Improved lensing reconstruction with a non-parametric code

Irene Sendra, José Maria Diego and Tom Broadhurst

Dpto. de Física Teórica e Historia de la Ciencia
Universidad del País Vasco - Euskal Herriko Unibertsitatea
irene.sendra@ehu.es

September 17th, 2012
Main idea

Based on the SLAP code (Diego et al. 2005) we improve the lensing reconstruction of the mass in a galaxy cluster:
Main idea

Based on the SLAP code (Diego et al. 2005) we improve the lensing reconstruction of the mass in a galaxy cluster:

- we integrate physical priors in the code: contribution to the deflection field coming from the galaxies of the cluster.
Main idea

Based on the SLAP code (Diego et al. 2005) we improve the lensing reconstruction of the mass in a galaxy cluster:

- we integrate physical priors in the code: contribution to the deflection field coming from the galaxies of the cluster.
- new code is tested with simulated data (strong lensing) that mimics real data
Main idea

Based on the SLAP code (Diego et al. 2005) we improve the lensing reconstruction of the mass in a galaxy cluster:

- we integrate physical priors in the code: contribution to the deflection field coming from the galaxies of the cluster.
- new code is tested with simulated data (strong lensing) that mimics real data
- It greatly help to increase the resolution of the solution and reduce the uncertainties.
Non-parametric code:

\[
\text{Approximation: split lens in } N_c \text{ cells:
} \sum_{i=1}^{N_c} c_i f_i(\theta) \\
\text{Deflection map:
} \alpha(\theta) = 4 GD LS c^2 D S D L \sum_{i=1}^{N_c} c_i \int f_i(\theta') \theta - \theta' \parallel \theta - \theta' \parallel^2 \\
\text{The problem:
} \text{a linear system of } 2N_\theta \text{ equations and } (2N_S + N_C) \text{ unknowns:
} \Theta = \Gamma x \rightarrow \Theta = \Upsilon x I x 0 \Upsilon y 0 I y \times \begin{pmatrix} c \beta_x \\ c \beta_y \end{pmatrix}
\]

Approximate solution → residual equation: \(r \equiv \Theta - \Gamma x \).
Non-parametric code:

Approximation: split lens in N_c cells: $M(\theta) = \sum_{i=1}^{N_c} c_i f_i(\theta)$
SLAP code (Diego et al. 2005)

- Non-parametric code:

- Approximation: split lens in N_c cells: $M(\theta) = \sum_{i=1}^{N_c} c_i f_i(\theta)$

- Deflection map: $\alpha(\theta) = \frac{4GD_Ls}{c^2D_S D_L} \sum_{i=1}^{N_c} c_i \int f_i(\theta') \frac{\theta - \theta'}{\|\theta - \theta'\|^2}$

$\alpha_i = \gamma_{ij} c_j$
Improved SLAP code

Irene Sendra

SLAP code

Improved SLAP code

Results

Conclusions

SLAP code (Diego et al. 2005)

▶ Non-parametric code:

▶ Approximation: split lens in \(N_c \) cells: \(M(\theta) = \sum_{i=1}^{N_c} c_i f_i(\theta) \)

▶ Deflection map: \(\alpha(\theta) = \frac{4G D_L S}{c^2 D_S D_L} \sum_{i=1}^{N_c} c_i \int f_i(\theta') \frac{\theta - \theta'}{\|\theta - \theta'\|^2} \)

\[\alpha_i = \gamma_{ij} c_j \]

▶ The problem: a linear system of \(2N_\theta \) equations and \((2N_S + N_C)\) unknowns:

\[\Theta = \Gamma x \rightarrow \begin{bmatrix} \theta_x \\ \theta_y \end{bmatrix} = \begin{bmatrix} \gamma_x & I_x & 0 \\ \gamma_y & 0 & I_y \end{bmatrix} \times \begin{bmatrix} c \\ \beta_x \\ \beta_y \end{bmatrix} \]
Improved
SLAP code
Irene Sendra
SLAP code
Improved
SLAP code
Results
Conclusions

SLAP code (Diego et al. 2005)

- Non-parametric code:

- Approximation: split lens in N_c cells: $M(\theta) = \sum_{i=1}^{N_c} c_i f_i(\theta)$
- Deflection map: $\alpha(\theta) = \frac{4GD_{ls}}{c^2D_sD_L} \sum_{i=1}^{N_c} c_i \int f_i(\theta') \frac{\theta - \theta'}{||\theta - \theta'||^2}$

- The problem: a linear system of $2N_\theta$ equations and $(2N_s + N_C)$ unknowns:

$$\Theta = \Gamma x \rightarrow \begin{bmatrix} \theta_x \\
\theta_y \end{bmatrix} = \begin{bmatrix} \Upsilon_x & I_x & 0 \end{bmatrix} \times \begin{bmatrix} c \\
\beta_x \end{bmatrix}$$

- Approximate solution \rightarrow residual equation: $r \equiv \Theta - \Gamma x$.
SLAP code: analyse & simulate data.

- Algorithm for simulations: projects different NFW profiles in the field of view.

SLAP code: analyse & simulate data.
SLAP code: analyse & simulate data.

- Algorithm for simulations: projects different NFW profiles in the field of view.
- User defines a number of halos and their characteristics \(\{(x, y), M[10^{15} h^{-1} M_{\odot}], r_{\text{soft}}, r_s, (e_x, e_y, e_z)\} \)

Useful for pedagogical reasons and when analysing real data to identify possible bias and add confidence to results.
SLAP code: analyse & simulate data.

- Algorithm for simulations: projects different NFW profiles in the field of view.
- User defines a number of halos and their characteristics \{(x, y), M[10^{15} h^{-1} M_{\odot}], r_{\text{soft}}, r_{s}, (e_x, e_y, e_z)\}
- Useful for pedagogical reasons and when analysing real data to identify possible bias & add confidence to results.
SLAP code: analyse & simulate data.

- Algorithm for simulations: projects different NFW profiles in the field of view.

- User defines a number of halos and their characteristics
 \(\{(x, y), M[10^{15} h^{-1} M_\odot], r_{soft}, r_s, (e_x, e_y, e_z)\} \)

- Useful for pedagogical reasons and when analysing real → identify possible bias & add confidence to results.

→ We simulate a cluster similar to A1689 to then check how works the improved version of the code.
SLAP code: analyse & simulate data.

- Algorithm for simulations: projects different NFW profiles in the field of view.

- User defines a number of halos and their characteristics \(\{(x, y), M[10^{15} h^{-1} M_\odot], r_{soft}, r_s, (e_x, e_y, e_z)\} \)

- Useful for pedagogical reasons and when analysing real → identify possible bias & add confidence to results.

→ We simulate a cluster similar to A1689 to then check how works the improved version of the code.

→ We will use these tool to obtain the deflection field of the cluster galaxies.
Cluster galaxies contribute with a mass proportional to a fiducial value whose proportionality constant is later inferred as a part of the method.

Compute α_{gal}:

$L \rightarrow M \rightarrow R$

$\{(x, y), M, R\} + \text{WSLAP code simulating tool}$

New column in Γ matrix given by α_{gal}.

New unknown, c_{gal}, proportionality constant.

New system of equations:

$$\begin{bmatrix} \theta_x & \theta_y \end{bmatrix} = \begin{bmatrix} \Upsilon_x \alpha_{\text{gal}}, x I x_0 \Upsilon_y \alpha_{\text{gal}}, y_0 I y \end{bmatrix} \times \begin{bmatrix} c & c_{\text{gal}} \beta_x \beta_y \end{bmatrix}$$

4 / 7
Cluster galaxies contribute with a mass proportional to a fiducial value whose proportionality constant is later inferred as a part of the method.
Cluster galaxies contribute with a mass proportional to a fiducial value whose proportionality constant is later inferred as a part of the method.

Compute α_{gal}:
Cluster galaxies contribute with a mass proportional to a fiducial value whose proportionality constant is later inferred as a part of the method.

Compute α_{gal}:

- $L \rightarrow M \rightarrow R$
Cluster galaxies contribute with a mass proportional to a fiducial value whose proportionality constant is later inferred as a part of the method.

- Compute α_{gal}:
 - $L \rightarrow M \rightarrow R$
 - $\{(x, y), M, R\} + \text{WSLAP code simulating tool} \rightarrow \alpha_{gal}$
Cluster galaxies contribute with a mass proportional to a fiducial value whose proportionality constant is later inferred as a part of the method.

- Compute α_{gal}:
 - $L \rightarrow M \rightarrow R$
 - $\{(x, y), M, R\}$ + WSLAP code simulating tool $\rightarrow \alpha_{gal}$
 - New column in Γ matrix given by α_{gal}.
Improved SLAP code

- Cluster galaxies contribute with a mass proportional to a fiducial value whose proportionality constant is later inferred as a part of the method.

- Compute α_{gal}:
 - $L \rightarrow M \rightarrow R$
 - $\{(x, y), M, R\} + WSLAP$ code simulating tool $\rightarrow \alpha_{gal}$
 - New column in Γ matrix given by α_{gal}.
 - New unknown, c_{gal}, proportionality constant.
Cluster galaxies contribute with a mass proportional to a fiducial value whose proportionality constant is later inferred as a part of the method.

- Compute \(\alpha_{\text{gal}} \):
 - \(L \rightarrow M \rightarrow R \)
 - \(\{(x, y), M, R\} \) + WSLAP code simulating tool \(\rightarrow \alpha_{\text{gal}} \)

- New column in \(\Gamma \) matrix given by \(\alpha_{\text{gal}} \).

- New unknown, \(c_{\text{gal}} \), proportionality constant.

- New system of equations:

\[
\begin{bmatrix}
\theta_x \\
\theta_y
\end{bmatrix} = \begin{bmatrix}
\gamma_x & \alpha_{\text{gal},x} & I_x & 0 \\
\gamma_y & \alpha_{\text{gal},y} & 0 & I_y
\end{bmatrix} \times \begin{bmatrix}
c \\
c_{\text{gal}} \\
\beta_x \\
\beta_y
\end{bmatrix}
\]
Recomposed critical curves

Simulated cluster
Results

Recomposed critical curves

Simulated cluster
Results

Recomposed critical curves

Simulated cluster

SLAP old version
Results

Recomposed critical curves

Simulated cluster

SLAP old version

Improved SLAP

Irene Sendra
Results

Recomposed mass profile

Figure: **Thick lines** → real/simulated case, **dotted lines** → new version of SLAP, and **dashed lines** → old version of SLAP
The addition of cluster galaxies deflection map greatly improves the overall results, giving a reconstructed mass distribution closer to the real one with the same sub-structures.
Conclusions

- The addition of cluster galaxies deflection map greatly improves the overall results, giving a reconstructed mass distribution closer to the real one with the same sub-structures.

- Next step: Apply this new version of the code to real clusters.
Conclusions

- The addition of cluster galaxies deflection map greatly improves the overall results, giving a reconstructed mass distribution closer to the real one with the same sub-structures.

- **Next step:** Apply this new version of the code to real clusters.

- This new version of the code based in a non-parametric approach will also provide an important consistency check for the parametric approach, since concurring results will strengthen their validity, whereas any resulting differences would need to be addressed.