Large-Scale Structure Observations

Lecture 1

Will Percival

The standard "model" for cosmology

$$\frac{H^2}{H_0^2} = \Omega_R a^{-4} + \Omega_M a^{-3} + \Omega_k a^{-2} + \Omega_\Lambda$$
$$\frac{H^2}{H_0^2} = \Omega_M a^{-3} + (1 - \Omega_M)$$

The problem of Λ

 Λ CDM fits all (believable?) current data well It's the simplest (mathematical) model available But ... we cannot explain Λ with physics

• why so small?

$$\rho_{\Lambda}|_{\rm obs} = \frac{\Lambda}{8\pi G} \sim (10^{-3} \,\text{eV})^4$$
$$\rho_{\Lambda}|_{\rm theory} \sim (M_{\rm new \ physics})^4 \sim (1 \,\text{TeV})^4 >> \rho_{\Lambda}|_{\rm obs}$$

• why so fine tuned?

 $\rho_{\Lambda} \lesssim \rho_m : \text{ crucial for structure formation}$ but $\rho_{\Lambda} \propto a^0$ while $\rho_m \propto a^{-3}$

Many alternative explanations

- anthropic arguments?
- modify gravity on large-scales or at low densities?
- more general scalar field model?
- link with Dark Matter?
- back-reaction from structure growth?

How did we get here?

Goal of lecture: The galaxy survey "pillar"

Galaxy surveys

Messier 33 NGC 604 SDSS angular galaxy survey

Southern Galactic Cap

Northern Galactic Cap

Spectra gives recession velocities and redshifts

Galaxy survey "history"

- 1986 CfA 3500
- 1996 LCRS 23000
- 2003 2dFGRS 250000
- 2005 SDSS-I/II 800000
- 2012 SDSS-III 1500000

Fractional error in the amplitude of the fluctuation spectrum

1970	x100
1990	x2
1995	±0.4
1998	±0.2
1999	±0.1
2002	±0.05
2003	±0.03
2009	±0.01
2012	±0.002

Baryon Oscillation Spectroscopic Survey

- Duration: Fall 2009 Summer 2014
- Telescope: 2.5m Sloan
- Upgrade to SDSS-II spectrograph
 - 1000 smaller fibers
 - higher throughput
- Spectra:
 - $-3600^{\circ} \text{A} < \lambda < 10, 000^{\circ} \text{A}$ New spectrograph
 - $-R = \lambda/\Delta\lambda = 1300 3000$
 - (S/N) at mag. limit
 - 22 per pix. (averaged over 7000-8500Å)
 - 10 per pix. (averaged over 4000-5500Å)
- Area: 10,000 deg2
- Targets:
 - -1.5×10^{6} massive galaxies, z < 0.7, i < 19.9
 - 1.5×10⁵ quasars, z>2.2, g<22.0
 - 75,000 ancillary science targets, many categories

The Sloan Digital Sky Survey telescope

S

Lauren Anderson¹, Eric Aubourg², Stephen Bailey³, Dmitry Bizyaev⁴, Michael Blanton⁵, Adam S. Bolton⁶, J. Brinkmann⁴, Joel R. Brownstein⁶, Angela Burden⁷, Antonio J. Cuesta⁸, Luiz N. A. da Costa^{9,10}, Kyle S. Dawson⁶, Roland de Putter^{11,12}, Daniel J. Eisenstein¹³, James E. Gunn¹⁴, Hong Guo¹⁵, Jean-Christophe Hamilton², Paul Harding¹⁵, Shirley Ho^{3,14}, Klaus Honscheid¹⁶, Eyal Kazin¹⁷, D. Kirkby¹⁸, Jean-Paul Kneib¹⁹, Antione Labatie²⁰, Craig Loomis²¹, Robert H. Lupton¹⁴, Elena Malanushenko⁴, Viktor Malanushenko⁴, Rachel Mandelbaum^{14,21}, Marc Manera⁷, Claudia Maraston⁷, Cameron K. McBride¹³, Kushal T. Mehta²², Olga Mena¹¹, Francesco Montesano²³, Demetri Muna⁵, Robert C. Nichol⁷, Sebastián E. Nuza²⁴, Matthew D. Olmstead⁶, Daniel Oravetz⁴, Nikhil Padmanabhan⁸, Nathalie Palanque-Delabrouille²⁵, Kaike Pan⁴, John Parejko⁸, Isabelle Pâris²⁶, Will J. Percival⁷, Patrick Petitjean²⁶, Francisco Prada^{27,28,29}, Beth Reid^{3,30}, Natalie A. Roe³, Ashley J. Ross⁷, Nicholas P. Ross³, Lado Samushia^{7,31}, Ariel G. Sánchez²³, David J. Schlegel^{*3}, Donald P. Schneider^{32,33}, Claudia G. Scóccola^{34,35}, Hee-Jong Seo³⁶, Erin S. Sheldon³⁷, Audrey Simmons⁴, Ramin A. Skibba²², Michael A. Strauss²¹, Molly E. C. Swanson¹³, Daniel Thomas⁷, Jeremy L. Tinker⁵, Rita Tojeiro⁷, Mariana Vargas Magaña², Licia Verde³⁸, Christian Wagner¹², David A. Wake³⁹, Benjamin A. Weaver⁵, David H. Weinberg⁴⁰, Martin White^{3,41,42}, Xiaoying Xu²², Christophe Yèche²⁵, Idit Zehavi¹⁵, Gong-Bo Zhao^{7,43}

BOSS DR9 galaxies

BOSS DR10 galaxies

BOSS DR11 galaxies

Clustering

What does "clustering" mean?

Over-density fields

"probability of seeing structure", can be recast in terms of the overdensity

$$\delta = \frac{\rho - \rho_0}{\rho_0}$$

The correlation function is simply the real-space 2-pt statistic of the field

$$\xi(r) = \langle \delta(\mathbf{x})\delta(\mathbf{x} + \mathbf{r}) \rangle$$

Its Fourier analogue, the power spectrum is defined by

 $P(k) = \langle \delta(\mathbf{k}) \delta(\mathbf{k}) \rangle$

By analogy, one should think of "throwing down" Fourier modes rather than "sticks"

Real-space correlation function

Power spectrum

Statistically complete knowledge?

Gaussian random field: knowledge of either the correlation function or power spectrum is sufficient – they are statistically complete ... but ...

Modeling the angular galaxy mask

+36° +35°	good r • close r • no fibe • redshi	redshift pair er <u>ft failure</u>			
egree		Property	NGC	SGC	total
© +33° ⊖ +32°	$ar{N}_{ m gal}$	222 538	60 792	283 330	
	$\bar{N}_{ m known}$	3766	1810	5576	
	$ar{N}_{ ext{star}}$	7201	1771	8972	
	$ar{N}_{\mathrm{fail}}$	3751	1122	4873	
+31°		$ar{N}_{ ext{cp}}$	14116	3640	17756
	$ar{N}_{ m missed}$	4931	1911	6842	
	125° 124° 123° 122° 121° 120°	$ar{N}_{ m used}$	207 246	57 037	264 283
	RA (degrees)	$ar{N}_{ m obs}$	233 490	63 685	297 175
		$ar{N}_{ ext{targ}}$	256 303	71 046	327 349
		Total area / deg^2	2635	709	3344
		Effective area $\tilde{/} \deg^2$	2584	690	3275

Target density fluctuations

Target density correlates with stellar density and brightness Corrected by weighting See Ross et al. for more details

Ross et al. 2012; arXiv:1208.1491

Redshift failures & close pairs

Spectra where we failed to get an accurate redshift are spatially correlated Close pairs obviously correlated with density

Correct both by upweighting the nearest target with good classification

Measured 2-point functions

The matter power spectrum

Matter P(k) depends on inflation

$$P(k) = k^n$$
$$(n \approx 1)$$

Evolution of the power spectrum after inflation

Comparison of CMB and LSS power spectra

The transfer function - massive neutrinos

The effect of massive neutrinos

The existence of massive neutrinos can also introduce a suppression of T(k) on small scales relative to their Jeans length. Partly degenerate with the suppression caused by radiation epoch. Position depends on neutrino-mass equality scale.

Cosmological density -> neutrino mass

Standard model of particle physics links together photon and neutrino species densities

Based on current photon density (from CMB), we expect a cosmological neutrino background with a density 112 cm⁻² per species

This leads to an expected cosmological density

$$f_{\nu} = \frac{\Omega_{\nu}}{\Omega_m} = \frac{\sum m_{\nu}}{93\Omega_m h^2 \,\mathrm{eV}}$$

Thus a measurement of the cosmological density directly gives a measurement of the summed neutrino mass

The transfer function - Baryon Acoustic Oscillations

position-space description: Bashinsky & Bertschinger astro-ph/0012153 & astro-ph/02022153

position-space description: Bashinsky & Bertschinger astro-ph/0012153 & astro-ph/02022153

 $\Omega_{\rm m}$ h²=0.147, $\Omega_{\rm b}$ h²=0.024

position-space description: Bashinsky & Bertschinger astro-ph/0012153 & astro-ph/02022153

 $\Omega_{\rm m}$ h²=0.147, $\Omega_{\rm b}$ h²=0.024

position-space description: Bashinsky & Bertschinger astro-ph/0012153 & astro-ph/02022153

 $\Omega_{\rm m}$ h²=0.147, $\Omega_{\rm b}$ h²=0.024

position-space description: Bashinsky & Bertschinger astro-ph/0012153 & astro-ph/02022153

 $\Omega_{\rm m}$ h²=0.147, $\Omega_{\rm b}$ h²=0.024

position-space description: Bashinsky & Bertschinger astro-ph/0012153 & astro-ph/02022153

 $\Omega_{\rm m}$ h²=0.147, $\Omega_{\rm b}$ h²=0.024

position-space description: Bashinsky & Bertschinger astro-ph/0012153 & astro-ph/02022153

Baryon Acoustic Oscillations (BAO)

(images from Martin White)

To first approximation, BAO wavelength is determined by the comoving sound horizon at recombination

$$k_{
m bao} = 2\pi/s \ s = rac{1}{H_0\Omega_m^{1/2}} \int_0^{a_*} da rac{c_s}{(a+a_{
m eq})^{1/2}}$$

comoving sound horizon ~110h⁻¹Mpc, BAO wavelength 0.06hMpc⁻¹

Acoustic Oscillations in the matter distribution

Dodelson "modern cosmology"

descriptions describe the same physics

Reconstruction of linear BAO

Linear vs Non-linear behaviour

P(k) calculated from Smith et al. 2003, MNRAS, 341,1311 fitting formulae

Eisenstein et al. 2006; arXiv:0604362

Non-linear movement on BAO scales

Padmanabhan et al. 2012; arXiv:1202.0090

A simple reconstruction algorithm

"Smoothing" dominated by large-scale flows

Smooth field and move galaxies by predicted (linear) motion

Breaks coherence between large-scale and small-scale motion

Does not recover the linear field, but does reduce the non-linear smoothing

See Padmanabhan et al. (2008; arXiv: 0812.2905) for a perturbation theory derivation of this

Eisenstein et al. 2006: arXiv:0604362

Reconstruction on SDSS-III mocks

The improvement from reconstruction

The improvement DR9 - DR11

Galaxy clustering as a standard ruler

The evolution of the scale factor

If we observed the comoving power spectrum directly, we would not constrain evolution

However, we measure galaxy redshifts and angles and infer distances

$$d_{\rm comov}(a) = \int_{t(a)}^{t_0} \frac{c \, dt'}{a(t')} = \int_a^1 \frac{c \, da'}{a'^2 H(a')}$$

The power spectrum as a standard ruler

z=0.2

z=0.35

CREDIT: WMAP & SDSS websites

BAO as a standard ruler

Changes in cosmological model alter measured BAO scale (Δd_{comov}) by:

Radial direction $\frac{c}{H(z)}$

$$\frac{c}{H(z)}\Delta z$$

(evolution of Universe)

Angular direction

$$(1+z)D_A\Delta\theta$$

(line of sight)

If we are considering radial and angular directions using randomly orientated galaxy pairs, we constrain (to 1st order)

$$D_V = \left[(1+z)^2 D_A^2(z) \frac{cz}{H(z)} \right]^{1/3}$$

BAO position (in a redshift slice) therefore constrains some multiple of $\frac{r_s}{D_V}$

Results

$$D_{V}(0.57) = (2055 \pm 28 \text{ Mpc}) \left(\frac{r_{d}}{r_{d, \text{fid}}}\right)$$

$$D_{V}(0.32) = (1275 \pm 36 \text{ Mpc}) \left(\frac{r_{d}}{r_{d, \text{fid}}}\right),$$

$$D_{A}(0.57) = (1386 \pm 26 \text{ Mpc}) \left(\frac{r_{d}}{r_{d, \text{fid}}}\right),$$

$$H(0.57) = (94.1 \pm 4.7 \text{ km s}^{-1} \text{ Mpc}^{-1}) \left(\frac{r_{d, \text{fid}}}{r_{d}}\right)$$

$$\int_{1}^{4} \int_{1}^{6} \frac{6}{4} \text{FGS} \xrightarrow{\text{BOSS}} \text{BOSS} \text{WiggleZ} \text{CMASS}$$

$$\int_{1}^{4} \int_{1}^{6} \frac{1}{\sqrt{2}} \int_{1}^{4} \int_{1}^{6} \frac{1}{\sqrt{2}} \int_{1}^{4} \frac{1}{$$

Goal of this lecture

BAO tell us we live in a low matter density Universe