Hands-on Workshop: How to calculate Quasar Microlensing

4
Joachim Wambsganss
Zentrum für Astronomie der Universität Heidelberg (ZAH/ARI)

Gravitational lensing: numerical simulations with a hierarchical tree code

Joachim Wambsganss
Astrophysikalisches Institut Potsdam, An der Sternwarte 16, 14482 Potsdam, Germany

Received 12 May 1998; received in revised form 6 January 1999

Abstract

The mathematical formulation of gravitational lensing - the lens equation - is a very simple mapping $\mathscr{R}^{2} \rightarrow \mathscr{R}^{2}$, between the lens (or sky) plane and the source plane. This approximation assumes that all the deflecting matter is in one plane. In this case the deflection angle α is just the sum over all mass elements in the lens plane. For certain problems - like the determination of the magnification of sources over a large number of source positions (up to 10^{10}) for very many lenses (up to 10^{6}) - straightforward techniques for the determination of the deflection angle are far too slow. We implemented an algorithm that includes a two-dimensional tree-code plus a multipole expansion in order to make such microlensing simulations "inexpensive". Subsequently we modified this algorithm such that it could be applied to a three-dimensional mass distribution that fills the universe (approximated by many lens planes), in order to determine the imaging properties of cosmological lens simulations. Here we describe the techniques and the numerical methods, and we mention a few astrophysical results obtained with these methods.

September 18, 2012; XI-th School of Cosmology, IESC Cargese; Joachim Wambsganss: "Workshop: How to calculate Quasar Microlensing"

Efficient Inverse Ray Shooting: A Tree-Code Approach

(Wambsganss 1990, 1999)

Deflection angle for n lenses:

$$
\tilde{\boldsymbol{\alpha}}_{i}=\sum_{j=1}^{n} \tilde{\boldsymbol{\alpha}}_{j i}=\frac{4 G}{c^{2}} \sum_{j=1}^{n} M_{j} \frac{\boldsymbol{r}_{i j}}{r_{i j}^{2}}
$$

Number of computational operations:

$$
N_{\text {total }}=N_{\text {op }} \times N_{\text {pix }} \times N_{\mathrm{av}} \times N_{*} \simeq 10 \times 2500^{2} \times 500 \times 10^{6} \approx 3 \times 10^{16}
$$

Calculation of deflection angle for N^{*} lenses split into two parts:

$$
\tilde{\boldsymbol{\alpha}}=\sum_{i=1}^{N_{*}} \tilde{\boldsymbol{\alpha}}_{i} \approx \sum_{j=1}^{N_{\mathrm{L}}} \tilde{\boldsymbol{\alpha}}_{j}+\sum_{k=1}^{N_{\mathrm{C}}} \tilde{\boldsymbol{\alpha}}_{k}=: \tilde{\boldsymbol{\alpha}}_{\mathrm{L}}+\tilde{\boldsymbol{\alpha}}_{\mathrm{C}} .
$$

The N 's denote the following:

- N_{*} is the number of all lenses,
- N_{L} the number of lenses to be included directly,
- N_{C} the number of cells ($=$ pseudo-lenses) to be included.

Efficient Inverse Ray Shooting: A Tree-Code Approach

(Wambsganss 1990, 1999)
Lens Equation: $\quad \boldsymbol{y}=\left(\begin{array}{cc}1-\gamma & 0 \\ 0 & 1+\gamma\end{array}\right) \boldsymbol{x}-\sigma_{c} \boldsymbol{x}-\sum_{i=1}^{N_{*}} \frac{m_{i}\left(\boldsymbol{x}-\boldsymbol{x}_{i}\right)}{\left(\boldsymbol{x}-\boldsymbol{x}_{i}\right)^{2}}$
Tree code approach:

$$
\tilde{\boldsymbol{\alpha}}=\sum_{i=1}^{N_{*}} \tilde{\boldsymbol{\alpha}}_{i} \approx \sum_{j=1}^{N_{\mathrm{L}}} \tilde{\boldsymbol{\alpha}}_{j}+\sum_{k=1}^{N_{\mathrm{C}}} \tilde{\boldsymbol{\alpha}}_{k}=: \tilde{\boldsymbol{\alpha}}_{\mathrm{L}}+\tilde{\boldsymbol{\alpha}}_{\mathrm{C}} .
$$

> level 0
> level 1
> level 2
> level 3
> level 4
> level 5

Efficient Inverse Ray Shooting: A Tree-Code Approach

(Wambsganss 1990, 1999)

0	0	$0 \ldots$	0
		\ldots	\ldots
0	0	0	0
	0		0
0	0	0	0
0	0	0	0

Efficient Inverse Ray Shooting: A Tree-Code Approach

(Wambsganss 1990, 1999)

Efficient Inverse Ray Shooting: A Tree-Code Approach

(Wambsganss 1990, 1999)

Efficient Inverse Ray Shooting: A Tree-Code Approach

(Wambsganss 1990, 1999)

September 18, 2012; XI-th School of Cosmology, IESC Cargese; Joachim Wambsganss: "Workshop: How to calculate Quasar Microlensing"

Quasar Microlensing: How to do simulations!

1) copy file Wambsganss-MicrolensingCode-Cargese-2012.tar to your disk
2) untar this file ... should produce directory:

Wambsganss-MicrolensingCode-Cargese-2012

```
V
Wambsganss-MicrolensingCode-Cargese-2012
* \square _pdf
* JCAM jkw.pdf
* ML-code-wambsganss.pdf 97 KB
\(\rightarrow\)
cfitsio
c cputime.c 216 bytes
dat. 111
detko.f 19 KB
\(\square\) detko.f
\(\square\) dis_1000.pro
\(\square\) dis_light.pro
500 bytes
\(\square\) input
1 KB
\({ }^{5}\) input \(f\)
996 bytes
input.f
8 KB
4 jobnum 4 bytes
\(\square\) lightcurve.f
\(\square\) |s-all
214 bytes
\(\square\) main.f
11 KB
\(\square\) Makefile
2 KB
```

September 18, 2012; XI-th School of Cosmology, IESC Cargese; Joachim Wambsganss: "Workshop: How to calculate Quasar Microlensing"

Quasar Microlensing: How to do simulations!

1) copy file Wambsganss-MicrolensingCode-Cargese-2012.tar to your disk
2) untar this file ... should produce directory:

Wambsganss-MicrolensingCode-Cargese-2012
3) cd cfitsio
4) ./configure
5) make (still in directory cfitsio)
6) .. (now in directory Wambsganss-MicrolensingCode-Cargese-2012)
7) make (should produce executable "microlens")
8) run the program by typing: ./microlens

Quasar Microlensing: How to do simulations!

1) copy file Wambsganss-MicrolensingCode-Cargese-2012.tar to your disk
2) untar this file ... should produce directory:

Wambsganss-MicrolensingCode-Cargese-2012
3) cd cfitsio
4) ./configure
5) make (still in directory cfitsio)
6) .. (now in directory Wambsganss-MicrolensingCode-Cargese-2012)
7) make (should produce executable "microlens")
8) run the program by typing: ./microlens
9) newly produced files:
dat. 401 log-file
IRIS401 magnification pattern (unformatted)
IRIS401.fits magnification pattern (FITS format)
log-file magnification pattern (unformatted)
magnification pattern (FITS format)
10) display magnification pattern with IDL: ./rnew dis_1000

IRIS401

September 18, 2012; XI-th School of Cosmology, IESC Cargese; Joachim Wambsganss: "Workshop: How to calculate Quasar Microlensing"

Quasar Microlensing: How to do simulations!

11) in order to extract a lightcurve: compile lightcurve.f
(I use: gfortran lightcurve -o lightcurve)
12) run lightcurve routine:
./lightcurve
13) output produced:
out_line (lightcurve data, pixels convolved with source profile)
IRIS401-track (magnification pattern WITH track marked)
14) display magnification pattern with track AND lightcurve:
dis_light
15) display magnification pattern with track AND lightcurve: dis_light

16) display magnification pattern with track AND lightcurve:

September 18, 2012; XI-th School of Cosmology, IESC Cargese; Joachim Wambsganss: "Workshop: How to calculate Quasar Microlensing"
14) display magnification pattern with track AND lightcurve:

September 18, 2012; XI-th School of Cosmology, IESC Cargese; Joachim Wambsganss: "Workshop: How to calculate Quasar Microlensing"

Quasar Microlensing: How to do simulations!

11) in order to extract a lightcurve: compile lightcurve.f
(I use: gfortran lightcurve -o lightcurve)
12) run lightcurve routine:
./lightcurve
13) output produced:
out_line (lightcurve data, pixels convolved with source profile)
IRIS401-track (magnification pattern WITH track marked)
14) display magnification pattern with track AND lightcurve:
dis_light
15) modify input file for microlens:

Quasar Microlensing: How to do simulations!

䊾***

```

September 18, 2012; XI-th School of Cosmology, IESC Cargese; Joachim Wambsganss: "Workshop: How to calculate Quasar Microlensing"

\section*{Quasar Microlensing: Now YOU do simulations!}


\section*{Deal:}
1) You can use the code "microlens" freely
2) On first scientific paper using "microlens": J.W offered co-authorship
3) This (and subsequent) papers cite:

Wambsganss, J.: 1999, Journ. Comp. Appl. Math. 109, 353
Wambsganss, J.: 1990, PhD Thesis, Ludwig-Maximilians-University Munich (also available as MPA report 550)```

