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● Phase transitions in the early universe

✦ Triggered by the spontaneous breakdown of the fundamental
interactions [Kirzhnits:1972,Kobsarev:1974, Kibble:1976]

● Example: Abelian Higgs model and U(1) symmetry

Lh =
1

2
(DµΦ)

†
(DµΦ)− 1

4
HµνH

µν − V (Φ),

Dµ = ∂µ + igBµ, V (Φ) =
λ

8

(

|Φ|2 − η2v
)2

+O
(

Θ2|Φ|2
)

V [ℜ(Φ),ℑ(Φ)] at
✞

✝

☎

✆
Θ > Θc

Φ0 = 0, δΦ0 = 0

V [ℜ(Φ),ℑ(Φ)] at
✞

✝

☎

✆
Θ < Θc

Φ0 = ηve
iθ, δΦ0 6= 0
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● Kibble–Zurek mechanism: ℓc < dh
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��

θ

|Φ| = 0

|Φ| = η

θi
e<Φ> = ηv

v

● Conserved topological charge

∮

dθ(s)

ds
ds = 2πn

● Invariance group M of the vacuum

For G → H and ∀g ∈ G, one has

M ≡ {gΦ0/Φ0 ∈ H} ∼ G/H

● Homotopy groups and defects

π0(M) ≁ {I} =⇒ ∃ domain walls

π1(M) ≁ {I} =⇒ ∃ cosmic strings

π2(M) ≁ {I} =⇒ ∃monopoles
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● Field profiles within a Nielsen-Olesen vortex

Φ = ηvH(̺)einθ,

Bµ =
Q(̺)− n

g
δµθ

with

mh =
√
ληv, mb ≡ gηv

0 20 40 60
ρ

0

0.2

0.4

0.6

0.8

1
H

Q

mh=1
mb=0.15

● Stress tensor integrated over transverse directions

T tt = −T zz =
λη4v
2

[

(∂̺H)
2
+

Q2H2

̺2
+

(H2 − 1)2

4
+

λ

g2
(∂̺Q)

2

̺2

]

=⇒ energy density = string tension ⇔ U = T = O
(

m2
h

m2
b

)

η2v
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● Topological defects

✦ Global strings [Davis:1985, Durrer:1998rw,

Yamaguchi:1999yp]

✦ Non-Abelian strings [Vilenkin:1984rt,

Dvali:1993qp, Spergel:1996ai, Bucher:1998mh,

McGraw:1998]

✦ K- and DBI-strings [Babichev:2006cy,

Babichev:2007tn, Sarangi:2007mj]

✦ Current-carrying strings
[Witten:1984eb, Davis:1988ip,Carter:1989dp, Peter:1992dw,

Peter:1992ta]

● Line-like energy density distributions

✦ Semi-local strings: energetically
favoured for mb > mh

[Vachaspati:1991, Hindmarsh:1991jq, Achucarro:1999it]

✦ Cosmic superstrings: bound
states made of p F -strings and
q D1-brane [Witten:1985fp,Copeland:2009ga,

Sakellariadou:2008ie, Polchinski:2004ia, Davis:2008dj]

✦ Nambu–Goto strings: Lorentz
invariant two-dimensional
worldsheet [Goto:1971ce,Nambu:1974]

● Carter strings [Carter:1989xk, Carter:1992vb, Carter:1994zs, Carter:2000wv]

✦ Infinitely thin strings with an internal structure: U 6= T

✦ Two-dimensional models of current carrying strings
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● String = two-dimensional worldsheet located at: xµ = Xµ(ξa)

✦ Induced metric on the string: γab = gµν
∂Xµ

∂ξa
∂Xν

∂ξb

● Carter’s covariant formalism

✦ First fundamental form: projector onto the string worldsheet

qµν ≡ γab ∂X
µ

∂ξa
∂Xν

∂ξb
=⇒











⊥µ
ν ≡ gµν − qµν ,

∇̄µ ≡ qαµ∇α

K ρ
µν ≡ qαν∇̄µ q

ρ
α

✦ Stress tensor in its eigenvector basis: u2 = −1, v2 = 1, uαvα = 0

T̄µν = Uuµuν − Tvµvν = (U − T )uµuν − Tqµν ,

qµν = −uµuν + vµvν

✦ For a barotropic equation of state U = U(T )

∇̄ρT̄
ρσ = 0 =⇒ Kρ =⊥ρ

σ

(

U

T
− 1

)

uα∇̄αu
σ
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● Lorentz invariance =⇒ U = T =⇒ Kµ = 0

✦ Equations of motion

Kµ =
1√−γ

∂a
(√−γγab∂bX

µ
)

+ Γµ
νργ

ab∂aX
ν∂bX

ρ = 0

✦ Can also be directly obtained from: S = −U

∫

d2ξ
√−γ

● In Friedmann–Lemâıtre background: τ ≡ ξ0 and σ ≡ ξ2

✦ Transverse gauge: gµν
∂Xµ

∂τ

∂Xν

∂σ
= ẊµX́µ = 0

✦ Equation of motion: ε ≡
√

−X́2

Ẋ2

Ẍµ +

(

ε̇

ε
+

2

a

da

dX0
Ẋ0

)

Ẋµ − 1

ε

(

X́µ

ε

)′

− 2

a

da

dX0

X́0

ε

X́µ

ε
+ δµ0

2

a

da

dX0
Ẋ2 = 0



bC bC

bC

bC

bC

bC

bC

Temporal gauge

Theoretical aspects

❖Original motivations:
topological defects

❖Formation of topological
defects

❖Abelian Higgs strings

❖Strings of various types
and origins

❖Dynamics of infinitely
thin strings

❖The simplest case:
Nambu–Goto strings

❖Temporal gauge

❖String dynamics

❖ Intercommutation of
Abelian Higgs strings

Nambu–Goto simulations

Analytical models

Cosmological signatures

String non-Gaussianities
with Planck

Perspectives and
conclusion

11 / 59

● Gauge fixing complete by identifying τ with the background time

τ = X0 = η =⇒































~̇X · ~́X = 0, ε =

√

√

√

√

~́X2

1− ~̇X2
, ε̇+ 2Hε ~̇X2 = 0,

~̈X + 2H
(

1− ~̇X2
)

− 1

ε

(

~́X

ε

)′

= 0

● Bennet–Bouchet equivalent equations [Bouchet:1988,Bennett:1989,Bennett:1990]

✦ Lightcone-like coordinates: u =

∫

εdσ − τ and v =

∫

εdσ + τ

✦ Left and right movers: ~p(τ, u) ≡
~́X

ε
− ~̇X and ~q(τ, v) ≡

~́X

ε
+ ~̇X

∂~p

∂τ
= −H [~q − ~p (~p · ~q)] , ∂~q

∂τ
= −H [~p− ~q (~p · ~q)] , ε̇

ε
= −H (1− ~p · ~q)
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● Propagation of left- right-moving waves

✦ In Minkowski (H = 0): ~́X(τ, σ) =
1

2
[~p(σ + τ) + ~q(σ − τ)]

✦ In FLRW spacetime: damped and interactions on Hubble scales

● Interaction between strings is microphysics dependent

✦ Abelian Higgs strings with mh ≃ mb: P ≃ 1 and formation of 2
kinks

✦ Cosmic superstrings: P ≪ 1 (presence of extra-dimensions)

✦ (p, q)-strings: charge conservation =⇒ Y-junctions, kinematic
constraints and kinks proliferation [Copeland:2007nv, Bevis:2009az, Binetruy:2010bq,

Steer:2013nea]
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● Standard case

● Multiple reconnections possible with mh ≫ mb and v ≃ 1 [Verbiest:2011kv]
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Nambu–Goto simulations
A small matter era run (movie)
Cosmological attractor
Scaling of the energy density
Relaxation towards scaling
Loop distribution in scaling
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● Goal: getting realistic statistics of string networks in FLRW

✦ Only one parameter : U

✦ Nambu–Goto networks are already complex: non-linear and
non-local properties

● Method: solve numerically the string evolution in FLRW

✦ From some representative initial conditions [Vachaspati:1984]

✦ IC are mostly irrelevant due to the existence of a cosmological
attractor [Bennett:1989,Allen:1990,Albrecht:1989,Ringeval:2005kr,Vanchurin:2005pa]

● Numerical parameters

lc

l r

Numerical loopReal loop

Comoving box size = 1

Initial correlation length ℓc = 1/100

Initial resolution length ℓr = 1/2000
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● Long strings (ℓ > dh) rapidly reach a scaling evolution

✦ Energy density evolves as radiation/matter (∝ 1/d2h) instead of
naively expected ρ ∝ 1/a2

ρ∞
d2h
U

∣

∣

∣

∣

mat

= 28.4± 0.9 ρ∞
d2h
U

∣

∣

∣

∣

rad

= 37.8± 1.7

✦ Kibble mechanism: formation of loops that transfer some energy to
sub-horizon length scales

● A similar mechanism happens to loops themselves due to their
self-intersections

With α ≡ ℓ

dh
,

dρ◦
dα

= S(α) U
d2h

=⇒ dn

dα
=

S(α)
αd3h

✦ The scaling function S(α) can be determined from simulations

✦ But only for αc < α < 1 where αc involves physical effects not
accounted in the Nambu–Goto model
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● Scaling of the energy densities for loops and long strings
[Ringeval:2005kr,Blanco-Pillado:2013qja]
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dρ◦ ×
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= S(α) (time independent)
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● Transient effects last longer for smaller loops

10 20 30 40 50
η/l

c

0
1×

10
4

2×
10

4
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4
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4
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4

(d
ρ/

dα
) d

h2 / U

α=1.1e-3
α=4.3e-4
α=1.6e-4
α=6.4e-5
α=2.4e-5

Matter era

● NG simulations do not incorporate GW ⇒ do not describe α < αc
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● By the end of the run

Scaling parts
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● By the end of the run

Non-scaling parts
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● No fragmentation, no reconnection, loops from long string only
[Polchinski:2006ee,Dubath:2007mf,Rocha:2007ni]

✦ Predicts a power law scaling function

S(α) ∝ α2χ−2 =⇒ p = 2(1− χ)

✦ Parameter χ can be inferred from the long string scaling

● From Martins & Shellard simulations, they independently found

pmat ≃ 1.5, prad ≃ 1.8

● In the PR model χ is related to two-point functions [Hindmarsh:2008dw]

〈

X́A(σ)X́B(σ′)
〉

=
1

2
δABT (σ − σ′) T (σ) ≃ t̄2 − c1

(

σ

ξ̂

)2χ

● Agreement with simulations suggests that all neglected effects mostly
renormalise C◦
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● Boltzmann equation + PR production function

✦ PR loop production function (from string shape correlations)

t5P(ℓ, t) = c

(

ℓ

t

)2χ−3

✦ In an expanding universe

d

dt

(

a3
dn

dℓ

)

= a3P(ℓ, t)

✦ A loop shrinks due to G.W. emission (γ ≡ ℓ/t) [Allen:1992]

dℓ

dt
= −γd ≃ 100GU

● Evolution equation [Rocha:2007ni]

∂

∂t

(

a3
dn

dℓ

)

− γd
∂

∂ℓ

(

a3
dn

dℓ

)

= a3P(ℓ, t)
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● PR model + GW emission + GW backreaction [Lorenz:2010sm]

✦ Allows us to extrapolate numerical simulations to small ℓ

✦ Boltzmann equation (γd = ΓGU)

∂

∂t

(

a3
dn

dℓ

)

− γd
∂

∂ℓ

(

a3
dn

dℓ

)

= a3P(ℓ, t).

✦ Postulated piecewise scaling loop production function

γ
c

χ
c =1

χ
c =3

χ
c =10

t
5

γ

P

γ∞

t5P
(

γ =
ℓ

t
, t

)

∝ γ2χ−3

γc ≪ γd ≪ γ∞ . 1
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● Can be completely solved analytically (see arXiv.1006.0931)

● From any initial loop distribution Nini(ℓ), one gets F(γ, t) ≡ ∂n

∂ℓ
(γ, t)

t
4F(γ ≥ γc, t) =

(

t

tini

)4 ( aini

a

)3
t
4
ini Nini

{[

γ + γd

(

1 −
tini

t

)]

t

}

+ C(γ + γd)
2χ−3

f

(

γd

γ + γd

)

− C(γ + γd)
2χ−3

(

t

tini

)2χ+1 ( aini

a

)3
f

(

γd

γ + γd

tini

t

)

,

t
4F(γτ ≤ γ < γc, t) =

(

t

tini

)4 ( aini

a

)3
t
4
ini Nini

{[

γ + γd

(

1 −
tini

t

)]

t

}

+ Cc(γ + γd)
2χc−3

fc

(

γd

γ + γd

)

− C(γ + γd)
2χ−3

(

t

tini

)2χ+1 ( aini

a

)3
f

(

γd

γ + γd

tini

t

)

+ K

(

γc + γd

γ + γd

)4













a

(

γ + γd

γc + γd

t

)

a(t)













3

,

t
4F(0 < γ < γτ , t) =

(

t

tini

)4 ( aini

a

)3
t
4
ini Nini

{[

γ + γd

(

1 −
tini

t

)]

t

}

+ Cc(γ + γd)
2χc−3

fc

(

γd

γ + γd

)

γτ (t) ≡ (γc + γd)
tini

t
− γd, µ ≡ 3ν − 2χ − 1

f(x) ≡
2
F
1
(3 − 2χ, µ;µ + 1; x) fc(x) ≡

2
F
1
(3 − 2χc, µc;µc + 1; x)

http://arxiv.org/abs/1006.0931


bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

Cosmological loop distribution

Theoretical aspects

Nambu–Goto simulations

Analytical models

❖Polchinsky-Rocha model

❖ Inclusion of
gravitational backreaction

❖Cosmological loop
distribution

❖Relaxation effects are
accounted

❖Some numerical values

❖Extension to vortons

Cosmological signatures

String non-Gaussianities
with Planck

Perspectives and
conclusion

27 / 59

● Can be completely solved analytically (see arXiv.1006.0931)

● Scaling attractor does not depend on Nini nor on GW backreaction
details

10
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t4 F
(γ
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γ
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http://arxiv.org/abs/1006.0931
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● Example: transition radiation–matter
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● Density parameter of cosmic string loops (assuming γc ≪ γd ≪ 1)

ρ◦ =
U

t2

∫ 3

0

t4F(γ, t)γ dγ

C ≡ C◦(1− ν)3−p, χ = 1− p

2















=⇒ Ω◦ =
3π2C

(1− χ) sin(2πχ)

GU

γd1−2χ

✦ With NG typical values and γd ≃ 100GU (γdt0 < 380 kpc)

Ω◦ ≃ 0.10(GU)0.59 < 10−5 (with current CMB bounds on GU)

● Number density of cosmic strings loops in a box of size L (today)

t3nL =

∫ L/t

0

t4F(γ, t) dγ ≃ C

γdγc1−2χ

✦ From PR model [Polchinski:2007rg]: γc ≃ 10(GU)1+2χ (γct0 < 8 pc)

t3nL ≃ 6.1× 10−5(GU)−1.65 > 5.5× 10−6 Mpc−3
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● Boltzmann equation for current carrying loops [Peter:2013jj]: n(ℓ, t,N)

∂

∂t

[

a
3J (ℓ, t)

∂2n

∂ℓ∂N

]

−
[

γdΘ

(

ℓ− N√
U

)

+ γvΘ

(

N√
U

− ℓ

)]

∂

∂ℓ

[

a
3J (ℓ, t)

∂2n

∂ℓ∂N

]

= a
3J (ℓ, t)P(ℓ, t)δ

(

N −
√

ℓ

λ

)

ℓv

ℓ

tini t

“0”–domain

“+”–domain

“−”–domain

● Again exactly solvable for any Nini(ℓ) (see arXiv:1302.0953)

http://arxiv.org/abs/1302.0953
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● External source of cosmological perturbations: DX = S [Durrer:1997ep,

Bevis:2006mj,Urrestilla:2007sf,]

〈X †(η0, k)X (η0, k)〉 ∝
∫∫ η0

G†
k(η

′)Gk(η)〈S†(η′, k)S(η, k)〉dηdη′

● Abelian string simulations [Bevis:2010gj]

〈S†S〉 ∝ 1√
ηη′

fµνρσ

(

k
√

ηη′,
η

η′

)

1000 2000 3000 4000

10
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l                  
 10 100
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1

10
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l(l
+

1)
C

l T
2  / 

2π
 [µ

K
2 ]

150 GHz

100 GHz

f
10

≈0.1

f
10

≈1

✦ Planck + WP + ACTSPT +
BICEP2 [Lizarraga:2014xza]

✦ Fraction (at ℓ = 10) ≤ 2%

✦ Tension GU ≤ 3× 10−7

✦ Dominate at ℓ > 3000?
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● Nambu–Goto strings (U = T ): no static gravitational
effects

● Do have General Relativity effects on light and thus on
CMB (Gott-Kaiser-Stebbins)

● ISW from Nambu–Goto stress tensor + Einstein equations: [Hindmarsh 94,

Stebbins 95]

Θ(n̂) ≡ δT

TCMB

= −4GU

∫

X ∩xγ

[

u(n̂) · X⊥

X2
⊥

]

(

1 + n̂ · Ẋ
)

dσ

u = Ẋ − (n̂ ·X ′) ·X ′

1 + n̂ · Ẋ
X⊥ ≡ Xn̂−X

● At small angular scales, in 2D transverse Fourier space (k · n̂ ≃ 0):

Θ ≃ 8πiGU

l
2

∫

X ∩xγ

(u · l) e−i l·X dσ
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● Statistics: 1000 independant maps on a 7.2◦ field of view

● Temperature anisotropies from long strings and loops in scaling
[Fraisse:2007nu]
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● Maps with no loops or with all loops

no loops all structures, including IC effects

● Mostly renormalize the amplitude by at most a few percents
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● ISW from strings explains the power spectrum at the large multipoles
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GU = 7x10
-7
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-8

GU = 7x10
-9

LCDM
SZ

tSZ + OV + nlkSZ

● Amplitude at ℓ = 1000: ℓ(ℓ+ 1)Cℓ/(2π) ≃ 14 (GU)2

✦ Compatible with Abelian Higgs power spectrum

● Variance: σ2 ≃ (150.7± 18) (GU)2

● Power law behaviour at small scales

ℓ(ℓ+ 1)Cℓ ∝
ℓ≫1

ℓ−p with p = 0.889+0.001
−0.090
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● Gradient magnitude

|∇Θ| ≡
√

(

dΘ

dα

)2

+

(

dΘ

dβ

)2

● One-point functions

g1 ≡
〈

(Θ− Θ̄)3

σ3

〉

≃ −0.22± 0.12

g2 ≡
〈

(Θ− Θ̄)4

σ4

〉

− 3 ≃ 0.69± 0.29.
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● Experimental beam damps the signal: PLANCK 217GHz

✦ One-point function is nearly Gaussian, up to the rare events.

✦ Gradient magnitude is sensitive to all: inf + SZ + stgs
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● Non-vanishing skewness ⇒ 3-pts function 6= 0

〈Θ̂k1
Θ̂k2

Θ̂k3
〉 = B(k1,k2,k3)(2π)

2δ(k1 + k2 + k3)

● From ISW, can be evaluated analytically at small angle
[Hindmarsh:2009qk,Ringeval:2010ca]

✦ Calculation easier in the light cone gauge (instead of temporal)

τ = X0 +X3 =⇒ u = Ẋ

B(k1,k2,k3) = iǫ3
1

A
k1Ak2Bk3C
k21k

2
2k

2
3

∫

dσ1dσ2dσ3

〈

ẊA
1 ẊB

2 ẊC
3 eiδ

ab
ka·Xb

〉

with ẊA
a = ẊA(σa), a, b ∈ {1, 2, 3}, ǫ = 8πGU

● Assuming Ẋ and X́ are Gaussian random variables

〈

CABCeiD
〉

= i
〈

CABCD
〉

e−〈D2〉/2
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● Expand everything in terms of two-point correlators

〈

CABCD
〉

=
1

4
δAB

[

kC1 Π(σ13) + kC2 Π(σ23)
]

V (σ12)+ 	

〈

D2
〉

= −1

2
[k1 · k3Γ(σ13) + k2 · k3Γ(σ23) + k1 · k2Γ(σ12)]

Γ(σ − σ′) ≡
〈

[X(σ)−X(σ′)]
2
〉

=

∫ σ

σ′

dσ1

∫ σ

σ′

dσ2T (σ1 − σ2)

Π(σ − σ′) ≡
〈

[X(σ)−X(σ′))] · Ẋ(σ′)
〉

=

∫ σ

σ′

dσ1M(σ1 − σ′)

● Depend on three functions

〈

ẊA(σ)ẊB(σ′)
〉

=
1

2
δABV (σ − σ′)

〈

ẊA(σ)X́B(σ′)
〉

=
1

2
δABM(σ − σ′)

〈

X́A(σ)X́B(σ′)
〉

=
1

2
δABT (σ − σ′)
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● Integration can be done at large wavenumbers: κab ≡ ka · kb ≫ 1

B(k1,k2,k3) = −ǫ3πc0
v̄2

t̄4
Lξ̂

A
1

ξ̂2
1

k21k
2
2k

2
3

[

k41κ23 + k42κ31 + k43κ12

(κ23κ31 + κ12κ31 + κ12κ23)
3/2

]

● Sensitive to the (averaged projected) small scales σ → 0 [Hindmarsh:1995]

V (σ) ∼ v̄2, Γ(σ) ∼ t̄2σ2, Π(σ) ∼ 1

2

c0

ξ̂
σ2 [ξ̂ ≡ Γ′(∞)]

V  (   )

σξ

σ

σξ

σT  (   )
1

ξ

M  (   )σ

σ
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● Proportional to c0 ≡ ξ̂
〈

X̋ · Ẋ
〉

6= 0?

✦ Light cone gauge + FLRW + Ẋ, X́ Gaussian random variables

〈

X̋ · Ẋ
〉

= H̄
(

〈

Ẋ
2
〉〈

X́
2
〉

−
〈

Ẋ · X́
〉2
)

= H̄v̄2t̄2

✦ For H̄ > 0 ⇒ c0 > 0: breaking of time reversal invariance

● String bispectrum exists only in an expanding universe

✦ Gives a negative skewness by integration

✦ Decays as a power law at small scales

✦ This is the CMB temperature bispectrum (what you see!)

■ As opposed to primordial (fNL)
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● Wavenumbers such that k1 = k2 = k and k3 = 2k sin(θ/2)

Bℓℓθ(k, θ) = −ǫ3πc0
v̄2

t̄4
Lξ̂

A
1

ξ̂2k6
1 + 4 cos θ sin2(θ/2)

sin3 θ

● Amplified on elongated triangles; ± at θ0 = 2arccos

√

3−
√
3

2
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● Estimator: Θu(x) ≡
∫

dl

(2π)2
Θ̂lWu(l) e

−il·x

Bk1k2k3 =

〈
∫

Θk1
(x)Θk2

(x)Θk3
(x)dx

〉

∫

dpdq

(2π)4
Wk1

(p)Wk2
(q)Wk3

(|p+ q|)

● Power-law and dependency in θ recovered
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String non-Gaussianities with Planck
Filling the transparent universe with strings
Massively parallel ray tracing method
After a million of cpu-hours
Comparison between flat and full sky
Non-Gaussian searches for cosmic strings
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● Searching for string NG with Planck requires full sky ⇒ simulations

✦ Each simulation is a box of initial resolution 20003 (movie box)

✦ Have to be stacked to fill 13 billion light years (HEALpix)

● This can be done with 3072 CS runs

● In which we propagate the CMB. . .
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● Sky pixelized with 200 000 000 lines of sight (4 times Planck maps)

✦ Each direction receives cumulative contributions from all CS

✦ Account for roughly 1017 iterations

● Parallelization implementation

✦ MPI over the 3072 boxes + reduction

✦ OpenMP over the 200 000 000 pixels

✦ Vectorization of the most inner loop (string segments)

● Code development performed on the CP3-cosmo cluster (100 cores)

● Reasonable computing time demands a 100 TeraFlops computer :-/

✦ The Planck collaboration has a few. . . (thanks to J. Borrill) :)
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● National Energy Research Scientific Computing Center (Berkeley U.S.)

● The “Hopper” Cray XE6 machine (world rank 8 in Nov 2011)

✦ More than 6000 nodes with Dual processor 24 cores

✦ 3D Cray Gemini: Maximum injection bandwidth per node 20 GB/s
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● Full sky synthetic string map of 2× 108 pixels [Ringeval:2012tk, Ade:2013xla]

● Temperature anisotropies

-100.0  100.0 

 

∆T/T/(Gµ/c2)

● ×4 for tests and string challenges
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● Full sky synthetic string map of 2× 108 pixels [Ringeval:2012tk, Ade:2013xla]

● Gradient magnitude

0  10000 

 

|∇(∆T/T )|/(Gµ/c2)

● ×4 for tests and string challenges



bC

bC

bCbC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC
bC

bC

bC

bC

bC

bC

bC

bC
bC

bC

bC

Comparison between flat and full sky

Theoretical aspects

Nambu–Goto simulations

Analytical models

Cosmological signatures

String non-Gaussianities
with Planck

❖Filling the transparent
universe with strings

❖Massively parallel ray
tracing method

❖After a million of
cpu-hours

❖Comparison between
flat and full sky

❖Non-Gaussian searches
for cosmic strings

Perspectives and
conclusion

52 / 59

● Small spherical distorsions on the edges and smoother temperature
contrasts
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● CMB angular power spectrum match
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● Full sky bispectrum [Ade:2013xla]

✦ Different methods used

■ Modal bispectrum

■ Wavelets

■ Minkowski functionals

● Planck constraints on cosmic strings non-Gaussianities

f strg
NL = 0.30± 0.21 ⇒ GU < 8.8× 10−7

Real space ⇒ GU < 7.8× 10−7

● Very robust (ISW only) but slightly weaker than power spectrum
bounds GU < 1.3× 10−7 → 3.2× 10−7
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● Same method as for the bispectrum with new features [Hindmarsh:2009es]

〈

Θ̂k1Θ̂k2Θ̂k3Θ̂k4

〉

= T (k1,k2,k3,k4)(2π)
2δ(k1 + k2 + k3 + k4)

T1234 =
ǫ4

A
k1Ak2Bk3Ck4D

k21k
2
2k

2
3k

2
4

∫

dσ1dσ2dσ3dσ4

〈

ẊA
1 ẊB

2 ẊC
3 ẊD

4 eiδ
ab

ka·Xb

〉

● Flat directions: sensitive to higher order in the correlators

Polchinski–Rocha model ⇒ T (σ) ≃ t̄2 − c1

(

σ

ξ̂

)2χ

● Trispectrum sensitives to the string microstructure!

✦ 0 < χ < 1, c1 > 0

✦ NG: power-law exponent of the loop distribution

✦ Other strings: related to the mean square velocity
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● CMB trispectrum from strings is sensitive to
〈

X́A(σ)X́B(σ′)
〉

T∞(k1,k2,k3,k4) ≃ ǫ4
v̄4

t̄2
Lξ̂

A
(

c1ξ̂
2
)−1/(2χ+2)

f(χ)g(k1,k2,k3,k4)

f(χ) =
π

χ+ 1
Γ

(

1

2χ+ 2

)

[4(2χ+ 1)(χ+ 1)]
1/(2χ+2)

● Geometrical factor scales as kρ: ρ = 6 + 1/(1 + χ)

g(k1,k2,k3,k4) =
κ12κ34 + κ13κ24 + κ14κ23

k21k
2
2k

2
3k

2
4

[

Y 2
]−1/(2χ+2)

Y 2(k1,k2,k3,k4) ≡ −κ12

(

k23k
2
4 − κ2

34

)χ+1
+ 	,

● This is a consistency relation for loops production mechanism
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● Geometrical factor for kites: boost on elongated

g(k1,k2,k3,k4) =
cos2(α) [1− 2 cos(2α) cos(θ)]

sin2(θ/2)

1

kρy2/(2+2χ)(θ, α)

ρ = 6 +
1

1 + χ

● Bump for parallelograms at θ = π − 2α (Y 2 = 0)
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● Currently: no string non-Gaussianities =⇒ GU < 7.8× 10−7

● Future improvements

✦ Searching for string induced trispectrum =⇒ window on their
nature (trispectrum)

✦ Next Planck data release + polarization + small scales experiments
(BB [Seljak 06])

● Other observables than CMB: signal ∝ (GU)2,3,4

✦ Galaxy surveys

✦ GW direct detection (strongly depent on the loop distribution)

✦ 21 cm

● Detecting strings would give a lower bound on the energy scale of
inflation!
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