

A brief history of bouncing cosmology

\Rightarrow R. C. Tolman, "On the Theoretical Requirements for a Periodic Behaviour of the Universe", PRD 38, 1758 (1931)
\Rightarrow G. Lemaître, 'L'Univers en expansion", Ann. Soc. Sci. Bruxelles (1933)
\rightarrow Penrose: BH formation

Quantum nucleation?

\Rightarrow A. A. Starobinsky, "On one non-singular isotropic cosmological model", Sov. Astron. Lett. 4, 82 (1978)
\Rightarrow M. Novello \& J. M. Salim, "Nonlinear photons in the universe", Phys. Rev. 20, 377 (1979)
\Rightarrow V. N. Melnikov, S.V. Orlov, Phys. Lett. A 70, 263 (1979).
\Rightarrow R. Durrer \& J. Laukerman, "The oscillating Universe: an alternative to inflation", Class. Quantum Grav. 13, 1069 (1996)
\Rightarrow PBB - Ekpyrotic - Modified gravity - Quantum cosmology - Quintom -Horava-Lifshitz - Lee-Wick - ...
\Rightarrow M. Novello \& S.E. Perez Bergliaffa, "Bouncing cosmologies", Phys. Rep. 463, 127 (2008)

A brief history of bouncing cosmology

\Rightarrow R. C. Tolman, "On the Theoretical Requirements for a Periodic Behaviour of the Universe", PRD 38, 1758 (1931)
\Rightarrow G. Lemaître, 'L'Univers en expansion", Ann. Soc. Sci. Bruxelles (1933)
Quantum nucleation?

\Rightarrow A. A. Starobinsky, "On one non-singular isotropic cosmological model", Sov. Astron. Lett. 4, 82 (1978)
\Rightarrow M. Novello \& J. M. Salim, "Nonlinear photons in the universe", Phys. Rev. 20, 377 (1979)
\Rightarrow V. N. Melnikov, S.V. Orlov, Phys. Lett. A 70, 263 (1979).
\Rightarrow R. Durrer \& J. Laukerman, "The oscillating Universe: an alternative to inflation", Class. Quantum Grav. 13, 1069 (1996)
\Rightarrow PBB - Ekpyrotic - Modified gravity - Quantum cosmology - Quintom -Horava-Lifshitz - Lee-Wick - ...
\Rightarrow M. Novello \& S.E. Perez Bergliaffa, "Bouncing cosmologies", Phys. Rep. 463, 127 (2008)
D. Battefeld \& PP, "A Critical Review of Classical Bouncing Cosmologies", 1406.2790

Singularity problem

Implementing a bounce $=$ problem with GR!

Violation of Null Energy Condition (NEC)

$$
\rho+p \geq 0
$$

Instabilities for perfect fluids

Implementing a bounce $=$ problem with GR!

$$
\text { Violation of Null Energy Condition (NEC) } \quad \rho+p \geq 0
$$

Positive spatial curvature + scalar field

Self consistent bounce:

$$
\mathrm{d} s^{2}=\mathrm{d} t^{2}-a^{2}(t)\left(\frac{\mathrm{d} r^{2}}{1-\mathcal{K} r^{2}}+r^{2} \mathrm{~d} \Omega^{2}\right)
$$

$\longrightarrow \quad$ One d.o.f. +4 dimensions G.R.

$$
\mathcal{S}=\int \mathrm{d}^{4} x \sqrt{-g}\left[\frac{R}{6 \ell_{\mathrm{P} 1}^{2}}-\frac{1}{2} \partial_{\mu} \varphi \partial^{\mu} \varphi-V(\varphi)\right]
$$

$$
H^{2}=\frac{1}{3}\left(\frac{1}{2} \dot{\varphi}^{2}+V\right)-\frac{\mathcal{K}}{a^{2}} \quad \text { Positive spatial curvature }
$$

J. Martin \& PP., Phys. Rev. D68, 103517 (2003)

Self consistent bounce:

$$
\mathrm{d} s^{2}=\mathrm{d} t^{2}-a^{2}(t)\left(\frac{\mathrm{d} r^{2}}{1-\mathcal{K} r^{2}}+r^{2} \mathrm{~d} \Omega^{2}\right)
$$

$\longrightarrow \quad$ One d.o.f. +4 dimensions G.R.

Implementing a bounce $=$ problem with GR!

$$
\text { Violation of Null Energy Condition (NEC) } \quad \rho+p \geq 0
$$

Positive spatial curvature + scalar field

Modify GR?
Add new terms?
K-bounce, Ghost condensates, Galileons...?
\longrightarrow Modify GR to non singular theories (curvature invariants)

$$
\begin{array}{ccc}
\mathcal{S}=\frac{1}{16 \pi G_{\mathrm{N}}} \int \mathrm{~d}^{4} x \sqrt{-g}\left[R+\sum_{i=1}^{N} \varphi_{i} I^{(i)}-V(\varphi)\right]
\end{array} \quad \Longrightarrow \frac{\mathrm{d} V}{\mathrm{~d} \varphi}=I
$$

K-bounce: $\quad \mathcal{L}=p(X, \varphi)$

$$
\begin{gathered}
X \equiv \frac{1}{2} g^{\mu \nu} \partial_{\mu} \varphi \partial_{\nu} \varphi \\
\rho \equiv 2 X \frac{\partial p}{\partial X}-p \\
u_{\mu} \equiv \frac{\partial_{\mu} \varphi}{\sqrt{2} X}
\end{gathered}
$$

$$
\leadsto T^{\mu \nu}=(\rho+p) u^{\mu} u^{\nu}-p g^{\mu \nu}
$$

vanishing spatial curvature possible in 4 dimensions G.R.?

$$
\rho\left(t_{\text {bounce }}\right)=0 \Longrightarrow p\left(t_{\text {bounce }}\right)<0
$$

Quantized scalar field effect model:

Parker \& Fulling ' 73 : massive scalar field, if $\left\langle a^{\dagger} a\right\rangle \gg 1$, then \exists solution $(\mathcal{K}>0)$

$$
a(t)=\left(\frac{\left|B_{2}\right|^{2}-\left|B_{1}\right|^{2}}{\left.\left\langle m^{2}\right| B_{2}\right|^{2}}+\frac{8 \pi G m^{2}\left|B_{2}\right|^{2} t^{2}}{3}\right)^{1 / 2}
$$

Probability that it occurs: $\mathcal{P} \sim 10^{-43}$

Singularity problem Purely classical effect?

Pre Big Bang scenario:

Quantum cosmology

- Hamiltonian GR

Action: $\quad \mathcal{S}=\frac{1}{16 \pi G_{\mathrm{N}}}\left[\int_{\mathcal{M}} \mathrm{d}^{4} x \sqrt{-g}\left({ }^{4} R-2 \Lambda\right)+2 \int_{\boldsymbol{\mathcal { M }}} \mathrm{d}^{3} x \sqrt{h} K^{i}{ }_{i}\right]+\mathcal{S}_{\text {matter }}$

In 3+1 expansion: $\mathcal{S} \equiv \int \mathrm{d} t L=\frac{1}{16 \pi G_{\mathrm{N}}} \int \mathrm{d} t \mathrm{~d}^{3} x \mathcal{N} \sqrt{h}\left(K_{i j} K^{i j}-K^{2}+{ }^{3} R-2 \Lambda\right)+\mathcal{S}_{\text {matter }}$
Canonical momenta $\quad \pi^{i j} \equiv \frac{\delta L}{\delta \dot{h}_{i j}}=-\frac{\sqrt{h}}{16 \pi G_{\mathrm{N}}}\left(K^{i j}-h^{i j} K\right)$

$$
\left.\begin{array}{rl}
\pi_{\Phi} & \equiv \frac{\delta L}{\delta \dot{\Phi}}=\frac{\sqrt{h}}{\mathcal{N}}\left(\dot{\Phi}-\mathcal{N}^{i} \frac{\partial \Phi}{\partial x^{i}}\right) \\
\pi^{0} \equiv \frac{\delta L}{\delta \dot{\mathcal{N}}}=0 \\
\pi^{i} & \equiv \frac{\delta L}{\delta \dot{\mathcal{N}}_{i}}=0
\end{array}\right\} \text { Primary constraints }
$$

Hamiltonian $H \equiv \int \mathrm{~d}^{3} x\left(\pi^{0} \dot{\mathcal{N}}+\pi^{i} \dot{\mathcal{N}}_{i}+\pi^{i j} \dot{h}_{i j}+\pi_{\Phi} \dot{\Phi}\right)-L=\int \mathrm{d}^{3} x\left(\pi^{0} \dot{\mathcal{N}}+\pi^{i} \dot{\mathcal{N}}_{i}+\mathcal{N} \mathcal{H}+\mathcal{N}_{i} \mathcal{H}^{i}\right)$

Variation wrt lapse $\mathcal{H}=0$ Hamiltonian constraint
Variation wrt shift $\mathcal{H}^{i}=0$ momentum constraint
\Longrightarrow Classical description

- Superspace \& canonical quantisation

Relevant configuration space?

$$
\operatorname{Riem}(\Sigma) \equiv\left\{h_{i j}\left(x^{\mu}\right), \stackrel{\square}{\left.\Phi\left(x^{\mu}\right) \mid x \in \Sigma\right\}} \begin{array}{c}
\text { matter fields } \\
\\
\text { parameters }
\end{array}\right.
$$

GR \Longrightarrow invariance $/$ diffeomorphisms $\Longrightarrow \operatorname{Conf}=\frac{\operatorname{Riem}(\Sigma)}{\operatorname{Diff}_{0}(\Sigma)}$
superspace

Wave functional $\Psi\left[h_{i j}(x), \Phi(x)\right]$
Dirac canonical quantisation
$\pi^{i j} \rightarrow-i \frac{\delta}{\delta h_{i j}}$
$\pi_{\Phi} \rightarrow-i \frac{\delta}{\delta \Phi}$
$\pi^{0} \rightarrow-i \frac{\delta}{\delta \mathcal{N}}$

$$
\pi^{i} \rightarrow-i \frac{\delta}{\delta \mathcal{N}_{i}}
$$

$$
\hat{\pi} \Psi=-i \frac{\delta \Psi}{\delta \mathcal{N}}=0
$$

Primary constraints

$$
\hat{\pi}^{i} \Psi=-i \frac{\delta \Psi}{\delta \mathcal{N}_{i}}=0
$$

Momentum constraint $\quad \hat{\mathcal{N}}^{i} \Psi=0 \quad \Longrightarrow \quad i \nabla_{j}^{(h)}\left(\frac{\delta \Psi}{\delta h_{i j}}\right)=8 \pi G_{\mathrm{N}} \hat{T}^{0 i} \Psi$
$\Longrightarrow \Psi$ is the same for configurations $\left\{h_{i j}(x), \Phi(x)\right\}$ related by a coordinate transformation
Hamiltonian constraint

$$
\begin{array}{r}
\hat{\mathcal{H} \Psi=\left[-16 \pi G_{\mathrm{N}} \mathcal{G}_{i j k l} \frac{\delta^{2}}{\delta h_{i j} \delta h_{k l}}+\frac{\sqrt{h}}{16 \pi G_{\mathrm{N}}}\left(-{ }^{3} R+2 \Lambda+16 \pi G_{\mathrm{N}} \hat{T}^{00}\right)\right] \Psi=0} \text { Wheeler - De Witt equation } \\
\mathcal{G}_{G_{i j l l}}=\frac{1}{2} h^{-1 / 2}\left(h_{i k} h_{j l}+h_{i l} h_{j k}-h_{i j} h_{k l}\right) \quad \text { Wheer }
\end{array}
$$

DeWitt metric...

- Minisuperspace

Restrict attention from an infinite dimensional configuration space to 2 dimensional space = mini-superspace

$$
h_{i j} \mathrm{~d} x^{i} \mathrm{~d} x^{j}=a^{2}(t)\left[\frac{\mathrm{d} r^{2}}{1-k r^{2}}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \varphi^{2}\right)\right] \quad \Phi(x)=\phi(t)
$$

WDW equation becomes Schrödinger-like for $\Psi[a(t), \phi(t)]$

Conceptual and technical problems:
Infinite number of dof \longrightarrow a few: mathematical consistency?
Freeze momenta? Heisenberg uncertainties?
$\mathrm{QM}=$ minisuperspace of QFT

- Minisuperspace

Restrict attention from an infinite dimensional configuration space to 2 dimensional space = mini-superspace

$$
h_{i j} \mathrm{~d} x^{i} \mathrm{~d} x^{j}=a^{2}(t)\left[\frac{\mathrm{d} r^{2}}{1-k r^{2}}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \varphi^{2}\right)\right] \quad \Phi(x)=\phi(t)
$$

WDW equation becomes Schrödinger-like for $\Psi[a(t), \phi(t)]$

However, one can actually make calculations!

Exemple : Quantum cosmology of a perfect fluid

$$
\mathrm{d} s^{2}=N^{2}(\tau) \mathrm{d} \tau-a^{2}(\tau) \gamma_{i j} \mathrm{~d} x^{i} \mathrm{~d} x^{j}
$$

Perfect fluid: Schutz formalism ('70)

$$
p=p_{0}\left[\frac{\dot{\varphi}+\theta \dot{s}}{N(1+\omega)}\right]^{\frac{1+\omega}{\omega}}
$$

$(\varphi, \theta, s)=$ Velocity potentials
canonical transformation: $\quad T=-p_{s} \mathrm{e}^{-s / s_{0}} p_{\varphi}^{-(1+\omega)} s_{0} \rho_{0}^{-\omega} \quad \ldots$

+ rescaling (volume...) + units... : simple Hamiltonian:

$$
H=\left(-\frac{p_{a}^{2}}{4 a}-\mathcal{K} a+\frac{p_{T}}{a^{3 \omega}}\right) N
$$

Wheeler-De Witt

$$
H \Psi=0
$$

$$
\mathcal{K}=0 \Longrightarrow \chi \equiv \frac{2 a^{3(1-\omega) / 2}}{3(1-\omega)} \Longrightarrow i \frac{\partial \Psi}{\partial T}=\frac{1}{4} \frac{\partial^{2} \Psi}{\partial \chi^{2}}
$$

space defined by $\chi>0 \longrightarrow$ constraint $\bar{\Psi} \frac{\partial \Psi}{\partial \chi}=\Psi \frac{\partial \bar{\Psi}}{\partial \chi}$
Gaussian wave packet

$$
\begin{gathered}
\square \Psi=\left[\frac{8 T_{0}}{\pi\left(T_{0}^{2}+T^{2}\right)^{2}}\right]^{\frac{1}{4}} \exp \left(-\frac{T_{0} \chi^{2}}{T_{0}^{2}+T^{2}}\right) \mathrm{e}^{-i S(\chi, T)} \\
\text { phase } \quad S=\frac{T \chi^{2}}{T_{0}^{2}+T^{2}}+\frac{1}{2} \arctan \frac{T_{0}}{T}-\frac{\pi}{4}
\end{gathered}
$$

What do we do with the wave function of the Universe???

Quantum mechanics of closed systems

Physical system $=$ Hilbert space of configurations

State vectors

Observables $=$ self-adjoint operators
Measurement $=$ eigenvalue $\quad A\left|a_{n}\right\rangle=a_{n}\left|a_{n}\right\rangle$
Evolution = Schrödinger equation (time translation invariance) $\begin{gathered}i \hbar \frac{\mathrm{~d}}{\mathrm{~d} t}|\psi(t)\rangle=\hat{H}|\psi(t)\rangle \\ \text { Hamiltonian }\end{gathered}$
Born rule Prob $\left[a_{n} ; t\right]=\left|\left\langle a_{n} \mid \psi(t)\right\rangle\right|^{2}$
Collapse of the wavefunction: $|\psi(t)\rangle$ before measurement, $\left|a_{n}\right\rangle$ after

Schrödinger equation = linear (superposition principle) / unitary evolution
Wavepacket reduction $=$ non linear $/$ stochastic

Mutually
incompatible

The measurement problem in quantum mechanics

$$
\left|\Psi_{\text {in }}\right\rangle=\frac{1}{\sqrt{2}}(|\uparrow\rangle+|\downarrow\rangle) \otimes|\overbrace{\text { in }}\rangle
$$ pure state

Unitary, deterministic Schödinger evolution

Stern-Gerlach

$$
\begin{aligned}
\left|\Psi_{\mathrm{f}}\right\rangle & =\exp \left[\int_{t_{\text {in }}}^{t_{\mathrm{f}}} \hat{H}(\tau) \mathrm{d} \tau\right]\left|\Psi_{\text {in }}\right\rangle \\
& =\frac{1}{\sqrt{2}}\left(|\uparrow\rangle \otimes\left|\mathrm{SG}_{\uparrow}\right\rangle+|\downarrow\rangle \otimes\left|\mathrm{SG}_{\downarrow}\right\rangle\right)
\end{aligned}
$$

Problem: how to reach the actual measurement $|\uparrow\rangle \otimes\left|S G_{\uparrow}\right\rangle$ or $|\downarrow\rangle \otimes\left|\mathrm{SG}_{\downarrow}\right\rangle \quad$?

The measurement problem in quantum mechanics
Statistical mixture

The measurement problem in quantum mechanics

Stern-Gerlach

What about situations in which one has only one realization?

What about the Universe itself?

Hidden Variable Theories

Schrödinger $\quad i \frac{\partial \Psi}{\partial t}=\left[-\frac{\nabla^{2}}{2 m}+V(\boldsymbol{r})\right] \Psi$

Polar form of the wave function $\quad \Psi=A(\boldsymbol{r}, t) \mathrm{e}^{i S(\boldsymbol{r}, t)}$

Hamilton-Jacobi

$$
\frac{\partial S}{\partial t}+\frac{(\nabla S)^{2}}{2 m}+V(\boldsymbol{r})+Q(\boldsymbol{r}, t)=0
$$

$$
\underset{\text { potential }}{\underset{\text { quantum }}{ } \equiv-\frac{1}{2 m} \frac{\nabla^{2} A}{A}}
$$

Ontological formulation (dBB) $\quad \exists \boldsymbol{x}(t)$

$$
\Psi=A(\boldsymbol{r}, t) \mathrm{e}^{i S(\boldsymbol{r}, t)}
$$

Trajectories satisfy (de Broglie) $\quad m \frac{\mathrm{~d} \boldsymbol{x}}{\mathrm{~d} t}=\Im m \frac{\Psi^{*} \nabla \Psi}{|\Psi(\boldsymbol{x}, t)|^{2}}=-\nabla S$

Ontological formulation (BdB) $\quad \exists \boldsymbol{x}(t)$

$$
\Psi=A(\boldsymbol{r}, t) \mathrm{e}^{i S(\boldsymbol{r}, t)}
$$

$$
m \frac{\mathrm{~d}^{2} \boldsymbol{x}}{\mathrm{~d} t^{2}}=-\nabla(V+Q) \quad Q \equiv-\frac{1}{2 m} \frac{\nabla^{2}|\Psi|}{|\Psi|}
$$

Ontological formulation (dBB) $\quad \exists \boldsymbol{x}(t)$

$$
\Psi=A(\boldsymbol{r}, t) \mathrm{e}^{i S(\boldsymbol{r}, t)}
$$

Trajectories satisfy (de Broglie) $\quad m \frac{\mathrm{~d} \boldsymbol{x}}{\mathrm{~d} t}=\Im m \frac{\Psi^{*} \nabla \Psi}{|\Psi(\boldsymbol{x}, t)|^{2}}=-\nabla S$

Ontological formulation (dBB) $\quad \exists \boldsymbol{x}(t)$

$$
\Psi=A(\boldsymbol{r}, t) \mathrm{e}^{i S(\boldsymbol{r}, t)}
$$

Trajectories satisfy (de Broglie) $\quad m \frac{\mathrm{~d} \boldsymbol{x}}{\mathrm{~d} t}=\Im \mathrm{m} \frac{\Psi^{*} \nabla \Psi}{|\Psi(\boldsymbol{x}, t)|^{2}}=-\nabla S$
(-) strictly equivalent to Copenhagen QM

- probability distribution (attractor)

Properties:

$$
\exists t_{0} ; \rho\left(x, t_{0}\right)=\left|\Psi\left(x, t_{0}\right)\right|^{2}
$$

© classical limit well defined
© state dependent
© \exists intrinsic reality non local ...
© no need for external classical domain/observer!

The two-slit experiment:

The two-slit experiment:

Surrealistic trajectories?

Non straight in vacuum...

$$
m \frac{\mathrm{~d}^{2} x(t)}{\mathrm{d} t^{2}}=-\nabla(\boldsymbol{X}+Q)
$$

... a phenomenon which is impossible, absolutely impossible, to explain in any classical way, and which has in it the heart of quantum mechanics.

Back to the QC wave function

Gaussian wave packet

$$
\begin{aligned}
& \square \Psi=\left[\frac{8 T_{0}}{\pi\left(T_{0}^{2}+T^{2}\right)^{2}}\right]^{\frac{1}{4}} \exp \left(-\frac{T_{0} \chi^{2}}{T_{0}^{2}+T^{2}}\right) \mathrm{e}^{-i S(\chi, T)} \\
& \text { phase } \quad S=\frac{T \chi^{2}}{T_{0}^{2}+T^{2}}+\frac{1}{2} \arctan \frac{T_{0}}{T}-\frac{\pi}{4} \\
& \text { Hidden trajectory } \quad a=a_{0}\left[1+\left(\frac{T}{T_{0}}\right)^{2}\right]^{\frac{1}{3(1-\omega)}}
\end{aligned}
$$

J. Acacio de Barros, N. Pinto-Neto \& M. A. Sagorio-Leal, Phys. Lett. A241, 229 (1998)

Implementing a bounce $=$ problem with GR!

Violation of Null Energy Condition (NEC) $\quad \rho+p \geq 0$

Positive spatial curvature + scalar field

Modify GR?
Add new terms?

K-bounce, Ghost condensates, Galileons...?

Various instabilities may arise!
(e.g. radiation for matter bounce or curvature perturbations)

The problem with contraction: BKL/shear instability
Friedmann equations

Ricci flat:

$$
\sigma^{i}=\mathrm{d} x^{i}
$$

$\sum_{i} \theta_{i}=0$
Average scale factor

$$
\left.\begin{array}{rl}
H^{2} & =\frac{\rho_{\mathrm{T}}}{3 M_{\mathrm{Pl}}^{2}}+\frac{1}{6} \sum_{i} \dot{\theta}_{i}^{2} \\
\dot{H} & =-\frac{\rho_{\mathrm{T}}+p_{\mathrm{T}}}{2 M_{\mathrm{Pl}}^{2}}-\frac{1}{2} \sum_{i} \dot{\theta}_{i}^{2}
\end{array}\right\} \ddot{\theta}_{i}+3 H \dot{\theta}_{i}=0
$$

The problem with contraction: BKL/shear instability

$$
\begin{aligned}
& \mathrm{d} s^{2}=\mathrm{d} t^{2}-a^{2}(t) \sum_{i} \mathrm{e}^{2 \theta_{i}(t)} \sigma^{i} \sigma^{i} \\
& \text { Ricci flat: } \\
& \sigma^{i}=\mathrm{d} x^{i} \\
& \sum_{i} \theta_{i}=0 \\
& \text { Average scale factor } \\
& \text { Friedmann equations } \\
& \left.\begin{array}{rl}
H^{2} & =\frac{\rho_{\mathrm{T}}}{3 M_{\mathrm{Pl}}^{2}}+\frac{1}{6} \sum_{i} \dot{\theta}_{i}^{2} \\
\dot{H} & =-\frac{\rho_{\mathrm{T}}+p_{\mathrm{T}}}{2 M_{\mathrm{Pl}}^{2}}-\frac{1}{2} \sum_{i} \dot{\theta}_{i}^{2}
\end{array}\right\} \ddot{\theta}_{i}+3 H \dot{\theta}_{i}=0
\end{aligned}
$$

Ekpyrotic/cyclic scenario:

$$
\mathcal{S}_{5} \propto \int_{\mathcal{M}_{5}} \mathrm{~d}^{5} x \sqrt{-g_{5}}\left[R_{(5)}-\frac{1}{2}(\partial \varphi)^{2}-\frac{3}{2} \frac{\mathrm{e}^{2 \varphi} \mathcal{F}^{2}}{5!}\right]
$$

$$
\begin{gathered}
\mathcal{S}_{4}=\int_{\mathcal{M}_{4}} \mathrm{~d}^{4} x \sqrt{-g_{4}}\left[\frac{R_{(4)}}{2 \kappa}-\frac{1}{2}(\partial \phi)^{2}-V(\phi)\right] \\
V(\varphi)=-V_{\mathrm{i}} \exp \left[-\frac{4 \sqrt{\pi \gamma}}{m_{\mathrm{P} 1}}\left(\varphi-\varphi_{\mathrm{i}}\right)\right]
\end{gathered}
$$

Singular ...

Singular ...
... the Universe contracts towards a "big crunch" until the scale factor $a(t)$ is so small that quantum gravity effects become important. The presumption is that these quantum gravity effects introduce deviations from conventional general relativity and produce a bounce that preserves the smooth, flat conditions achieved during the ultraslow contraction phase.

PRL 105, 261301 (2010) stops contraction and reverses to expansion at a finite value of $a(t)$ where classical general relativity is still valid. A significant advantage of this scenario is that the entire cosmological history can be described by 4D effective field theory and classical general relativity, without invoking extra dimensions or quantum gravity effects.

Ekpyrotic solution:
$w_{\mathrm{ekp}} \gg 1 \Longrightarrow \rho_{\mathrm{ekp}} \propto a^{-3\left(1+w_{\mathrm{ekp}}\right)} \ll a^{-6} \quad$ when $\quad a \longrightarrow 0$

Hence a singular bounce!

Problem: regular bounce $\neg \exists$ phase with $w_{\text {bounce }}<-1$
So finally...

$$
\rho_{\text {Shear }} \equiv \frac{M_{\mathrm{Pl}}^{2}}{2} \sum_{i} \dot{\theta}_{i}^{2} \propto a^{-6} \gg \rho_{\text {Fluid }}
$$

Singularity!

Y. Cai, R. Brandenberger \& PP, Class. Quantum Grav. 30 (2013) 075019 [arXiv:1301.4703]

A nonsingular bounce model

$$
\mathcal{L}[\phi(x)]=K(\phi, X)+G(\phi, X) \square \phi \text { with kinetic term } X \equiv \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi \quad \text { + Fluid }
$$

Stress-energy tensor

$$
T_{\mu \nu}^{\phi}=\left(-K+2 X G_{, \phi}+G_{, X} \nabla_{\sigma} X \nabla^{\sigma} \phi\right) g_{\mu \nu}+\left(K_{, X}+G_{, X} \square \phi-2 G_{, \phi}\right) \nabla_{\mu} \phi \nabla_{\nu} \phi-G_{, X}\left(\nabla_{\mu} X \nabla_{\nu} \phi+\nabla_{\nu} X \nabla_{\mu} \phi\right)
$$

Energy density \& Pressure

$$
\begin{aligned}
\rho_{\phi} & =\frac{1}{2} M_{\mathrm{Pl}}^{2}(1-g) \dot{\phi}^{2}+\frac{3}{4} \beta \dot{\phi}^{4}+3 \gamma H \dot{\phi}^{3}+V(\phi) \\
p_{\phi} & =\frac{1}{2} M_{\mathrm{Pl}}^{2}(1-g) \dot{\phi}^{2}+\frac{1}{4} \beta \dot{\phi}^{4}-\gamma \dot{\phi}^{2} \ddot{\phi}-V(\phi) \\
& + \text { Fluid } \quad p=w \rho
\end{aligned}
$$

Einstein equation $+\nabla_{\mu} T_{\text {Fluid }}^{\mu \nu}=0$

+ modified Klein-Gordon $\mathcal{P} \ddot{\phi}+\mathcal{D} \dot{\phi}+V_{, \phi}=0$
with...

$$
\begin{aligned}
\mathcal{P}= & (1-g) M_{\mathrm{Pl}}^{2}+6 \gamma H \dot{\phi}+3 \beta \dot{\phi}^{2}+\frac{3 \gamma^{2}}{2 M_{\mathrm{Pl}}^{2}} \dot{\phi}^{4} \\
\mathcal{D}= & 3(1-g) M_{\mathrm{Pl}}^{2} H+\left(9 \gamma H^{2}-\frac{1}{2} M_{\mathrm{Pl}}^{2} g_{, \phi}\right) \dot{\phi}+3 \beta H \dot{\phi}^{2} \\
& -\frac{3}{2}(1-g) \gamma \dot{\phi}^{3}-\frac{9 \gamma^{2} H \dot{\phi}^{4}}{2 M_{\mathrm{Pl}}^{2}}-\frac{3 \beta \gamma \dot{\phi}^{5}}{2 M_{\mathrm{Pl}}^{2}} \\
& -\frac{3}{2} G, X \sum_{i} \dot{\theta}_{i}^{2} \dot{\phi}-\frac{3 G, X}{2 M_{\mathrm{Pl}}^{2}}\left(\rho_{\mathrm{m}}+p_{\mathrm{m}}\right) \dot{\phi}
\end{aligned}
$$

5 phases:

Anisotropies can remain small all throughout!!!!
explicit example...

$$
\begin{gathered}
V_{0}=10^{-7}, \quad g_{0}=1.1, \quad \beta=5, \quad \gamma=10^{-3} \\
b_{V}=5, \quad b_{g}=0.5, \quad p=0.01, \quad q=0.1 \\
\rho_{\mathrm{m}, \mathrm{~B}}=2.8 \times 10^{-10}, \quad M_{\theta, 1}=2.2 \times 10^{-6} \\
M_{\theta, 2}=3.4 \times 10^{-6}, \quad M_{\theta, 3}=-5.6 \times 10^{-6} \\
\phi_{\mathrm{ini}}=-2, \quad \dot{\phi}_{\mathrm{ini}}=7.8 \times 10^{-6} .
\end{gathered}
$$

Hubble parameters

Energy densities

Anisotropies

Cargèse / 18 september 2014

Density parameters and shears

Density parameters and shears

Standard Failures and inflationary solutions

Singularity Not solved... actually not addressed!
Horizon $\quad d_{\mathrm{H}} \equiv a(t) \int_{t_{\mathrm{i}}}^{t} \frac{\mathrm{~d} \tau}{a(\tau)} \quad$ can be made as big as one wishes
Flatness $\quad \frac{\mathrm{d}}{\mathrm{d} t}|\Omega-1|=-2 \frac{\ddot{a}}{\dot{a}^{3}} \quad \ddot{a}>0 \quad \& \dot{a}>0$
accelerated expansion (inflation)

Homogeneity \& Isotropy

Initial Universe = very small patch
Accelerated expansion drives the shear to zero...

+ attractor
Perturbations Bonus of the theory: superb predictions!!!
Others dark matter/energy, baryogenesis, ...

Standard Failures and bouncing solutions

Singularity Merely a non issue in the bounce case!
Horizon $\quad d_{\mathrm{H}} \equiv a(t) \int_{t_{\mathrm{i}}}^{t} \frac{\mathrm{~d} \tau}{a(\tau)} \quad$ can be made divergent easily if $\quad t_{\mathrm{i}} \rightarrow-\infty$
Flatness $\quad \frac{\mathrm{d}}{\mathrm{d} t}|\Omega-1|=-2 \frac{\ddot{a}}{\dot{a}^{3}} \quad \quad \ddot{a}<0 \& \dot{a}<0$
accelerated expansion (inflation) or decelerated contraction (bounce)
Homogeneity Large \& flat Universe + low initial density + diffusion
$\frac{t_{\text {dissipation }}}{t_{\text {Hubble }}} \propto \frac{\lambda}{R_{\mathrm{H}}^{1 / 3}}\left(1+\frac{\lambda}{A R_{\mathrm{H}}^{2}}\right) \quad \begin{aligned} & \text { enough time to dissipate any wavelength } \\ & \\ & \text { vacuum state! ... debatable though }\end{aligned}$
ISOtropy Potentially problematic: model dependent
Others dark matter/energy, baryogenesis, ...

Perturbations: $\quad \mathrm{d} s^{2}=a^{2}(\eta)\left\{(1+2 \Phi) \mathrm{d} \eta^{2}-\left[(1-2 \Phi) \gamma_{i j}+h_{i j}\right] \mathrm{d} x^{i} \mathrm{~d} x^{j}\right\}$

Initial conditions fixed in the contracting era

$$
a(\eta)
$$

Perturbations: $\quad \mathrm{d} s^{2}=a^{2}(\eta)\left\{(1+2 \Phi) \mathrm{d} \eta^{2}-\left[(1-2 \Phi) \gamma_{i j}+h_{i j}\right] \mathrm{d} x^{i} \mathrm{~d} x^{j}\right\}$

Geometric matching conditions?

$$
[a]_{ \pm}=0 \quad \text { OK }
$$

Continuity of extrinsic curvature $\quad[H]_{ \pm}=0$

Perturbations?

$$
[\zeta]_{ \pm}=0
$$

Self consistent bounce:

$$
\mathrm{d} s^{2}=\mathrm{d} t^{2}-a^{2}(t)\left(\frac{\mathrm{d} r^{2}}{1-\mathcal{K} r^{2}}+r^{2} \mathrm{~d} \Omega^{2}\right)
$$

$\longrightarrow \quad$ One d.o.f. +4 dimensions G.R.

$$
\mathcal{S}=\int \mathrm{d}^{4} x \sqrt{-g}\left[\frac{R}{6 \ell_{\mathrm{P} 1}^{2}}-\frac{1}{2} \partial_{\mu} \varphi \partial^{\mu} \varphi-V(\varphi)\right]
$$

$$
H^{2}=\frac{1}{3}\left(\frac{1}{2} \dot{\varphi}^{2}+V\right)-\frac{\mathcal{K}}{a^{2}} \quad \text { Positive spatial curvature }
$$

J. Martin \& PP., Phys. Rev. D68, 103517 (2003)

Perturbations: $\quad \mathrm{d} s^{2}=a^{2}(\eta)\left\{(1+2 \Phi) \mathrm{d} \eta^{2}-\left[(1-2 \Phi) \gamma_{i j}+h_{i j}\right] \mathrm{d} x^{i} \mathrm{~d} x^{j}\right\}$

$$
\Longleftrightarrow \Phi=\frac{3 \mathcal{H} u}{2 a^{2} \theta} \quad \theta \equiv \frac{1}{a} \sqrt{\frac{\rho_{\varphi}}{\rho_{\varphi}+p_{\varphi}}\left(1-\frac{3 \mathcal{K}}{\rho_{\varphi} a^{2}}\right)}
$$

$$
u^{\prime \prime}+\left[k^{2}-\frac{\theta^{\prime \prime}}{\theta}-3 \mathcal{K}\left(1-c_{\mathrm{s}}^{2}\right)\right] u=0
$$

$$
V_{u}(\eta) \equiv \frac{\theta^{\prime \prime}}{\theta}+3 \mathcal{K}\left(1-c_{\mathrm{S}}^{2}\right)=\frac{P_{24}(\eta)}{Q_{24}(\eta)}
$$

Non trivial transfer matrix

$$
\boldsymbol{T}_{i j}(k)=\left[\begin{array}{cc}
A(k) & B(k) \\
C(k) & D(k)
\end{array}\right]
$$

Actual shape depends on the microscopic parameters

Perturbations: $\quad \mathrm{d} s^{2}=a^{2}(\eta)\left\{(1+2 \Phi) \mathrm{d} \eta^{2}-\left[(1-2 \Phi) \gamma_{i j}+h_{i j}\right] \mathrm{d} x^{i} \mathrm{~d} x^{j}\right\}$

$$
\Longleftrightarrow \Phi=\frac{3 \mathcal{H} u}{2 a^{2} \theta} \quad \theta \equiv \frac{1}{a} \sqrt{\frac{\rho_{\varphi}}{\rho_{\varphi}+p_{\varphi}}\left(1-\frac{3 \mathcal{K}}{\rho_{\varphi} a^{2}}\right)}
$$

$$
u^{\prime \prime}+\left[k^{2}-\frac{\theta^{\prime \prime}}{\theta}-3 \mathcal{K}\left(1-c_{\mathrm{s}}^{2}\right)\right] u=0
$$

$$
\mathcal{P}_{\zeta}=\mathcal{A} k^{n_{\mathrm{S}}-1} \cos ^{2}\left(\omega \frac{k_{\mathrm{ph}}}{k_{\star}}+\psi\right)
$$

primordial spectrum

Different parameters

Model for the bounce phase only:

$$
p=p_{0}+p_{X}\left(X-X_{0}\right)+p_{\varphi} \varphi+p_{X \varphi} \varphi(X-X 0)+\frac{1}{2} p_{X X}\left(X-X_{0}\right)^{2}+\frac{1}{2} p_{\varphi \varphi} \varphi^{2}+\cdots
$$

Oscillations $+\zeta$ conserved

k-mode mixing ...

A few problems...

$$
\text { spectral index } \quad n_{s}<1
$$

Non gaussianities: \quad phenomenological description $\quad S=-\int \mathrm{d}^{4} x \sqrt{-g}\left[R+(\partial \phi)^{2}+V(\phi)\right]$

$$
\begin{gathered}
a(\eta)=a_{0}\left[1+\frac{1}{2}\left(\frac{\eta}{\eta_{\mathrm{c}}}\right)^{2}+\lambda_{3}\left(\frac{\eta}{\eta_{\mathrm{c}}}\right)^{3}+\frac{5}{24}\left(1+\lambda_{4}\right)\left(\frac{\eta}{\eta_{\mathrm{c}}}\right)^{4}\right]+\text { scalar field } \\
\left\{\begin{array}{l}
\frac{\phi^{\prime 2}}{a^{2}}=\frac{2}{a^{2}}\left(\mathcal{H}^{2}-\mathcal{H}^{\prime}+\mathcal{K}\right) \\
-\frac{6}{a^{2}} \mathcal{H}^{\prime}=-2 V(\phi)\left[1-\frac{\phi^{\prime 2}}{a^{2} V(\phi)}\right] \\
\phi^{\prime \prime}+2 \mathcal{H} \phi^{\prime}+a^{2} V_{, \phi}= \\
\varepsilon_{V}=\frac{V_{0}^{\prime}}{V_{0}} \quad \text { 'slow-roll", } \equiv \phi_{0}^{\prime 2} / 2 \longrightarrow \eta_{c}^{2}=\frac{1}{1-\Upsilon} \\
\eta_{V}=\frac{V_{0}^{\prime \prime}}{V_{0}}
\end{array}\right. \\
\text { complete set of parameters }
\end{gathered}
$$

$$
\text { perturbed metric } \mathrm{d} s^{2}=g_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}=a^{2}\left(-\mathrm{e}^{2 \Phi} \mathrm{~d} \eta^{2}+\mathrm{e}^{-2 \Psi} \gamma_{i j} \mathrm{~d} x^{i} \mathrm{~d} x^{j}\right)
$$

$u \propto a \Psi_{(1)} / \phi^{\prime} \longrightarrow u_{k}^{\prime \prime}+\left[k^{2}-V_{u}(\eta)\right] u_{k}=0$

perturbations up to 2 nd order $X(\boldsymbol{x}, \eta)=X_{(1)}(\boldsymbol{x}, \eta)+\frac{1}{2} X_{(2)}(\boldsymbol{x}, \eta)+\cdots$
$\mathcal{D} \Psi_{(i)}=\mathcal{S}\left[\Psi_{(i-1)}\right]$
first order

$$
\begin{aligned}
& \Psi_{(1)}^{\prime \prime}+F(\eta) \Psi_{(1)}^{\prime}-\bar{\nabla}^{2} \Psi_{(1)}+W(\eta) \Psi_{(1)}=0 \\
& 2\left(\mathcal{H}-\frac{\overline{\phi^{\prime \prime}}}{\bar{\phi}^{\prime}}\right) \\
& 2\left(\mathcal{H}^{\prime}-\mathcal{H} \frac{\bar{\phi}^{\prime \prime}}{\bar{\phi}^{\prime}}-2 \mathcal{K}\right)
\end{aligned}
$$

positive spatial curvature: decomposition on the 3-sphere

$$
\begin{array}{cc}
\Psi_{(1)}(x, \eta)=\sum_{\ell m n} \Psi_{\ell m n}(\eta) Q_{\ell m n}(\chi, \theta, \varphi) & \text { Legendre } \\
Q_{\ell m n}(\chi, \theta, \varphi)=R_{\ell n}(\chi) Y_{\ell m}(\theta, \varphi) & \text { hyperspherical harmonics }
\end{array}
$$

effect of the bounce itself: initial conditions = classical gaussian fields

$$
\left[\begin{array}{ll}
\Psi_{(1)}\left(\boldsymbol{k}, \eta_{-}\right) \\
\Psi_{(1)}^{\prime} & \left(\boldsymbol{k}, \eta_{-}\right)
\end{array}\right] \equiv\left[\begin{array}{l}
\hat{x}_{1}(\boldsymbol{k}) \\
\hat{x}_{2}(\boldsymbol{k})
\end{array}\right]
$$

$$
\left\langle\hat{x}_{i}(\boldsymbol{k}) \hat{x}_{j}\left(\boldsymbol{k}^{\prime}\right)\right\rangle \equiv \delta_{k, k^{\prime}} P_{i j}(k)
$$

2nd order $\Psi_{(2)}^{\prime \prime}+2\left(\mathcal{H}-\frac{\bar{\phi}^{\prime \prime}}{\bar{\phi}^{\prime}}\right) \Psi_{(2)}^{\prime}-\bar{\nabla}^{2} \Psi_{(2)}+2\left(\mathcal{H}^{\prime}-2 \mathcal{K}-\mathcal{H} \frac{\bar{\phi}^{\prime \prime}}{\bar{\phi}^{\prime}}\right) \Psi_{(2)}=\mathcal{S}_{(2)}$

$$
\begin{array}{r}
\mathcal{S}_{(2)}=4\left(2 \mathcal{H}^{2}-\mathcal{H}^{\prime}+2 \mathcal{H} \frac{\bar{\phi}^{\prime \prime}}{\bar{\phi}^{\prime}}+6 \mathcal{K}\right) \Psi_{(1)}^{2}+8 \Psi_{(1)}^{\prime 2}+8\left(2 \mathcal{H}+\frac{\bar{\phi}^{\prime \prime}}{\bar{\phi}^{\prime}}\right) \Psi_{(1)} \Psi_{(1)}^{\prime}+8 \Psi_{(1)} \bar{\nabla}^{2} \Psi_{(1)}-\frac{4}{3}\left(\bar{\nabla}_{i} \Psi_{(1)}\right)^{2} \\
-\left[2\left(2 \mathcal{H}^{2}-\mathcal{H}^{\prime}\right)-\frac{\bar{\phi}^{\prime \prime \prime}}{\bar{\phi}^{\prime}}\right] \phi_{(1)}^{2}-\frac{2}{3}\left(\bar{\nabla}_{i} \phi(1)\right)^{2}-2\left(\frac{\bar{\phi}^{\prime \prime}}{\bar{\phi}^{\prime}}+2 \mathcal{H}\right) \bar{\nabla}^{-2} \bar{\nabla}^{i}\left(2 \Psi_{(1)}^{\prime} \bar{\nabla}_{i} \Psi_{(1)}+\phi_{(1)}^{\prime} \bar{\nabla}_{i} \phi_{(1)}\right) \\
+\left[2\left(\mathcal{H}^{\prime}-\mathcal{H} \frac{\bar{\phi}^{\prime \prime}}{\bar{\phi}^{\prime}}\right)+\frac{1}{3} \bar{\nabla}^{2}\right]\left[2 F\left(\Psi_{(1)}\right)+F\left(\phi_{(1)}\right)\right]+\mathcal{H}\left[2 F\left(\Psi_{(1)}\right)+F\left(\phi_{(1)}\right)\right]^{\prime} \\
F(X)=\left(\bar{\nabla}^{2} \bar{\nabla}^{2}+3 \mathcal{K} \bar{\nabla}^{2}\right)^{-1}\left[\bar{\nabla}_{i} \bar{\nabla}^{j}\left(3 \bar{\nabla}^{i} X \bar{\nabla}_{j} X-\delta_{j}^{i}\left(\bar{\nabla}_{k} X\right)^{2}\right)\right]
\end{array}
$$

general solution

$$
\begin{aligned}
& \mathcal{S}_{(2)}(\boldsymbol{k}, \eta)=\sum_{p_{1}, \boldsymbol{p}_{2}} \mathcal{G}_{\boldsymbol{k}, \boldsymbol{p}_{1}, \boldsymbol{p}_{2}} \tilde{\Sigma}_{i j}\left(k, p_{1}, p_{2} ; \eta\right) \hat{a}_{i}\left(\boldsymbol{p}_{1}\right) \hat{a}_{j}\left(\boldsymbol{p}_{2}\right) \\
& \Psi_{(2)}(\boldsymbol{k}, \eta)=\Psi_{(2)}^{(0)}(\boldsymbol{k}, \eta)+\sum_{\boldsymbol{p}_{1} \cdot \boldsymbol{p}_{\boldsymbol{\prime}}} \mathcal{G}_{\boldsymbol{k}, \boldsymbol{p}_{1}, \boldsymbol{p}_{2}} \Pi_{i j}\left(k, p_{1}, p_{2} ; \eta\right) \hat{x}_{i}\left(\boldsymbol{p}_{1}\right) \hat{x}_{j}\left(\boldsymbol{p}_{2}\right) \\
& \Pi_{i j}\left(k, p_{1}, p_{2} ; \eta\right) \equiv \int_{\eta_{-}}^{\eta} \mathrm{d} \eta^{\prime} G\left(k, \eta, \eta^{\prime}\right) \Sigma_{i j}\left(k, p_{1}, p_{2} ; \eta^{\prime}\right)
\end{aligned}
$$

Green

Bispectrum $\left\langle\Psi\left(\boldsymbol{k}_{1}, \eta\right) \Psi\left(\boldsymbol{k}_{2}, \eta\right) \Psi\left(\boldsymbol{k}_{3}, \eta\right)\right\rangle \equiv \frac{1}{2} \mathcal{G}_{\boldsymbol{k}_{1} \boldsymbol{k}_{2} \boldsymbol{k}_{3}} \mathcal{B}_{\Psi}\left(k_{1}, k_{2}, k_{3} ; \eta\right)$
$\delta\left(\boldsymbol{k}_{1}+\boldsymbol{k}_{2}+\boldsymbol{k}_{3}\right)$

$$
\mathcal{B}_{\Psi}\left(k_{1}, k_{2}, k_{3}\right)=\frac{6}{5} f_{\mathrm{NL}}\left[P_{\Psi \Psi}\left(k_{1}\right) P_{\Psi \Psi}\left(k_{2}\right)+P_{\Psi \Psi}\left(k_{2}\right) P_{\Psi \Psi}\left(k_{3}\right)+P_{\Psi \Psi}\left(k_{3}\right) P_{\Psi \Psi}\left(k_{1}\right)\right]
$$

$$
\pi^{7 P_{\Psi \Psi}(k)+11 P_{\Psi \Psi^{\prime}}(k)+4 P_{\Psi^{\prime} \Psi^{\prime}}(k)}
$$

$$
f_{\mathrm{NL}}=-\frac{5\left(k_{1}+k_{2}+k_{3}\right)}{3 \Upsilon K_{3}\left(k_{1}, k_{2}, k_{3}\right)}\left(\left[\prod_{\sigma(i, j, \ell)}\left(k_{i}+k_{j}-k_{\ell}\right)\right]\left\{\sum_{\sigma(i, j, \ell)} \frac{K_{1}\left(k_{i}\right) K_{1}\left(k_{j}\right)}{k_{\ell}^{2}}-4\left[\frac{K_{1}\left(k_{i}\right) K_{2}\left(k_{j}\right)}{k_{j}^{2} k_{\ell}^{2}}+\frac{K_{1}\left(k_{j}\right) K_{2}\left(k_{i}\right)}{k_{i}^{2} k_{\ell}^{2}}\right]\right\}\right.
$$

$$
\left.-\sum_{\sigma(i, i, \ell)}\left[\frac{7}{3}+\frac{2}{3}\left(\frac{k_{i}^{2}+k_{j}^{2}}{k_{\ell}^{2}}\right)-3\left(\frac{k_{i}^{2}-k_{j}^{2}}{k_{\ell}^{2}}\right)^{2}\right] K_{1}\left(k_{i}\right) K_{1}\left(k_{j}\right)\right)+\cdots,
$$

$$
81 \sum_{\sigma(i, j)} P_{\Psi \Psi}\left(k_{i}\right) P_{\Psi \Psi}\left(k_{j}\right)+108 \sum_{\sigma(i, j)} P_{\Psi \Psi}\left(k_{i}\right) P_{\Psi \Psi^{\prime}}\left(k_{j}\right)+36 \sum_{\sigma(i, j)} P_{\Psi \Psi}\left(k_{i}\right) P_{\Psi^{\prime} \Psi^{\prime}}\left(k_{j}\right)+
$$

$$
144 \sum_{\sigma(i, j)} P_{\Psi \Psi^{\prime}}\left(k_{i}\right) P_{\Psi \Psi^{\prime}}\left(k_{j}\right)+48 \sum_{\sigma(i, j)} P_{\Psi \Psi^{\prime}}\left(k_{i}\right) P_{\Psi^{\prime} \Psi^{\prime}}\left(k_{j}\right)+16 \sum_{\sigma(i, j)} P_{\Psi^{\prime} \Psi^{\prime}}\left(k_{i}\right) P_{\Psi^{\prime} \Psi^{\prime}}\left(k_{j}\right)
$$

equilateral $k_{1}=k_{2}=k_{3}=k$

$$
\text { squeezed } \quad k_{i}=k_{j}=k \quad \& \quad k_{\ell}=p \ll k
$$

$$
\begin{aligned}
& f_{\mathrm{NL}}^{\text {equi }}=-\frac{15 k^{2}}{\Upsilon} \frac{K_{1}^{2}(k)}{K_{3}(k, k, k)} \\
& f_{\mathrm{NL}}^{\mathrm{sq}}=--\frac{20 k^{2}}{3 \Upsilon} \frac{K_{1}^{2}(k)+K_{1}(k) K_{1}(p)}{K_{3}(k, k, p)}
\end{aligned}
$$

folded $\quad k_{2}=k_{3}=\frac{1}{2} k_{1}$

$10^{3} h \mathrm{Mpc}^{-1} \lesssim k_{\text {phys }} \lesssim 10^{3} h \mathrm{Mpc}^{-1}$

$$
10^{2} \lesssim k \lesssim 10^{8} \text { with } \Omega_{\mathcal{K}} \leq 10^{-2}
$$

Conclusion

Bouncing cosmology = testbed for new ideas, interesting, potentially useful... not yet an alternative to inflation

Refs.

Primordial Cosmology

Patrick Peter
Jean-Philippe Uzan
oxford graduate texts

PP., Cosmological Perturbation Theory, arXiv:1303.2509 (2013)
D. Battefeld \& PP, A Critical Review of Classical Bouncing Cosmologies, Phys. Rep. (2014) [arXiv:1406.2790]

