ \vartheta \ T_+(\vartheta) \ \mathrm{J}_0(\ell\vartheta) = \int_0^\infty \mathrm{d}\vartheta \ \vartheta \ T_-(\vartheta) \ \mathrm{J}_4(\ell\vartheta)$$

THE 2 SURVEYS: MEDIUM AND LARGE

	Z·	-distribu	survey parameters					
	α	eta	z_0	z_{\min}	$z_{ m max}$	A	σ_ϵ	\bar{n}
MS	0.836	3.425	1.171	0.2	1.5	170	0.42	13.3
LS	2.0	1.5	0.71	0.0	2.0	20000	0.3	35

COSMOLOGICAL MODEL

- × wCDM model:
- Dark energy with an equation of state parameter w₀
- × And cold dark matter
- x 7 free parameters in total with fiducial values of

σ_8	Ω_m	Ω_{Λ}	<i>w</i> ₀	n _s	h	Ω_b
0.8	0.27	0.73	-1.0	0.97	0.70	0.045

TOMOGRAPHY

- × 3-4 redshift bins are enough to capture all the information
- × Priors do not have a big effect on LS for fixed parameters
- × Priors flatten the curves and tighten the constraints

