

Hands-on Workshop:

How to calculate Quasar Microlensing

Joachim Wambsganss
Zentrum für Astronomie der Universität Heidelberg (ZAH/ARI)

Journal of Computational and Applied Mathematics 109 (1999) 353–372
www.elsevier.nl/locate/cam

Gravitational lensing: numerical simulations with a hierarchical
tree code

Joachim Wambsganss
Astrophysikalisches Institut Potsdam, An der Sternwarte 16, 14482 Potsdam, Germany

Received 12 May 1998; received in revised form 6 January 1999

Abstract

The mathematical formulation of gravitational lensing — the lens equation — is a very simple mapping R2 → R2,
between the lens (or sky) plane and the source plane. This approximation assumes that all the de!ecting matter is in one
plane. In this case the de!ection angle ! is just the sum over all mass elements in the lens plane. For certain problems
— like the determination of the magni"cation of sources over a large number of source positions (up to 1010) for very
many lenses (up to 106) — straightforward techniques for the determination of the de!ection angle are far too slow.
We implemented an algorithm that includes a two-dimensional tree-code plus a multipole expansion in order to make
such microlensing simulations “inexpensive”. Subsequently we modi"ed this algorithm such that it could be applied to a
three-dimensional mass distribution that "lls the universe (approximated by many lens planes), in order to determine the
imaging properties of cosmological lens simulations. Here we describe the techniques and the numerical methods, and we
mention a few astrophysical results obtained with these methods. c© 1999 Elsevier Science B.V. All rights reserved.

Keywords: Astrophysics; Gravitational lensing; Tree code

1. Introduction

Gravitational lensing deals with the de!ection of light by matter. Originally proposed by Einstein
in his General Theory of Relativity, the de!ection angle at the solar limb was measured in the
1919 solar eclipse by Dyson, Eddington and Davidson [6] and con"rmed Einstein’s prediction of
!!=1:75 arcsec. In the 1930s Einstein, Russell, Zwicky and others investigated lensing theoretically
[5,23,42]. In the 1960s various authors dealt with astrophysical applications of the gravitational lens
e#ect. Most excitingly it was shown by Refsdal [21] that lensing o#ers the possibility to measure
the Hubble constant which can be used to determine size and age of the universe.

E-mail address: jwambsganss@aip.de. (J. Wambsganss)

0377-0427/99/$ - see front matter c© 1999 Elsevier Science B.V. All rights reserved.
PII: S 0377-0427(99)00164-8

September 18, 2012; XI-th School of Cosmology, IESC Cargese; Joachim Wambsganss: “Workshop: How to calculate Quasar Microlensing”

(Wambsganss 1990, 1999)
Efficient Inverse Ray Shooting: A Tree-Code Approach

360 J. Wambsganss / Journal of Computational and Applied Mathematics 109 (1999) 353–372

Fig. 2. Example of the use of the hierarchical tree code in a microlensing scenario with 31 randomly distributed lenses.
(a, left) Cell structure of the point lenses; (b, middle) Illustration of the cell structure as “tree”; (c, right) Cell/lens
con!guration to be used for a certain ray position (marked with a circled dot).

criterion is something like the opening angle of the cell as seen from the position of the ray). If
this ratio is smaller than a chosen value of the “accuracy parameter” ! or if the cell contains only
one lens, this cell is used. Otherwise, the cell is resolved into its (up to four) subcells, whose side
lengths again are compared with the distances of their center-of-mass positions to the considered ray,
and so on. Typically, ! ranges between 0.4 and 0.9. If a particular cell is used for the determination
of the de"ection angle, it is considered as a pseudo-lens with the total mass of all lenses inside,
located at the center of mass determined by all these particles.

2.3.3. Lenses and pseudo-lenses
In the approach just described, we use the hierarchical tree code in order to approximate the angle

of de"ection !̃ by two parts according to the directly included lenses !̃L and the cells !̃C:

!̃ =
N∗
∑

i=1

!̃i ≈
NL
∑

j=1

!̃j +
NC
∑

k=1

!̃k =: !̃L + !̃C: (8)

The N ’s denote the following:

• N∗ is the number of all lenses,
• NL the number of lenses to be included directly,
• NC the number of cells (= pseudo-lenses) to be included.

For cases in which NL + NC"N∗, the calculation is speeded up considerably.
For the light ray shown in Fig. 2c, six cells with more than one lens are used (in total they contain

16 lenses), whereas all other lenses are treated individually, that means here N∗ = 31; NL = 15 and
NC = 6. This is not very remarkable yet. But in a calculation with about N∗ = 106 lenses (for
"=1:17; #=0:83;L=150$0; !=0:6), the average number of cells used was 210, the average number
of lenses used directly was 40.
The computing time for this hierarchical tree method (in two dimensions) increases like O(logN∗),

whereas a direct summation would increase as O(N∗). In practice, gains in CPU-time of factors of

Calculation of deflection angle for N* lenses split into two parts:

360 J. Wambsganss / Journal of Computational and Applied Mathematics 109 (1999) 353–372

Fig. 2. Example of the use of the hierarchical tree code in a microlensing scenario with 31 randomly distributed lenses.
(a, left) Cell structure of the point lenses; (b, middle) Illustration of the cell structure as “tree”; (c, right) Cell/lens
con!guration to be used for a certain ray position (marked with a circled dot).

criterion is something like the opening angle of the cell as seen from the position of the ray). If
this ratio is smaller than a chosen value of the “accuracy parameter” ! or if the cell contains only
one lens, this cell is used. Otherwise, the cell is resolved into its (up to four) subcells, whose side
lengths again are compared with the distances of their center-of-mass positions to the considered ray,
and so on. Typically, ! ranges between 0.4 and 0.9. If a particular cell is used for the determination
of the de"ection angle, it is considered as a pseudo-lens with the total mass of all lenses inside,
located at the center of mass determined by all these particles.

2.3.3. Lenses and pseudo-lenses
In the approach just described, we use the hierarchical tree code in order to approximate the angle

of de"ection !̃ by two parts according to the directly included lenses !̃L and the cells !̃C:

!̃ =
N∗
∑

i=1

!̃i ≈
NL
∑

j=1

!̃j +
NC
∑

k=1

!̃k =: !̃L + !̃C: (8)

The N ’s denote the following:

• N∗ is the number of all lenses,
• NL the number of lenses to be included directly,
• NC the number of cells (= pseudo-lenses) to be included.

For cases in which NL + NC"N∗, the calculation is speeded up considerably.
For the light ray shown in Fig. 2c, six cells with more than one lens are used (in total they contain

16 lenses), whereas all other lenses are treated individually, that means here N∗ = 31; NL = 15 and
NC = 6. This is not very remarkable yet. But in a calculation with about N∗ = 106 lenses (for
"=1:17; #=0:83;L=150$0; !=0:6), the average number of cells used was 210, the average number
of lenses used directly was 40.
The computing time for this hierarchical tree method (in two dimensions) increases like O(logN∗),

whereas a direct summation would increase as O(N∗). In practice, gains in CPU-time of factors of

Deflection angle for n lenses:

J. Wambsganss / Journal of Computational and Applied Mathematics 109 (1999) 353–372 357

asymmetrically distributed matter far away from the region considered — and continuously distributed
matter). Then these de!ected light rays are followed until they hit the source plane (cf. Fig. 1). The
rays are “collected” in the source plane in small squares. These “pixels” contain various numbers
of rays; the number of rays per pixel is directly proportional to the magni"cation of a source with
the size and shape of such a square. This two-dimensional density distribution of light rays – a
magni"cation pattern — can be visualized easily (see below).
In order to “shoot” a light ray i through a single-lens plane, one has to sum over the de!ection

angles of all individual stars acting as microlenses. The de!ection angle !̃i for a number of n point
lenses hence is just a summation of the de!ection angle by each point lens j:

!̃i =
n

∑

j=1

!̃ji =
4G
c2

n
∑

j=1

Mj
rij
r2ij
: (5)

Here Mj is the mass of point lens j, rij is the projected (vector) distance between the positions of
light ray i and point lens j, and rij is its absolute value, rij =

√

(xi − xj)2 + (yi − yj)2; here (xi; yi)
is the position of ray i, and (xj; yj) is the position of lens j.
By far most of the computing time in the microlensing calculations is needed for the calculation

of these de!ection angles. As seen above, the calculation of the de!ection angle !ij of one lens on
one light ray takes about ten mathematical operations (Nop). In order to obtain a high resolution,
a large number of pixels Npix is required (e.g., 2500× 2500 pixels), and for statistical reasons one
would like a high density of rays per pixel on average (e.g., Nav # 100).
The (minimal) number of individual lensing stars N∗ that have to be taken into account depends

on the surface mass density !∗, the amount of external shear " that is included, and on the ratio
between the “di#use !ux” (i.e., the rays that are de!ected into the receiving area from stars far
outside the region where microlenses are considered) which one may neglect and the total !ux.
Details about this concept of di#use !ux can be found in [13,25]; an approximated expression for
the minimum number of stars to be included for a certain value of # is

N∗ $
3!2∗

(1− !∗)2 − "2
#−1: (6)

For low values of !∗ (60:4) a few hundred stars may be enough, but for the interesting cases closer
to !∗ = 1 the number of stars increases dramatically. The number of stars that should be included
for no external shear (" = 0) with the requirement that more than 99% of the total !ux is in the
receiving "eld (# = 0:01) for, e.g., !∗ = 0:5; 0:8; 0:98 are 300, 4800, 720 300, respectively. A brief
estimate of the number of mathematical operations for such a direct calculation with high resolution
and for a high surface mass density (25002 pixels, 500 rays per pixel, 106 stars) results in:

Ntotal = Nop × Npix × Nav × N∗ $ 10× 25002 × 500× 106 ≈ 3× 1016:

Even with the fastest computers such a brute force calculation would take months or years! In other
words: such a direct calculation can not be performed for values of !∗ close to one.
However, the de!ection angle has an r−1 dependence on the distance between ray and lens (see

Eq. (3)). That means, the farther away a lens is from the light ray, the less important it is. This is a
standard situation in problems in which gravity is involved. It forced people to develop more e$cient
methods for the calculation of forces, most of them involved speci"c algorithms, but even speci"c
hardware was developed. We use here the tree-code approach [1]: lenses are treated di#erently

Number of computational operations:

September 18, 2012; XI-th School of Cosmology, IESC Cargese; Joachim Wambsganss: “Workshop: How to calculate Quasar Microlensing”

(Wambsganss 1990, 1999)
Efficient Inverse Ray Shooting: A Tree-Code Approach

358 J. Wambsganss / Journal of Computational and Applied Mathematics 109 (1999) 353–372

according to their distance to the light ray. The “hierarchical tree code”, which will be described
in the next section, does exactly this, it bunches lenses together in cells of di!erent sizes. For the
calculation of the de"ection angle (or gravitational force in the three-dimensional case) it uses cells
— pseudo-particles — whose sizes depend on the distance to the light ray considered.
The actual computation by the inverse ray shooting method is done on a regular grid of rays in

the sky/lens plane. This grid is mapped onto the source plane, whereby the de"ections are considered
for each ray. In the general case, a smoothed out or continuously distributed surface mass density !c
contributes to the de"ection as well (as an additional constant de"ection). The general microlensing
equation then is

y=
(

1− " 0
0 1 + "

)

x− !cx−
N∗
∑

i=1

mi(x− xi)
(x− xi)2

; (7)

where the macromodel of the gravitational lens has to specify the values of shear " and surface mass
density !c (cf. [26]); xi are the positions of the lenses. That means that the rays shot in a square
are mapped onto a rectangle with a side ratio (1− ! − ")=(1− ! + ") (where ! = !c + !∗, and !∗
is the surface mass density in compact objects). As we want the receiving area to be a square, we
choose the shooting #eld, i.e., the area in the lens plane in which rays are mapped, to be a rectangle
with the side ratio (1− ! + ")=(1− ! − ").
We produced such maps in the source plane with very di!erent side lengths, depending on the

purpose and the desired resolution: the smallest receiving square in the source plane we considered
had a sidelength of L = 0:8#0 (where #0 = $E × DS is the physical length of the Einstein ring in
the source plane). This was useful for the high-resolution study of a single caustic crossing event
[36]. The largest sidelength considered was L=2000#0 in an investigation of microlensing by small
objects of planetary mass [24]. In practice, we have to use shooting regions that are much larger
than L=(1− !± ") because due to the grainyness of the matter many light rays are scattered out of
the receiving square, and others from farther out are scattered in (cf. Eq. (6)).

2.3. The numerical approach

2.3.1. The hierarchical tree code
The basic idea of the use of the hierarchical tree code in microlensing calculations is: lenses close

to the considered light ray have to be treated individually. The action of lenses farther away from
the ray is approximated by considering only the centers of mass of, say, two or three lenses next
to each other, and lenses even farther away from the light ray could be bunched together in even
larger groups. The concept of the hierarchical tree code was #rst developed by [1] for the use in
stellar dynamical problems.
Applied to the two-dimensional case of microlensing, the use of the hierarchical tree code can be

explained as follows: all lenses are put in a hierarchy of square cells. The “root” is the largest cell
comprising the total #eld with all lenses. If there is more than one particle in a cell, it is subdivided
into four subcells with half the side length (in stellar dynamical calculations in three dimensions,
cubes are used and divided in eight subcubes). This process is repeated recursively until all subcells
contain either zero or one particle. So the particles are organized in a nested hierarchy of cells. For
each cell the following quantities are determined: total mass, center of mass, quadrupole moment
and higher multipole moments. This setup of the cell structure has to be computed only once at the

360 J. Wambsganss / Journal of Computational and Applied Mathematics 109 (1999) 353–372

Fig. 2. Example of the use of the hierarchical tree code in a microlensing scenario with 31 randomly distributed lenses.
(a, left) Cell structure of the point lenses; (b, middle) Illustration of the cell structure as “tree”; (c, right) Cell/lens
con!guration to be used for a certain ray position (marked with a circled dot).

criterion is something like the opening angle of the cell as seen from the position of the ray). If
this ratio is smaller than a chosen value of the “accuracy parameter” ! or if the cell contains only
one lens, this cell is used. Otherwise, the cell is resolved into its (up to four) subcells, whose side
lengths again are compared with the distances of their center-of-mass positions to the considered ray,
and so on. Typically, ! ranges between 0.4 and 0.9. If a particular cell is used for the determination
of the de"ection angle, it is considered as a pseudo-lens with the total mass of all lenses inside,
located at the center of mass determined by all these particles.

2.3.3. Lenses and pseudo-lenses
In the approach just described, we use the hierarchical tree code in order to approximate the angle

of de"ection !̃ by two parts according to the directly included lenses !̃L and the cells !̃C:

!̃ =
N∗
∑

i=1

!̃i ≈
NL
∑

j=1

!̃j +
NC
∑

k=1

!̃k =: !̃L + !̃C: (8)

The N ’s denote the following:

• N∗ is the number of all lenses,
• NL the number of lenses to be included directly,
• NC the number of cells (= pseudo-lenses) to be included.

For cases in which NL + NC"N∗, the calculation is speeded up considerably.
For the light ray shown in Fig. 2c, six cells with more than one lens are used (in total they contain

16 lenses), whereas all other lenses are treated individually, that means here N∗ = 31; NL = 15 and
NC = 6. This is not very remarkable yet. But in a calculation with about N∗ = 106 lenses (for
"=1:17; #=0:83;L=150$0; !=0:6), the average number of cells used was 210, the average number
of lenses used directly was 40.
The computing time for this hierarchical tree method (in two dimensions) increases like O(logN∗),

whereas a direct summation would increase as O(N∗). In practice, gains in CPU-time of factors of

Lens Equation:

360 J. Wambsganss / Journal of Computational and Applied Mathematics 109 (1999) 353–372

Fig. 2. Example of the use of the hierarchical tree code in a microlensing scenario with 31 randomly distributed lenses.
(a, left) Cell structure of the point lenses; (b, middle) Illustration of the cell structure as “tree”; (c, right) Cell/lens
con!guration to be used for a certain ray position (marked with a circled dot).

criterion is something like the opening angle of the cell as seen from the position of the ray). If
this ratio is smaller than a chosen value of the “accuracy parameter” ! or if the cell contains only
one lens, this cell is used. Otherwise, the cell is resolved into its (up to four) subcells, whose side
lengths again are compared with the distances of their center-of-mass positions to the considered ray,
and so on. Typically, ! ranges between 0.4 and 0.9. If a particular cell is used for the determination
of the de"ection angle, it is considered as a pseudo-lens with the total mass of all lenses inside,
located at the center of mass determined by all these particles.

2.3.3. Lenses and pseudo-lenses
In the approach just described, we use the hierarchical tree code in order to approximate the angle

of de"ection !̃ by two parts according to the directly included lenses !̃L and the cells !̃C:

!̃ =
N∗
∑

i=1

!̃i ≈
NL
∑

j=1

!̃j +
NC
∑

k=1

!̃k =: !̃L + !̃C: (8)

The N ’s denote the following:

• N∗ is the number of all lenses,
• NL the number of lenses to be included directly,
• NC the number of cells (= pseudo-lenses) to be included.

For cases in which NL + NC"N∗, the calculation is speeded up considerably.
For the light ray shown in Fig. 2c, six cells with more than one lens are used (in total they contain

16 lenses), whereas all other lenses are treated individually, that means here N∗ = 31; NL = 15 and
NC = 6. This is not very remarkable yet. But in a calculation with about N∗ = 106 lenses (for
"=1:17; #=0:83;L=150$0; !=0:6), the average number of cells used was 210, the average number
of lenses used directly was 40.
The computing time for this hierarchical tree method (in two dimensions) increases like O(logN∗),

whereas a direct summation would increase as O(N∗). In practice, gains in CPU-time of factors of

Tree code approach:

September 18, 2012; XI-th School of Cosmology, IESC Cargese; Joachim Wambsganss: “Workshop: How to calculate Quasar Microlensing”

 71

(Wambsganss 1990, 1999)
Efficient Inverse Ray Shooting: A Tree-Code Approach

J. Wambsganss / Journal of Computational and Applied Mathematics 109 (1999) 353–372 363

Fig. 4. Illustration of the way we “shoot” light rays: For each (test-)ray marked with a cross the cell/lens con!guration
is determined. For n2!x (test-)rays (marked with circles) the de"ection angle due to this !xed cells is determined (here
n!x = 4; in the calculations we usually took n!x = 10). On the lowest level n2int rays (marked with dots) are “really” shot,
with the de"ection angle of the cells determined by interpolation and that of the NL close lenses calculated directly (here
nint = 4; in the calculations we took nint = 10).

structure. So we simplify the calculation of the de"ection caused by the typically 50–100 cells in the
following way: We calculate the de"ection angles of the !xed cells for all n2!x test rays (cf. Fig. 4).
Then, we compute the coe#cients of a fourth order polynomial through four points for each set of
four rays out of the n2!x test rays forming a small square. Now we calculate the de"ection angles
due to the cells for n2int rays inside this square by interpolation of the de"ection angles at the four
corners (typically nint = 10). We just have to add the additional contributions of the NL lenses to
be treated individually (see Fig. 2), typically between 20 and 100. Both these parts, interpolation of
the de"ection angle of the distant cells and individual treatment of the NL lenses close to the light
ray considered, can be vectorized very e$ectively. As this part of the whole program has to be run
over and over again, most of the computing time (between 90 and 98%) goes into this optimized
part of the calculation.
Summarized: one has to climb down the tree hierarchy just in one out of n2!x × n2int rays, and one

has to determine the contributions to the de"ection angle of all cells just in one out of n2int rays.
Only the de"ection angles of the lenses very close to the light ray considered (typically between 20
and 100) have to be determined for each individual ray.

2.3.7. Tests and accuracy checks
During the development of the code, every “improvement” was tested at di$erent stages. The most

rigorous test was the comparison of the “brute force calculation”, i.e., including every lens directly
(for individual rays this was feasible) with the de"ection angles obtained by climbing down the
tree, by using the !xed cell/lens con!guration and by making use of the interpolation method (cf.
Fig. 2). The deviation between the direct and the approximate calculation has to be compared with
the side length of one pixel, because this size determines the resolution. We !nd, that a typical or
average deviation of less then a tenth of the pixel size is already a very good approximation. In
most practical cases, the “noise” obtained by the method with such a limit is below the numerical

September 18, 2012; XI-th School of Cosmology, IESC Cargese; Joachim Wambsganss: “Workshop: How to calculate Quasar Microlensing”

(Wambsganss 1990, 1999)
Efficient Inverse Ray Shooting: A Tree-Code Approach

362 J. Wambsganss / Journal of Computational and Applied Mathematics 109 (1999) 353–372

Fig. 3. The accuracy increase of the de!ection angle obtained with the inclusion of higher-order multipole moments (see
Section 2.3.4) is shown here. In each panel the di"erence between the directly determined de!ection angle (!̃direct) and
the one obtained with the tree code (!̃tree) is plotted as a function of the former (in arbitrary units). For the top left panel
all matter is assumed to be concentrated in the centers of mass of the cells (i.e. only the monopole term is included). In
the top right panel, the quadrupole moment is included. In the bottom panels moments up to order 4 (left) and 6 (right)
are included. It is obvious how much the accuracy increases with the inclusion of higher-order moments.

determine the lenses and cells to be included in the calculation. Then we put a square grid around
this particular position with n2#x rays (see Fig. 4), with typically n#x ∼ 10. Now, we can shoot all
these rays with exactly the same cell/lens con#guration. This again speeds up the code by almost a
factor n2#x.

2.3.6. Final speed-up: expansion and interpolation
The code can be accelerated even more: the de!ection angle !̃C (cf. Eq. (8)) due to the cells

(containing the far away lenses) changes only very slightly across the n#x rays with #xed cell/lens

September 18, 2012; XI-th School of Cosmology, IESC Cargese; Joachim Wambsganss: “Workshop: How to calculate Quasar Microlensing”

(Wambsganss 1990, 1999)
Efficient Inverse Ray Shooting: A Tree-Code Approach

J. Wambsganss / Journal of Computational and Applied Mathematics 109 (1999) 353–372 365

Fig. 6. Left: Magni!cation pattern for surface mass density of ! = 0:32 and external shear of " = 0:18 (parameters for
image A of the double quasar Q0957+561). The sidelength corresponds to 40 Einstein radii. The “lenses” here are objects
of planetary mass (mLens = 10−5M"), and the white bar indicates location and length of the track along which the light
curve (displayed in the right panel) is evaluated. The length of the light curve (for a quasar with a Gaussian brightness
pro!le of size 3 × 1014cm) corresponds to 160 days (for an assumed transverse velocity of 600 km/s). More details on
this project can be found in [24].

additionally to the magni!cation patterns described above a second !eld was used, with a much
smaller number of pixels, but covering a much larger area in the source plane (and hence with
much lower resolution). We checked this secondary !eld by eye after each calculation, and if there
were any doubts concerning “boundary” e"ects, we repeated the computation with a larger shooting
area. On the small panels at the top of Fig. 5 such poor resolution !elds are shown. The black
squares in the centers mark the position of the “real” magni!cation patterns displayed below 5a.

2.4. The astrophysical results

The ray-shooting program described above has been applied to a number of gravitational lens
problems in recent years (see, e.g. [7,11,15,20,27,28,37–39]). Most of these application studied
microlensing light curves or microlensing magni!cation distributions, often applied to the two lens
systems Q2237+0305 and Q0957+561. Variants of the code, allowing for moving lenses [14,35],
study of jet-like source shapes [40], and the explorations of planet lensing [41] have been used as
well.
We describe here the “standard” application of the microlensing code, namely producing a magni-

!cation pattern for a microlensing situation with given surface mass density ! and external shear ".
In Fig. 6a part of such a magni!cation pattern is shown for the parameters of image A of the double
quasar Q0957+561. In Fig. 6b we show one example light curve to indicate how a one-dimensional
cut through such a magni!cation pattern, convolved with a quasar brightness pro!le, represents a
microlensed light curve. The microlensing properties of this lensing system has recently been studied

September 18, 2012; XI-th School of Cosmology, IESC Cargese; Joachim Wambsganss: “Workshop: How to calculate Quasar Microlensing”

 74

(Wambsganss 1990, 1999)
Efficient Inverse Ray Shooting: A Tree-Code Approach

364 J. Wambsganss / Journal of Computational and Applied Mathematics 109 (1999) 353–372

Fig. 5. “Wrong” magni!cation pattern for ! = 0:2 (left panel): here the accuracy parameter is too large: "= 1:2 and the
shooting region is too small. Compare this frame with the correct one (right panel). A magni!cation pattern indicates
the magni!cation as a function of position in the source plane. Darker gray means higher magni!cation. On top of the
two patterns: respective “secondary” receiving !elds that cover a larger region with worse resolution; they serve as a test
for the size of the shooting region. The black squares in the center mark the positions of the real magni!cation patterns
shown below.

noise (“discreteness e"ect”) due to the mapping of a regular grid of rays onto another regular grid
of pixels (it depends on the density of the rays).
We have tested di"erent accuracy parameters " for many rays before each calculation, to be sure

about the average and maximum errors. Usually values of " = 0:8 or 0.9 were su#cient; however,
for magni!cation patterns of small sidelength and consequently high resolution, we had to go down
to values of "= 0:4, which meant an appreciable increase in computing time.
In the course of the test calculations we have found out that a second very e#cient accuracy

test can be performed just by eye. If the accuracy parameter " is chosen too large, then the change
from one square with !xed cell/lens distribution to the next results in a discontinuous magni!cation
pattern with very characteristic lines of discontinuity: the “images” of those neighboring squares are
not really adjacent, but partly overlap or are torn apart a bit. These overlapping or separated regions
can be seen very easily on the magni!cation patterns, even if their widths are only a fraction of a
pixel size. Those “wrong” features indicate that " is chosen too large. Because this check is very
usefully applied in real calculations, Fig. 5a displays such a “wrong” frame, were " is too large.
Another “safety measure” is a check of the size of the magni!cation pattern considered. To be

sure that the shooting region is chosen large enough, we collect light rays in two receiving !elds:

September 18, 2012; XI-th School of Cosmology, IESC Cargese; Joachim Wambsganss: “Workshop: How to calculate Quasar Microlensing”

Quasar Microlensing: How to do simulations!

1) copy file Wambsganss-MicrolensingCode-Cargese-2012.tar to your disk
2) untar this file ... should produce directory:

Wambsganss-MicrolensingCode-Cargese-2012

September 18, 2012; XI-th School of Cosmology, IESC Cargese; Joachim Wambsganss: “Workshop: How to calculate Quasar Microlensing”

Quasar Microlensing: How to do simulations!

1) copy file Wambsganss-MicrolensingCode-Cargese-2012.tar to your disk
2) untar this file ... should produce directory:

Wambsganss-MicrolensingCode-Cargese-2012
3) cd cfitsio
4) ./configure
5) make (still in directory cfitsio)
6) .. (now in directory Wambsganss-MicrolensingCode-Cargese-2012)
7) make (should produce executable “microlens”)
8) run the program by typing: ./microlens

September 18, 2012; XI-th School of Cosmology, IESC Cargese; Joachim Wambsganss: “Workshop: How to calculate Quasar Microlensing”

Quasar Microlensing: How to do simulations!

1) copy file Wambsganss-MicrolensingCode-Cargese-2012.tar to your disk
2) untar this file ... should produce directory:

Wambsganss-MicrolensingCode-Cargese-2012
3) cd cfitsio
4) ./configure
5) make (still in directory cfitsio)
6) .. (now in directory Wambsganss-MicrolensingCode-Cargese-2012)
7) make (should produce executable “microlens”)
8) run the program by typing: ./microlens
9) newly produced files:

dat.401 log-file
IRIS401 magnification pattern (unformatted)
IRIS401.fits magnification pattern (FITS format)

10) display magnification pattern with IDL: ./rnew dis_1000
September 18, 2012; XI-th School of Cosmology, IESC Cargese; Joachim Wambsganss: “Workshop: How to calculate Quasar Microlensing”

IRIS401

September 18, 2012; XI-th School of Cosmology, IESC Cargese; Joachim Wambsganss: “Workshop: How to calculate Quasar Microlensing”

dat.401

IRIS401

September 18, 2012; XI-th School of Cosmology, IESC Cargese; Joachim Wambsganss: “Workshop: How to calculate Quasar Microlensing”

Quasar Microlensing: How to do simulations!

11) in order to extract a lightcurve: compile lightcurve.f
 (I use: gfortran lightcurve -o lightcurve)

12) run lightcurve routine:
 ./lightcurve

13) output produced:
out_line (lightcurve data, pixels convolved with source profile)
IRIS401-track (magnification pattern WITH track marked)

14) display magnification pattern with track AND lightcurve:
dis_light

September 18, 2012; XI-th School of Cosmology, IESC Cargese; Joachim Wambsganss: “Workshop: How to calculate Quasar Microlensing”

14) display magnification pattern with track AND lightcurve:
dis_light

Source size: sigma = 3

September 18, 2012; XI-th School of Cosmology, IESC Cargese; Joachim Wambsganss: “Workshop: How to calculate Quasar Microlensing”

14) display magnification pattern with track AND lightcurve:
dis_light

Source size: sigma = 1

Source size: sigma = 3

September 18, 2012; XI-th School of Cosmology, IESC Cargese; Joachim Wambsganss: “Workshop: How to calculate Quasar Microlensing”

14) display magnification pattern with track AND lightcurve:
dis_light

Source size: sigma = 3
Source size: sigma = 10

September 18, 2012; XI-th School of Cosmology, IESC Cargese; Joachim Wambsganss: “Workshop: How to calculate Quasar Microlensing”

Quasar Microlensing: How to do simulations!

11) in order to extract a lightcurve: compile lightcurve.f
 (I use: gfortran lightcurve -o lightcurve)

12) run lightcurve routine:
 ./lightcurve

13) output produced:
out_line (lightcurve data, pixels convolved with source profile)
IRIS401-track (magnification pattern WITH track marked)

14) display magnification pattern with track AND lightcurve:
dis_light

15) modify input file for microlens:

September 18, 2012; XI-th School of Cosmology, IESC Cargese; Joachim Wambsganss: “Workshop: How to calculate Quasar Microlensing”

Quasar Microlensing: How to do simulations!

15) modify input file for microlens: replace nray = “20” by “100” ... and run again!

surface mass density kappas (or sigma)

September 18, 2012; XI-th School of Cosmology, IESC Cargese; Joachim Wambsganss: “Workshop: How to calculate Quasar Microlensing”

1) You can use the code “microlens” freely
2) On first scientific paper using “microlens”: J.W offered co-authorship
3) This (and subsequent) papers cite:

Wambsganss, J.: 1999, Journ. Comp. Appl. Math. 109, 353
Wambsganss, J.: 1990, PhD Thesis, Ludwig-Maximilians-University

Munich (also available as MPA report 550)

Quasar Microlensing: Now YOU do simulations!

Deal:

September 18, 2012; XI-th School of Cosmology, IESC Cargese; Joachim Wambsganss: “Workshop: How to calculate Quasar Microlensing”

