Irene Sendra

SLAP code

Improved SLAP code

Results

Conclusions

Improved lensing reconstruction with a non-parametric code

rene Sendra, José Maria Diego and Tom Broadhurst

Dpto. de Física Teórica e Historia de la Ciencia Universidad del País Vasco - Euskal Herriko Unibertsitatea

irene.sendra@ehu.es

September 17th, 2012

Irene Sendra

SLAP code

Improved SLAP code

Results

Conclusions

Main idea

Based on the SLAP code (Diego et al. 2005) we improve the lensing reconstruction of the mass in a galaxy cluster:

Irene Sendra

SLAP code

Improved SLAP code

Results

Conclusions

Main idea

Based on the SLAP code (Diego et al. 2005) we improve the lensing reconstruction of the mass in a galaxy cluster:

 we integrate physical priors in the code: contribution to the deflection field coming from the galaxies of the cluster.

Irene Sendra

SLAP code

Improved SLAP code

Results

Conclusions

Main idea

Based on the SLAP code (Diego et al. 2005) we improve the lensing reconstruction of the mass in a galaxy cluster:

- we integrate physical priors in the code: contribution to the deflection field coming from the galaxies of the cluster.
- new code is tested with simulated data (strong lensing) that mimics real data

Irene Sendra

SLAP code

Improved SLAP code

Results

Conclusions

Main idea

Based on the SLAP code (Diego et al. 2005) we improve the lensing reconstruction of the mass in a galaxy cluster:

- we integrate physical priors in the code: contribution to the deflection field coming from the galaxies of the cluster.
- new code is tested with simulated data (strong lensing) that mimics real data
- It greatly help to increase the resolution of the solution and reduce the uncertainties.

Improved SLAP code	▶	Non-pa	irameti	ric cod	le:				
Irene Sendra						-	-		
SLAP code									
Improved SLAP code									
Conclusions									

Improved SLAP code										
Irene Sendra	Algorith	nm for	simul	ations:	proje	cts dif	ferent	NFW	profile	s
SLAP code	n the fi				1 3					
Improved SLAP code										
Conclusions										

Improved
SLAP code Improved
of the field of view. Improved
of the field of view. SLAP code Improved
stap code User defines a number of halos and their characteristics
 $\{(x, y), M[10^{15}h^{-1}M_{\odot}], r_{soft}, r_{s}, (e_{x}, e_{y}, e_{z})\}$ Conclusions Improved
stap code Improved
the field of view.

Improved
SLAP codeAlgorithm for simulations: projects different NFW profiles
in the field of view.SLAP code
SLAP code• Algorithm for simulations: projects different NFW profiles
in the field of view.Improved
SLAP code
Results
Conclusions• User defines a number of halos and their characteristics
 $\{(x, y), M[10^{15}h^{-1}M_{\odot}], r_{soft}, r_s, (e_x, e_y, e_z)\}$ • Useful for pedagogical reasons and when analysing real \rightarrow
identify possible bias & add confidence to results.

Improved
SLAP codeAlgorithm for simulations: projects different NFW profiles
in the field of view.SLAP code• User defines a number of halos and their characteristics
 $\{(x, y), M[10^{15}h^{-1}M_{\odot}], r_{soft}, r_s, (e_x, e_y, e_z)\}$ Conclusions• Useful for pedagogical reasons and when analysing real \rightarrow
identify possible bias & add confidence to results.

 \rightarrow We simulate a cluster similar to A1689 to then check how works the improved version of the code.

Improved
SLAP codeAlgorithm for simulations: projects different NFW profiles
in the field of view.SLAP codeUser defines a number of halos and their characteristics
 $\{(x, y), M[10^{15}h^{-1}M_{\odot}], r_{soft}, r_s, (e_x, e_y, e_z)\}$ ConclusionsUseful for pedagogical reasons and when analysing real \rightarrow
identify possible bias & add confidence to results.

- \rightarrow We simulate a cluster similar to A1689 to then check how works the improved version of the code.
- \rightarrow We will use these tool to obtain the deflection field of the cluster galaxies.

Improved SLAP code						
Irene Sendra						
SLAP code						
Improved SLAP code						
Conclusions						

SLAP old version

SLAP old version

Figure: Thick lines \to real/simulated case, dotted lines \to new version of SLAP. and dashed lines \to old version of SLAP

Conclusions

 Improved SLAP code
 > The addition of cluster galaxies deflection map greatly improves the overall results, giving a

 SLAP code
 reconstructed mass distribution closer to the real one with the same sub-structures.

 Results
 Conclusions

Conclusions

Improved SLAP code

Irene Sendra

SLAP code

Improved SLAP code

Results

Conclusions

- The addition of cluster galaxies deflection map greatly improves the overall results, giving a reconstructed mass distribution closer to the real one with the same sub-structures.
- Next step: Apply this new version of the code to real clusters.

Conclusions

- Irene Sendra
- SLAP code
- Improved SLAP code
- Results
- Conclusions

- The addition of cluster galaxies deflection map greatly improves the overall results, giving a reconstructed mass distribution closer to the real one with the same sub-structures.
- Next step: Apply this new version of the code to real clusters.
- This new version of the code based in a non-parametric approach will also provide an important consistency check for the parametric approach, since concurring results will strengthen their validity, whereas any resulting differences would need to be addressed.