

Cargèse, 09/2014

Theoretical aspects Nambu–Goto simulations Analytical models Cosmological signatures String non Gaussianities with Planck

0

 \bigcirc

 \bigcirc

Perspectives and conclusion

 \mathbf{O}

 \bigcirc \bigcirc

 \bigcirc

Outline

Theoretical aspects Nambu–Goto simulations Analytical models Cosmological signatures String non-Gaussianities with Planck Perspectives and conclusion

 Original motivations: topological defects
 Formation of topological defects

Abelian Higgs strings

Strings of various types and origins

Dynamics of infinitely thin strings

 $\boldsymbol{\bigstar}$ The simplest case:

- Nambu–Goto Strings
- ✤ Temporal gauge
- String dynamics

0

 \bigcirc

 \bigcirc

 Intercommutation of Abelian Higgs strings

Nambu–Goto simulations

Analytical models

Cosmological signatures

String non-Gaussianities with Planck

Perspectives and conclusion

 \bigcirc

Theoretical aspects

Original motivations: topological defects

- ✤ Formation of topological defects
- ♦ Abelian Higgs strings

 Strings of various types and ρκigins

✤ Dynamics of infinitely thin strings

✤ The simplest case: Nambu–Gøtp strings

✤ Temporal gauge

String dynamics

O ◆ Intercommutation of O Abelian Higgs strings

Nambu–Goto simulations

Analytical models

String non-Gaussianities with Planck

 \cap

Perspectives and conclusion

 \bigcirc

Outline

Theoretical aspects

Original motivations: topological defects Formation of topological defects Abelian Higgs strings Strings of various types and origins Dynamics of infinitely thin strings The simplest case: Nambu–Goto strings Temporal gauge String dynamics Intercommutation of Abelian Higgs strings

Theoretical aspects Original motivations: topological defects

Formation of topological defects

Abelian Higgs strings

Strings of various types and orights

Dynamics of infinitely thin strings

The simplest case:

Mambu–Goto strings

Temporal gauge

String dynamics

Intercommutation of

Abelian Higgs strings

Nambu–Goto simulations

Analytical models

Cosmological signatures ^C

String non-Gaussianities with Planck

Respectives and conclusion

Original motivations: topological defects

- Phase transitions in the early universe
 - Triggered by the spontaneous breakdown of the fundamental interactions [Kirzhnits:1972,Kobsarev:1974, Kibble:1976]

Example: Abelian Higgs model and U(1) symmetry

$$\mathcal{L}_{\rm h} = \frac{1}{2} \left(D_{\mu} \Phi \right)^{\dagger} \left(D^{\mu} \Phi \right) - \frac{1}{4} H_{\mu\nu} H^{\mu\nu} - V(\Phi),$$
$$D_{\mu} = \partial_{\mu} + igB_{\mu}, \quad V(\Phi) = \frac{\lambda}{8} \left(|\Phi|^2 - \eta_{\rm v}^2 \right)^2 + \mathcal{O}\left(\Theta^2 |\Phi|^2\right)$$

Opological defects

defects

and origins

thin strings

Formation of topological

Abelian htiggs strings
Strings of various types

* Demamics of infinitely

✤The simplest case:

Nambu–Goto strings

Intercommutation of Abelian Higgs strings

Nombu–Goto simulations

Cosmological signatures String no Gussianities

 \bigcirc

Temporal gauge
String dynamics

Analytical models

mith Planck

Ο

C

Perspectives and conclusion

Formation of topological defects

Kibble–Zurek mechanism: $\ell_{
m c} < d_{
m h}$

Conserved topological charge

$$\oint \frac{\mathrm{d}\theta(s)}{\mathrm{d}s} \mathrm{d}s = 2\pi \mathbf{n}$$

Invariance group \mathcal{M} of the vacuum For $\mathcal{G} \to \mathcal{H}$ and $\forall g \in \mathcal{G}$, one has

$$\mathcal{M} \equiv \{g\Phi_0/\Phi_0 \in \mathcal{H}\} \sim \mathcal{G}/\mathcal{H}$$

Homotopy groups and defects

 $\pi_0(\mathcal{M}) \nsim \{I\} \implies \exists \text{ domain walls} \\ \pi_1(\mathcal{M}) \nsim \{I\} \implies \exists \text{ cosmic strings} \\ \pi_2(\mathcal{M}) \nsim \{I\} \implies \exists \text{ monopoles} \end{cases}$

Abelian Higgs strings

Field profiles within a Nielsen-Olesen vortex

Formation of topological defects

Theoretical aspects Original motivations: topological defects

Abelian Higgs strings

- Strings of various types and origins
 Dynamics of infinitely o thin strings
 The simplest case:
- Nambu–Goto strings
- ✤ Temporal gauge
- String dynamics
- Intercommutation of Abelian Higgs strings

Nambu–Goto simulations

- Analytical models
- Cosmological signatures String non-Gaussianities with Planck

 \bigcirc

0

Perspectives and conclusion

$$m_{\rm h} = \sqrt{\lambda} \eta_{\rm v}, \quad m_{\rm b} \equiv g \eta_{\rm v}$$

Stress tensor integrated over transverse directions

$$T^{tt} = -T^{zz} = \frac{\lambda \eta_{\rm v}^4}{2} \left[\left(\partial_{\varrho} H\right)^2 + \frac{Q^2 H^2}{\varrho^2} + \frac{(H^2 - 1)^2}{4} + \frac{\lambda}{g^2} \frac{\left(\partial_{\varrho} Q\right)^2}{\varrho^2} \right]$$
$$\implies \text{ energy density} = \text{string tension} \Leftrightarrow \boldsymbol{U} = \boldsymbol{T} = \mathcal{O}\left(\frac{m_{\rm h}^2}{m_{\rm b}^2}\right) \eta_{\rm v}^2$$

- Original motivations: topological defects
- ✤ Formation of topological defects
- Abelian Higgs strings

Strings of various types and origins

- Dynamics of infinitely thin strings
- ✤ The simplest case: Nambu–Goto strings
- ✤ Temporal gauge
- String dynamics
- Intercommutation of Abelian Higgs strings
- Nambu–Goto simulations
- Analytical models
- Cosmological signatures
- String non-Gaussianities with Planck

 \bigcirc

Perspectives and conclusion

Strings of various types and origins

- Topological defects
 - Global strings [Davis:1985, Durrer:1998rw,
 Yamaguchi:1999yp]
 - Non-Abelian strings [Vilenkin:1984rt,
 Dvali:1993qp, Spergel:1996ai, Bucher:1998mh,
 McGraw:1998]
 - K- and DBI-strings [Babichev:2006cy, Babichev:2007tn, Sarangi:2007mj]
 - Current-carrying strings

[Witten:1984eb, Davis:1988ip,Carter:1989dp, Peter:1992dw, Peter:1992ta]

- Line-like energy density distributions
 - Semi-local strings: energetically favoured for $m_{\rm b} > m_{\rm h}$

[Vachaspati:1991, Hindmarsh:1991jq, Achucarro:1999it]

- Cosmic superstrings: bound states made of p F-strings and q D1-brane [Witten:1985fp,Copeland:2009ga,
 Sakellariadou:2008ie, Polchinski:2004ia, Davis:2008dj]
- Nambu–Goto strings: Lorentz invariant two-dimensional worldsheet [Goto:1971ce,Nambu:1974]
- Carter strings [Carter:1989xk, Carter:1992vb, Carter:1994zs, Carter:2000wv]
 - Infinitely thin strings with an internal structure: $U \neq T$
 - Two-dimensional models of current carrying strings

Original motivations: topological defects
Formation of topological

defects O

Abelian Higgs strings

Strings of various types and origins

Dynamics of infinitely thin strings

The simplest case: Nambu–Goto strings

- ✤ Temporal gauge
- ♦ String dynamics
- Intercommutation of Abelian Higgs strings
- Nambu–Goto simulations

Analytical models

Cosmological signatures String non-Gaussianities with Planck

 \bigcirc

Perspectives and conclusion

00

 \cap

Dynamics of infinitely thin strings

- String = two-dimensional worldsheet located at: $x^{\mu} = X^{\mu}(\xi^{a})$ • Induced metric on the string: $\gamma_{ab} = g_{\mu\nu} \frac{\partial X^{\mu}}{\partial \xi^{a}} \frac{\partial X^{\nu}}{\partial \xi^{b}}$
- Carter's covariant formalism
 - First fundamental form: projector onto the string worldsheet

$$q^{\mu\nu} \equiv \gamma^{ab} \frac{\partial X^{\mu}}{\partial \xi^{a}} \frac{\partial X^{\nu}}{\partial \xi^{b}} \implies \begin{cases} \perp^{\mu}{}_{\nu} \equiv g^{\mu}{}_{\nu} - q^{\mu}{}_{\nu}, \\ \bar{\nabla}_{\mu} \equiv q^{\alpha}{}_{\mu} \nabla_{\alpha} \\ K_{\mu\nu}{}^{\rho} \equiv q^{\alpha}{}_{\nu} \bar{\nabla}_{\mu} q^{\rho}{}_{\alpha} \end{cases}$$

• Stress tensor in its eigenvector basis: $u^2 = -1$, $v^2 = 1$, $u^{\alpha}v_{\alpha} = 0$

$$\bar{T}^{\mu\nu} = U u^{\mu} u^{\nu} - T v^{\mu} v^{\nu} = (U - T) u^{\mu} u^{\nu} - T q^{\mu\nu},$$
$$q^{\mu\nu} = -u^{\mu} u^{\nu} + v^{\mu} v^{\nu}$$

For a barotropic equation of state U = U(T)

 Original motivations: topological defects

Formation of topological defects

Abelian Higgs strings

Strings of various types and origins

Dynamics of infinitely thin strings

The simplest case: Nambu–Goto strings

✤ Temporal gauge

String dynamics

Intercommutation of Abelian Higgs strings

Nambu–Goto simulations

Analytical models

Cosmological signatures

String non-Gaussianities with Planck

Perspectives and conclusion

The simplest case: Nambu–Goto strings

• Lorentz invariance $\implies U = T \implies K^{\mu} = 0$

Equations of motion

 $K^{\mu} = \frac{1}{\sqrt{-\gamma}} \partial_a \left(\sqrt{-\gamma} \gamma^{ab} \partial_b X^{\mu} \right) + \Gamma^{\mu}_{\nu\rho} \gamma^{ab} \partial_a X^{\nu} \partial_b X^{\rho} = 0$

• Can also be directly obtained from: $S = -U \int d^2 \xi \sqrt{-\gamma}$

In Friedmann–Lemaître background: $\tau \equiv \xi^0$ and $\sigma \equiv \xi^2$ • Transverse gauge: $g_{\mu\nu} \frac{\partial X^{\mu}}{\partial \tau} \frac{\partial X^{\nu}}{\partial \sigma} = \dot{X}^{\mu} \dot{X}_{\mu} = 0$

• Equation of motion: $\varepsilon \equiv \sqrt{-\frac{\dot{X}^2}{\dot{X}^2}}$

$$\ddot{X}^{\mu} + \left(\frac{\dot{\varepsilon}}{\varepsilon} + \frac{2}{a}\frac{\mathrm{d}a}{\mathrm{d}X^{0}}\dot{X}^{0}\right)\dot{X}^{\mu} - \frac{1}{\varepsilon}\left(\frac{\dot{X}^{\mu}}{\varepsilon}\right)' - \frac{2}{a}\frac{\mathrm{d}a}{\mathrm{d}X^{0}}\frac{\dot{X}^{0}}{\varepsilon}\frac{\dot{X}^{\mu}}{\varepsilon} + \delta_{0}^{\mu}\frac{2}{a}\frac{\mathrm{d}a}{\mathrm{d}X^{0}}\dot{X}^{2} = \underset{10 \neq 59}{0}$$

Temporal gauge

Theoretical aspects

Original motivations: topological defects

✤ Formation of topological defects

Abelian Higgs strings

Strings of various types and origins

Dynamics of infinitely thin strings

The simplest case: Nambu–Goto strings

✤ Temporal gauge

String dynamics

Intercommutation of Abelian Higgs strings

Nambu–Goto simulations

Analytical models

Cosmological signatures String non-Gaussianities with Planck

Perspectives and conclusion

Ο

Gauge fixing complete by identifying au with the background time

$$\tau = X^{0} = \eta \implies \begin{cases} \dot{\vec{X}} \cdot \dot{\vec{X}} = 0, \quad \varepsilon = \sqrt{\frac{\dot{\vec{X}}^{2}}{1 - \dot{\vec{X}}^{2}}}, \quad \dot{\varepsilon} + 2\mathcal{H}\varepsilon \dot{\vec{X}}^{2} = 0, \\ \\ \ddot{\vec{X}} + 2\mathcal{H}\left(1 - \dot{\vec{X}}^{2}\right) - \frac{1}{\varepsilon}\left(\frac{\dot{\vec{X}}}{\varepsilon}\right)' = 0 \end{cases}$$

- Bennet-Bouchet equivalent equations [Bouchet:1988,Bennett:1989,Bennett:1990]
 - Lightcone-like coordinates: $u = \int \varepsilon d\sigma \tau$ and $v = \int \varepsilon d\sigma + \tau$

• Left and right movers: $\vec{p}(\tau, u) \equiv \frac{\dot{\vec{X}}}{\varepsilon} - \dot{\vec{X}}$ and $\vec{q}(\tau, v) \equiv \frac{\dot{\vec{X}}}{\varepsilon} + \dot{\vec{X}}$

$$\frac{\partial \vec{p}}{\partial \tau} = -\mathcal{H}\left[\vec{q} - \vec{p}\left(\vec{p} \cdot \vec{q}\right)\right], \quad \frac{\partial \vec{q}}{\partial \tau} = -\mathcal{H}\left[\vec{p} - \vec{q}\left(\vec{p} \cdot \vec{q}\right)\right], \quad \frac{\dot{\varepsilon}}{\varepsilon} = -\mathcal{H}\left(1 - \vec{p} \cdot \vec{q}\right)$$

Original motivations: topological defects

✤ Formation of topological defects

Abelian Higgs strings

Strings of various types and origins

Dynamics of infinitely thin strings

The simplest case: Nambu–Goto strings

♂ Temporal gauge

String dynamics

Intercommutation of Abelian Higgs strings

Nambu- to simulations

Analytical models

Cosmological signatures

String non-Gaussianities with Planck

Perspectives and conclusion

O

String dynamics

- Propagation of left- right-moving waves
 - In Minkowski ($\mathcal{H} = 0$): $\dot{\vec{X}}(\tau, \sigma) = \frac{1}{2} \left[\vec{p}(\sigma + \tau) + \vec{q}(\sigma \tau) \right]$
 - In FLRW spacetime: damped and interactions on Hubble scales
- Interaction between strings is microphysics dependent
 - ♦ Abelian Higgs strings with $m_{\rm h} \simeq m_{\rm b}$: $P \simeq 1$ and formation of 2 kinks

- Cosmic superstrings: $P \ll 1$ (presence of extra-dimensions)
- ◆ (p,q)-strings: charge conservation ⇒ Y-junctions, kinematic constraints and kinks proliferation [Copeland:2007nv, Bevis:2009az, Binetruy:2010bq, Steer:2013nea]

Intercommutation of Abelian Higgs strings

Standard case

Multiple reconnections possible with $m_{
m h} \gg m_{
m b}$ and $v \simeq 1$ [Verbiest:2011kv]

Theoretical aspects

- Original motivations: topological defects
- Formation of topological defects
- Abelan Higgs strings ♦ Strings ⊕arious types and origins
- Dynamics of infinitely thin strings
- The simplest case: Nambo-Goto strings

0

- ✤ Temporal gauge
- String dynamics
- Intercommutation of Abelian Higgs strings
- Nambu-Goto simulations

String non-Gaussianities with Planck 0

Perspectives and

O

Nambu–Goto simulations ♦ A small matter era run (movie) Cosmological attractor Scaling of the energy Relaxation wards scaling Loop distribution in scaling Analytical models Cosmological signatures Stringnon-Gaussianities with Planck Perspectives and conclusion . 0 0 \bigcirc C

Nambu–Goto simulations

Nambu–Goto simulations

A small matter era run (movie)

 Cosmogical attractor
 Scaling of the energy density

Relaxation towards

♦ Loop distribution in scaling

Analytical models

Cosmological signatures String non-Gaussianities with Planck

Perspectives and conclusion

 \bigcirc

 \bigcirc

 \bigcirc

Outline

Nambu–Goto simulations

A small matter era run (movie) Cosmological attractor Scaling of the energy density Relaxation towards scaling Loop distribution in scaling

Nambu–Goto simulations

♦ A small matter era run (movie)

 Cosmological attractor
 Scaling of the energy density
 Relaxation towards

scaling

Loop distribution in scaling

Analytical models

Cosmological signatures

String non-Gaussianities with Planck

 \square

Perspectives and conclusion

Nambu–Goto simulations

- Goal: getting realistic statistics of string networks in FLRW
 - Only one parameter : U
 - Nambu–Goto networks are already complex: non-linear and non-local properties
- Method: solve numerically the string evolution in FLRW
 - From some representative initial conditions [Vachaspati:1984]
 - IC are mostly irrelevant due to the existence of a cosmological attractor [Bennett:1989,Allen:1990,Albrecht:1989,Ringeval:2005kr,Vanchurin:2005pa]

Numerical parameters

 $\begin{array}{l} \mbox{Comoving box size} = 1\\ \mbox{Initial correlation length } \ell_{\rm c} = 1/100\\ \mbox{Initial resolution length } \ell_{\rm r} = 1/2000 \end{array}$

A small matter era run (movie)

17 / 59

(movie)

density

scaling

scaling

Nambu–Goto simulations Arsmall matter era run

Cosmological attractor
 Scaling of the energy

Relaxation towards

Coop distribution in

Cosmological signatures

String non-Gaussianities

0

0

 \bigcirc

 \bigcirc

Analytical models

with Planck

 \mathbf{O}

Perspectives and conclusion

Cosmological attractor

Long strings $(\ell > d_{
m h})$ rapidly reach a scaling evolution

+ Energy density evolves as radiation/matter ($\propto 1/d_{\rm h}^2)$ instead of naively expected $\rho \propto 1/a^2$

$$\rho_{\infty} \frac{d_{\rm h}^2}{U} \bigg|_{\rm mat} = 28.4 \pm 0.9 \qquad \rho_{\infty} \frac{d_{\rm h}^2}{U} \bigg|_{\rm rad} = 37.8 \pm 1.7$$

 Kibble mechanism: formation of loops that transfer some energy to sub-horizon length scales

• A similar mechanism happens to loops themselves due to their self-intersections

With
$$\alpha \equiv \frac{\ell}{d_{\rm h}}$$
, $\frac{\mathrm{d}\rho_{\circ}}{\mathrm{d}\alpha} = \mathcal{S}(\alpha) \frac{U}{d_{\rm h}^2} \implies \frac{\mathrm{d}n}{\mathrm{d}\alpha} = \frac{\mathcal{S}(\alpha)}{\alpha d_{\rm h}^3}$

- The scaling function $\mathcal{S}(\alpha)$ can be determined from simulations
- But only for $\alpha_c < \alpha < 1$ where α_c involves physical effects not accounted in the Nambu–Goto model

Scaling of the energy density

Theoretical aspects

Nambu–Goto simulations ♦ A small matter era run (movie) Cosmological attractor Scaling of the energy density ✤ Relaxation towards scaling * Loop distribution in scaling Analytical models Cosmological signature String non-Gaussianities $(d\rho_o/d\alpha) d_h^2/U$ with Planck Perspectives and conclusion \bigcirc Ο • • • \bigcirc \bigcirc \cap

Ο

Scaling of the energy densities for loops and long strings

[Ringeval:2005kr,Blanco-Pillado:2013qja]

Relaxation towards scaling

Transient effects last longer for smaller loops

5+10 Matter era α=1.1e-3 α=4.3e-4 α=1.6e-4 α=6.4e-5 $\alpha = 2.4e-5$ ~+[°]+ $(d\rho/d\alpha) \, {d_h}^2/\, U$ 24¹0 ~+[°]+ 0 20 30 10 40 50 η/l_{c}

NG simulations do not incorporate GW \Rightarrow do not describe $lpha < lpha_{
m c}$

Theoretical aspects

Nambu–Goto simulations A small matter era run (movie)

- ✤ Cosmological attractor
- Scaling of the energy density
- Relaxation towards scaling
- Loop distribution in scaling
- Analytical models
- Cosmological signatures
- String non-Gaussianities with Planck

Perspectives and conclusion

Loop distribution in scaling

By the end of the run

Scaling parts

Theoretical aspects

Nambu–Goto simulations

♦ A small matter era run (movie)

 Cosmological attractor
 Scaling of the energy density

Relaxation towards scaling

Loop distribution in scaling

Analytical models

Cosmological signatures

String non-Gaussianities with Planck

 \bigcirc

Perspectives and conclusion

) O

(movie)

densitv

scaling

scaling

Nambu–Goto simulations ◆ A small mater era run

♦ Cosmological attract@

♦ Sealing of the energy

Relaxation towards

Loop distribution in

Cosmological signatures

String non-Gaussianities

 \bigcirc

 \bigcirc

Analytical models

with Planck

conclusion

Perspectives and

Loop distribution in scaling

By the end of the run

Non-scaling parts

Scaling parts

Nambu–Goto simulations

Analytical models

- Polchinsky-Rocha model
 Inclusion of
- gravitational backreaction
- Cosmological loop distribution
- Relaxation effects are accounted
- Some numerical values
- Extension to vortons

Cosmological signatures

String non-Gaussianities with Planck

Perspectives and conclusion

 \bigcirc

 \bigcirc

Analytical models

Nambu⊖Goto simulations

Analytical models

- Polchinsky-Rocha model
- ✤ Inclusion of gravitational backreaction
- Cosmological loop distribution
- ✤ Relaxation effects are accounted
- Some numerical values
- Extension to vortons C
- Cosmological signatures

String non-Gaussianities with Planck

 \bigcirc

Perspectives and conclusion

 \bigcirc

Outline

Analytical models

Polchinsky-Rocha model Inclusion of gravitational backreaction Cosmological loop distribution Relaxation effects are accounted Some numerical values Extension to vortons

Nambu-Goto simulations

Analytical models Polchinsky-Rocha model ✤ Inclusion of gravitational backreaction Cosmological loop distribution Relaxation effects are accounted Some numerical values O Extension to vortons Cosmological signatures String hon-Gaussianities with Planck Perspectives and conclusion \mathbf{O}

 \bigcirc

0

0

 \bigcirc

• ()

Polchinsky-Rocha model

- No fragmentation, no reconnection, loops from long string only [Polchinski:2006ee,Dubath:2007mf,Rocha:2007ni]
 - Predicts a power law scaling function

$$\mathcal{S}(\alpha) \propto \alpha^{2\chi - 2} \implies p = 2(1 - \chi)$$

- + Parameter χ can be inferred from the long string scaling
- From Martins & Shellard simulations, they independently found $p_{\rm mat} \simeq 1.5, \qquad p_{\rm rad} \simeq 1.8$
- In the PR model χ is related to two-point functions [Hindmarsh:2008dw]

$$\left\langle \acute{X}^{A}(\sigma)\acute{X}^{B}(\sigma')\right\rangle = \frac{1}{2}\delta^{AB}T(\sigma-\sigma') \qquad T(\sigma)\simeq \vec{t}^{2}-c_{1}\left(\frac{\sigma}{\acute{\xi}}\right)^{2\chi}$$

Agreement with simulations suggests that all neglected effects mostly renormalise C_{\circ}

Nambu–Goto simulations

Analytical models

- Polchinsky-Rocha model
- Inclusion of gravitational backreaction
- Cosmological loop distribution
- Relaxation effects are accounted
- ✤ Some numerical values
- Extension to vortons
- Cosmological signatures

String non-Gaussianities with Planck

C

Perspectives and conclusion

 \bigcirc

Including loop's gravitational radiation

- Boltzmann equation + PR production function
 - PR loop production function (from string shape correlations)

$$t^{5}\mathcal{P}(\ell,t) = c\left(\frac{\ell}{t}\right)^{2\chi-3}$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(a^3 \frac{\mathrm{d}n}{\mathrm{d}\ell} \right) = a^3 \mathcal{P}(\ell, t)$$

A loop shrinks due to G.W. emission $(\gamma \equiv \ell/t)$ [Allen:1992]

$$\frac{\mathrm{d}\ell}{\mathrm{d}t} = -\gamma_{\mathrm{d}} \simeq 100 GU$$

• Evolution equation [Rocha:2007ni]

$$\frac{\partial}{\partial t} \left(a^3 \frac{\mathrm{d}n}{\mathrm{d}\ell} \right) - \gamma_{\mathrm{d}} \frac{\partial}{\partial \ell} \left(a^3 \frac{\mathrm{d}n}{\mathrm{d}\ell} \right) = a^3 \mathcal{P}(\ell, t)$$

Nambu–Goto simulations

Analytical models

- Polchinsky-Rocha model
- Inclusion of gravitational backreaction
- Cosmo@ical loop distribution
- Relaxation effects are accounted
- Some numerical values
- Extension to vortons
- Cosmological signatures

String non-Gaussianities with Planck

Perspectives and conclusion

Inclusion of gravitational backreaction

- PR model + GW emission + GW backreaction [Lorenz:2010sm]
 - Allows us to extrapolate numerical simulations to small ℓ
 - Boltzmann equation ($\gamma_{\rm d} = \Gamma G U$)

$$\frac{\partial}{\partial t} \left(a^3 \frac{\mathrm{d}n}{\mathrm{d}\ell} \right) - \gamma_{\mathrm{d}} \frac{\partial}{\partial \ell} \left(a^3 \frac{\mathrm{d}n}{\mathrm{d}\ell} \right) = a^3 \mathcal{P}(\ell, t).$$

Postulated piecewise scaling loop production function

$${}^{5}\mathcal{P}\left(\gamma = rac{\ell}{t}, t
ight) \propto \gamma^{2\chi - 3}$$

 $\gamma_{\rm c} \ll \gamma_{\rm d} \ll \gamma_{\infty} \lesssim 1$

0

Nambu–Goto simulations

Analytical models

- Polchinsky-Rocha model
- ✤ Inclusion of
- gravitational backreaction

Cosmological loop distribution

Relaxation effects are accounted

Some numerical values

Extension to vortons

Somological signatures

String non-Gaussianities with Planck

0

Q

Perspectives and conclusion

 \bigcirc

Ο

Cosmological loop distribution

- Can be completely solved analytically (see arXiv.1006.0931)
- From any initial loop distribution $\mathcal{N}_{ini}(\ell)$, one gets $\mathcal{F}(\gamma, t) \equiv \frac{\partial n}{\partial \ell}(\gamma, t)$

$$\begin{split} t^{4}\mathcal{F}(\gamma \geq \gamma_{c}, t) &= \left(\frac{t}{t_{ini}}\right)^{4} \left(\frac{a_{ini}}{a}\right)^{3} t_{ini}^{4} \mathcal{N}_{ini} \left\{ \left[\gamma + \gamma_{d} \left(1 - \frac{t_{ini}}{t}\right)\right] t \right\} + C(\gamma + \gamma_{d})^{2\chi - 3} f\left(\frac{\gamma_{d}}{\gamma + \gamma_{d}}\right) \\ &- C(\gamma + \gamma_{d})^{2\chi - 3} \left(\frac{t}{t_{ini}}\right)^{2\chi + 1} \left(\frac{a_{ini}}{a}\right)^{3} f\left(\frac{\gamma_{d}}{\gamma + \gamma_{d}} \frac{t_{ini}}{t}\right), \\ t^{4}\mathcal{F}(\gamma_{\tau} \leq \gamma < \gamma_{c}, t) &= \left(\frac{t}{t_{ini}}\right)^{4} \left(\frac{a_{ini}}{a}\right)^{3} t_{ini}^{4} \mathcal{N}_{ini} \left\{ \left[\gamma + \gamma_{d} \left(1 - \frac{t_{ini}}{t}\right)\right] t \right\} + C_{c}(\gamma + \gamma_{d})^{2\chi_{c} - 3} f_{c}\left(\frac{\gamma_{d}}{\gamma + \gamma_{d}}\right) \\ &- C(\gamma + \gamma_{d})^{2\chi - 3} \left(\frac{t}{t_{ini}}\right)^{2\chi + 1} \left(\frac{a_{ini}}{a}\right)^{3} f\left(\frac{\gamma_{d}}{\gamma + \gamma_{d}} \frac{t_{ini}}{t}\right) \\ &+ K\left(\frac{\gamma_{c} + \gamma_{d}}{\gamma + \gamma_{d}}\right)^{4} \left[\frac{a\left(\frac{\gamma + \gamma_{d}}{\gamma_{c} + \gamma_{d}} t\right)}{a(t)}\right]^{3} , \\ t^{4}\mathcal{F}(0 < \gamma < \gamma_{\tau}, t) &= \left(\frac{t}{t_{ini}}\right)^{4} \left(\frac{a_{ini}}{a}\right)^{3} t_{ini}^{4} \mathcal{N}_{ini} \left\{\left[\gamma + \gamma_{d} \left(1 - \frac{t_{ini}}{t}\right)\right] t\right\} + C_{c}(\gamma + \gamma_{d})^{2\chi_{c} - 3} f_{c}\left(\frac{\gamma_{d}}{\gamma + \gamma_{d}}\right)^{4} \right] \\ \end{split}$$

$$\begin{split} \gamma_{\tau}(t) &\equiv (\gamma_{\rm c} + \gamma_{\rm d}) \frac{t_{\rm ini}}{t} - \gamma_{\rm d}, \qquad \mu \equiv 3\nu - 2\chi - 1 \\ f(x) &\equiv {}_{2}{\rm F}_{1} \left(3 - 2\chi, \, \mu; \, \mu + 1; x \right) \qquad f_{\rm c}(x) \equiv {}_{2}{\rm F}_{1} \left(3 - 2\chi_{\rm c}, \, \mu_{\rm c}; \, \mu_{\rm c} + 1; x \right) \end{split}$$

Cosmological loop distribution

- Can be completely solved analytically (see arXiv.1006.0931)
- Scaling attractor does not depend on \mathcal{N}_{ini} nor on GW backreaction details

Theoretical aspects

Nambu–Goto simulations

Analytical models

- Polchinsky-Rocha model
- Inclusion of
- gravitational backreaction

Cosmological loop distribution

Relaxation effects are accounted

Some numerical values

Extension to vortons

Cosmological signatures

String non-Gaussianities with Planck

Ο

Q

Perspectives and conclusion

 \bigcirc

Ο

Relaxation effects are accounted

Example: transition radiation-matter

Theoretical aspects

Nambu–Goto simulations

Analytical models

- Polchinsky-Rocha model
- ♦ Inclusion of
- gravitational backreaction
- Cosmological loop
- distribution
- ✤ Relaxation effects are accounted
- Some numerical values
- Extension to vortons
- Cosmological signatures
- String non-Gaussianities with Planck

Ο

- Perspectives and conclusion

0

Analytical models

Inclusion of O
 gravitational backreaction
 Cosmological loop

Relaxation effects are

Some numerical values

Extension to vortons

Cosmological signatures

String non-Gaussianities

 \bigcirc

 \bigcirc

distribution O

accounted

with Planck

Perspectives and conclusion

Nambue Goto simulations

Polchinsky-Rocha model

 \cap

Some numerical values

Density parameter of cosmic string loops (assuming $\gamma_{
m c} \ll \gamma_{
m d} \ll 1)$

$$\left. \begin{array}{l} \rho_{\circ} = \frac{U}{t^2} \int_0^3 t^4 \mathcal{F}(\gamma, t) \gamma \,\mathrm{d}\gamma \\ C \equiv C_{\circ} (1-\nu)^{3-p}, \quad \chi = 1 - \frac{p}{2} \end{array} \right\} \implies \Omega_{\circ} = \frac{3\pi^2 C}{(1-\chi) \sin(2\pi\chi)} \frac{GU}{\gamma_{\mathrm{d}}^{1-2\chi}}$$

• With NG typical values and $\gamma_d \simeq 100 GU \ (\gamma_d t_0 < 380 \text{ kpc})$ $\Omega_{\circ} \simeq 0.10 (GU)^{0.59} < 10^{-5}$ (with current CMB bounds on GU)

• Number density of cosmic strings loops in a box of size L (today)

$$L^3 n_L = \int_0^{L/t} t^4 \mathcal{F}(\gamma, t) \,\mathrm{d}\gamma \simeq \frac{C}{\gamma_\mathrm{d} \gamma_\mathrm{c}^{1-2\chi}}$$

From PR model [Polchinski:2007rg]: $\gamma_{\rm c} \simeq 10 (GU)^{1+2\chi} (\gamma_{\rm c} t_0 < 8 \, {\rm pc})$

 $t^3 n_L \simeq 6.1 \times 10^{-5} (GU)^{-1.65} > 5.5 \times 10^{-6} \,\mathrm{Mpc}^{-3}$

♦ Inclusion of

distribution

accounted

with Plan

conclusion

Perspectives and^O

Nambu–Goto simulations

* Polchinsky-Rocha model

Relaxation effects are

Some numerical values

Extension to vortons

Cosmological signatures

String non-Gaussianities

 \bigcirc

Extension to vortons

Boltzmann equation for current carrying loops [Peter:2013jj]: $n(\ell, t, N)$

$$\frac{\partial}{\partial t} \left[a^3 \mathcal{J}(\ell, t) \frac{\partial^2 n}{\partial \ell \partial N} \right] - \left[\gamma_{\rm d} \Theta \left(\ell - \frac{N}{\sqrt{U}} \right) + \gamma_{\rm v} \Theta \left(\frac{N}{\sqrt{U}} - \ell \right) \right] \frac{\partial}{\partial \ell} \left[a^3 \mathcal{J}(\ell, t) \frac{\partial^2 n}{\partial \ell \partial N} \right]$$
$$= a^3 \mathcal{J}(\ell, t) \mathcal{P}(\ell, t) \delta \left(N - \sqrt{\frac{\ell}{\lambda}} \right)$$

Again exactly solvable for any $\mathcal{N}_{\mathrm{ini}}(\ell)$ (see arXiv:1302.0953)

 \circ

Nambu–Goto simulations

Analytical models

Cosmological signatures

 Power spectrum of string induced anisotropies
 String-induced CMB distorsions

Small angles and flat sky limit

Systematics from loops not in scaling

String effects since last scattering

✤ Basic non-Gaussi estimators

Observable string

correlators

✤ Bispectrum of string

induced CMB anisotropies Sispectrum comes from

expansion

Isoscele triangle configurations

Compatible with small angle simulated maps

String non-Gaussianities with Planck

Ο

 $^{\circ}$ C

Perspectives and conclusion

Cosmological signatures

31 / 59

Nambu–Goto simulations

Analytical models

Cosmological signatures

 Power spectrum of string induced anisotropies
 String-induced CMB distorsions

Small angles and flat sky limit

Systematics from loops not in scaling

- String effects since last scattering
- Basic non-Gaussian estimators
- Observable string
- correlators
- Bispectrum of string induced CMB anisotropies
- Bispectrum comes from expansion
- Isoscele triangle
- configurations
- Compatible with small angle simulated maps

String non-Gaussianities with Planck

 \cap

Perspectives and conclusion

Outline

Cosmological signatures

Power spectrum of string induced anisotropies String-induced CMB distorsions Small angles and flat sky limit Systematics from loops not in scaling String effects since last scattering Basic non-Gaussian estimators Observable string correlators Bispectrum of string induced CMB anisotropies Bispectrum comes from expansion Isoscele triangle configurations Compatible with small angle simulated maps

Nambu–Goto simulations

Analytical models

- string induced anisotropies String-induced CMB
- distorsions
- Small angles and flat sky limit
- Systematics from toops not in scaling
- String effects since last
 Scattering
- Basic non-Gaussian estimators
- ♦ Observable string
- correlators
- *Bispectrum of string induced CMB anisotropies
- Bispectrum comes from expansion
- Isoscele triangle configurations
- Compatible with small angle simulated maps
- String non-Gaussianities with Planck

 \bigcirc

Perspectives and conclusion

0

Power spectrum of string induced anisotropies

External source of cosmological perturbations: $\mathcal{DX} = \mathcal{S}$ [Durrer:1997ep, Bevis:2006mj,Urrestilla:2007sf,]

$$\langle \mathcal{X}^{\dagger}(\eta_{0},k)\mathcal{X}(\eta_{0},k)\rangle \propto \iint^{\eta_{0}}G_{k}^{\dagger}(\eta')G_{k}(\eta)\langle \mathcal{S}^{\dagger}(\eta',k)\mathcal{S}(\eta,k)\rangle\mathrm{d}\eta\mathrm{d}\eta'$$

Abelian string simulations [Bevis:2010gj]

- Planck + WP + ACTSPT +
 BICEP2 [Lizarraga:2014xza]
- Fraction (at $\ell = 10$) $\leq 2\%$
- Tension $GU \leq 3 \times 10^{-7}$
- Dominate at $\ell > 3000$?

String-induced CMB distorsions

- Theoretical aspects
- Nambu–Goto simulations
- Analytical models
- Cosmological signatures
- Power spectrum of string induced anisotropies
- String-induced CMB distorsions
- Small angles and flat sky limit
- Systematics from loops not in scaling
- String effects since last scattering
- Basic non-Gaussian estimators
- Observable string correlators
- Bispectrum of string
- induce CMB anisotropies Bispectrum comes from expansion
- Isoscele triangle
- configurations
- Compatible with small angle simulated maps
- String non-Gaussianities with Planck
- Perspectives and conclusion

Nambu–Goto strings (U = T): no static gravitational effects

 Do have General Relativity effects on light and thus on CMB (Gott-Kaiser-Stebbins)

ISW from Nambu–Goto stress tensor + Einstein equations: [Hindmarsh 94, Stebbins 95]

$$\Theta(\hat{n}) \equiv \frac{\delta T}{T_{\text{CMB}}} = -4G \boldsymbol{U} \int_{\boldsymbol{X} \cap \boldsymbol{x}_{\gamma}} \left[\boldsymbol{u}(\hat{n}) \cdot \frac{\boldsymbol{X}_{\perp}}{\boldsymbol{X}_{\perp}^{2}} \right] \left(1 + \hat{n} \cdot \dot{\boldsymbol{X}} \right) \, \mathrm{d}\sigma$$
$$\boldsymbol{u} = \dot{\boldsymbol{X}} - \frac{(\hat{n} \cdot \boldsymbol{X}') \cdot \boldsymbol{X}'}{1 + \hat{n} \cdot \dot{\boldsymbol{X}}} \qquad \boldsymbol{X}_{\perp} \equiv X\hat{n} - \boldsymbol{X}$$

At small angular scales, in 2D transverse Fourier space $({m k}\cdot \hat{n}\simeq 0)$:

$$\Theta \simeq \frac{8\pi i \, G \boldsymbol{U}}{\boldsymbol{l}^2} \int_{\boldsymbol{X} \cap \boldsymbol{x}_{\gamma}} \left(\boldsymbol{u} \cdot \boldsymbol{l} \right) e^{-i \, \boldsymbol{l} \cdot \boldsymbol{X}} \, \mathrm{d}\sigma$$

Nambu–Goto simulations

Analytical models

Cosmological signatures

 Power spectrum of string induced anisotropies
 String-induced CMB distorsions

♦ Small angles and flat sky limit

Systematics from loops not in scaling

♦ String effects since last scattering

 Basic non-Gaussian estimators

♦ Observable string correlators

 Bispectrum of string induced CMB anisotropies

Sispectrum comes from expansion

Isoscele triangle configurations

Compatible with small angle simulated maps

String non-Gaussianities with Planck

Perspectives and conclusion

- Statistics: 1000 independant maps on a 7.2° field of view
- Temperature anisotropies from long strings and loops in scaling [Fraisse:2007nu]

Analytical models

distorsions

sky limit

scattering

estimators

correlators

expansion

not in scaling

Nambu–Goto simulations

Cosmological signatures Power spectrum of

♦ Small angles and flat

Systematics from loops

String effects since last

✤ Basic non-Gaussian

♦ Observable string

Isoscele triangle configurations

 Bispectrum of strug induced CMB anisotropies
 Bispectrum comes from

string induced anisotropiesString induced CMB

Systematics from loops not in scaling

Maps with no loops or with all loops

no loops

all structures, including IC effects

with Planck Perspectives and

String non-Gaussianities

Compatible with small angle simulated maps

conclusion

Mostly renormalize the amplitude by at most a few percents

String effects since last scattering

Theoretical aspects

Nambu–Goto simulations

Analytical models

Cosmological signatures

- Power spectrum of string induced anisotropies
 String-induced CMB
- distorsions Small angles and flat
- sky limit
- Systematics from loops not in scaling

String effects since last scattering

- Basic non-Gaussian estimators
- Observable string
- correlators
- Bispectrum of string induced CMB anisotropies
- Bispectrum comes from expansion
- ✤ Isoscele triangle configurations
- Compatible with small angle simulated maps

String non-Gaussianities with Planck

Perspectives and conclusion

- Amplitude at $\ell = 1000$: $\ell(\ell + 1) C_{\ell}/(2\pi) \simeq 14 (GU)^2$
 - Compatible with Abelian Higgs power spectrum
- Variance: $\sigma^2 \simeq (150.7 \pm 18) \, (GU)^2$
- Power law behaviour at small scales

$$\ell(\ell+1) C_{\ell} \propto_{\ell \gg 1} \ell^{-p}$$
 with $p = 0.889^{+0.001}_{-0.090}$

Basic non-Gaussian estimators

Theoretical aspects

Nambu–Goto simulations

Analytical models

Cosmological signatures

- Power spectrum of string induced anisotropies
 String-induced CMB distorsions
- ✤ Small angles and flat sky limit
- Systematics from loops not in scaling
- String effects since last scattering

Basic non-Gaussian estimators

 Observable string correlators
 Bispectrum of string induced CMB anisotropies
 Bispectrum comes from expansion
 Isoscele triangle configuration

Compatible with small angle simulated maps

String non-Gaussianities with Planck

 \bigcirc

Perspectives and conclusion

Gradient magnitude

 $|\nabla\Theta| \equiv \sqrt{\left(\frac{\mathrm{d}\Theta}{\mathrm{d}\alpha}\right)^2 + \left(\frac{\mathrm{d}\Theta}{\mathrm{d}\beta}\right)^2}$

One-point functions

$$g_1 \equiv \left\langle \frac{\overline{(\Theta - \overline{\Theta})^3}}{\sigma^3} \right\rangle \simeq -0.22 \pm 0.12$$
$$g_2 \equiv \left\langle \frac{\overline{(\Theta - \overline{\Theta})^4}}{\sigma^4} \right\rangle - 3 \simeq 0.69 \pm 0.29$$

Analytical models

Nambo-Goto simulations

Cosmological signatures Power spectrum of

String-induced CMB

✤ Basic non-Gaussian

Bispectrum of string

♦ Observable string

✤ Isoscele triangle configurations

angle simulated maps

distorsions

sky limit 👝

not in scaling

scattering

estimators

correlators

expansion

with Planck

Perspectives and conclusion

Not enough for detection?

- Experimental beam damps the signal: PLANCK 217 GHz
 - One-point function is nearly Gaussian, up to the rare events.
 - Gradient magnitude is sensitive to all: inf + SZ + stgs

Nambu–Goto simulations

Analytical modes

Cosmological signatures

 Power spectrum of string induced anisotropies
 String-induced CMB distorsions

Small angles and flat sky limit

Systematics from loops not in scaling

String effects since last scattering

Basic non-Gaussian estimators

Observable string Ocorrelators

 Bispectrum of string induced CMB anisotropies

Bispectrum comes from expansion

Isoscele triangle configurations

Compatible with small angle simulated maps

String non-Gaussianities with Planck

Perspectives and conclusion

Three-point function of the CMB anisotropies

Non-vanishing skewness \Rightarrow 3-pts function $\neq 0$

$$\langle \hat{\Theta}_{\boldsymbol{k}_1} \hat{\Theta}_{\boldsymbol{k}_2} \hat{\Theta}_{\boldsymbol{k}_3} \rangle = B(\boldsymbol{k}_1, \boldsymbol{k}_2, \boldsymbol{k}_3)(2\pi)^2 \delta(\boldsymbol{k}_1 + \boldsymbol{k}_2 + \boldsymbol{k}_3)$$

- From ISW, can be evaluated analytically at small angle [Hindmarsh:2009qk,Ringeval:2010ca]
 - Calculation easier in the light cone gauge (instead of temporal)

$$\tau = X^0 + X^3 \implies \boldsymbol{u} = \dot{\boldsymbol{X}}$$

$$B(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}) = i\epsilon^{3} \frac{1}{\mathcal{A}} \frac{k_{1_{A}} k_{2_{B}} k_{3_{C}}}{k_{1}^{2} k_{2}^{2} k_{3}^{2}} \int d\sigma_{1} d\sigma_{2} d\sigma_{3} \left\langle \dot{X}_{1}^{A} \dot{X}_{2}^{B} \dot{X}_{3}^{C} e^{i\delta^{ab} \mathbf{k}_{a} \cdot \mathbf{X}_{b}} \right\rangle$$

- with $\dot{X}^A_a = \dot{X}^A(\sigma_a)$, $a,b \in \{1,2,3\}$, $\epsilon = 8\pi G U$
- Assuming \dot{X} and \dot{X} are Gaussian random variables

$$\left\langle C^{ABC} e^{iD} \right\rangle = i \left\langle C^{ABC} D \right\rangle e^{-\langle D^2 \rangle/2}$$

Observable string correlators

Expand everything in terms of two-point correlators

$$\langle C^{ABC}D \rangle = \frac{1}{4} \delta^{AB} \left[k_1^C \Pi(\sigma_{13}) + k_2^C \Pi(\sigma_{23}) \right] \mathbf{V}(\sigma_{12}) + \circlearrowleft$$

$$\langle D^2 \rangle = -\frac{1}{2} \left[\mathbf{k}_1 \cdot \mathbf{k}_3 \Gamma(\sigma_{13}) + \mathbf{k}_2 \cdot \mathbf{k}_3 \Gamma(\sigma_{23}) + \mathbf{k}_1 \cdot \mathbf{k}_2 \Gamma(\sigma_{12}) \right]$$

$$\Gamma(\sigma - \sigma') \equiv \left\langle \left[\mathbf{X}(\sigma) - \mathbf{X}(\sigma') \right]^2 \right\rangle = \int_{\sigma'}^{\sigma} \mathrm{d}\sigma_1 \int_{\sigma'}^{\sigma} \mathrm{d}\sigma_2 \mathbf{T}(\sigma_1 - \sigma_2)$$

$$\Pi(\sigma - \sigma') \equiv \left\langle \left[\mathbf{X}(\sigma) - \mathbf{X}(\sigma') \right] \right] \cdot \dot{\mathbf{X}}(\sigma') \right\rangle = \int_{\sigma'}^{\sigma} \mathrm{d}\sigma_1 \mathbf{M}(\sigma_1 - \sigma')$$

Depend on three functions

$$\left\langle \dot{X}^{A}(\sigma)\dot{X}^{B}(\sigma')\right\rangle = \frac{1}{2}\delta^{AB}V(\sigma-\sigma')$$
$$\left\langle \dot{X}^{A}(\sigma)\dot{X}^{B}(\sigma')\right\rangle = \frac{1}{2}\delta^{AB}M(\sigma-\sigma')$$
$$\left\langle \dot{X}^{A}(\sigma)\dot{X}^{B}(\sigma')\right\rangle = \frac{1}{2}\delta^{AB}T(\sigma-\sigma')$$

Theoretical aspects

Nambu–Goto simulations

O Analytical models

Cosmological signatures

- Power spectrum of string induced anisotropies
 String-induced CMB
- distorsions o
- Small angles and flat sky limit
- Systematics for loops not in scaling
- String effects since last scattering
- ✤ Basic nor-Gaussian estimators
- Observable string correlators
- Bispectrum of string induced CMB anisotropies
 Bispethum comes from expansion
- Isoscele triangle
 configurations
- Compatible with small angle simulated maps

String non-Gaussianities with Planck

Perspectives and conclusion

Nambu_OGoto simulations

Analytical models

Cosmological signatures

 Power spectrum of string induced anisotropies
 String-induced CMB distorsions

Small angles and flat sky limit

Systematics from loops not in scaling

String effects since last scattering

Basic non-Gaussian estimators

Observable string correlators

 Bispectrum of string induced CMB anisotropies

Bispectrum comes from expansion

Isoscele triangle configurations

Compatible with small angle simulated maps

String non-Gaussianities with Planck

0

Perspectives and conclusion

Bispectrum of string induced CMB anisotropies

Integration can be done at large wavenumbers: $\kappa_{ab} \equiv {m k}_a \cdot {m k}_b \gg 1$

$$B(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}) = -\epsilon^{3} \pi c_{0} \frac{\bar{v}^{2}}{\bar{t}^{4}} \frac{L\hat{\xi}}{\mathcal{A}} \frac{1}{\hat{\xi}^{2}} \frac{1}{k_{1}^{2} k_{2}^{2} k_{3}^{2}} \left[\frac{k_{1}^{4} \kappa_{23} + k_{2}^{4} \kappa_{31} + k_{3}^{4} \kappa_{12}}{\left(\kappa_{23} \kappa_{31} + \kappa_{12} \kappa_{31} + \kappa_{12} \kappa_{23}\right)^{3/2}} \right]$$

• Sensitive to the (averaged projected) small scales $\sigma \rightarrow 0$ [Hindmarsh:1995]

$$V(\sigma) \sim \bar{v}^2, \qquad \Gamma(\sigma) \sim \bar{t}^2 \sigma^2, \qquad \Pi(\sigma) \sim \frac{1}{2} \frac{c_0}{\hat{\xi}} \sigma^2 \quad [\hat{\xi} \equiv \Gamma'(\infty)]$$

Nambu–Goto simulations

Analytical models

Cosmological signatures

Power spectrum of string induced anisotropies String-induced CMB distorsions Small angles and flat sky limit Systematics from loops not in scaling 🔘 String effects since last scattering Basic non-Gaussian estimators ✤ Observable string correlators ♦ Bispectrum of string induced CMB anisotropies ♦ Bispectrum comes from expansion ✤ Isoscele triangle \bigcirc \bigcirc

configuations

angle simulated maps

String non-Gaussianities with Planck

Perspectives and conclusion

 \bigcirc

Bispectrum comes from expansion

• Proportional to
$$c_0 \equiv \hat{\xi} \left< \ddot{m{X}} \cdot \dot{m{X}} \right>
eq 0$$
?

- Light cone gauge + FLRW + \dot{X} , \acute{X} Gaussian random variables

$$\left\langle \ddot{\boldsymbol{X}}\cdot\dot{\boldsymbol{X}}\right\rangle = \bar{\mathcal{H}}\left(\left\langle \dot{\boldsymbol{X}}^{2}\right\rangle \left\langle \dot{\boldsymbol{X}}^{2}\right\rangle - \left\langle \dot{\boldsymbol{X}}\cdot\dot{\boldsymbol{X}}\right\rangle^{2}\right) = \bar{\mathcal{H}}\bar{v}^{2}\bar{t}^{2}$$

For $\overline{H} > 0 \Rightarrow c_0 > 0$: breaking of time reversal invariance

- String bispectrum exists only in an expanding universe
 - Gives a negative skewness by integration
 - Decays as a power law at small scales
 - This is the CMB temperature bispectrum (what you see!)
 - As opposed to primordial $(f_{\rm NL})$

Analytical models

distorsions

sky limit

scattering

estimators O

correlators

Nambu–Goto simulations

Cosmological signatures Power spectrum of string induced anisotropies String-induced CMB

Small angles and flat

Systematics from loops

✤ String effects since ast

✤ Basic non-Gaussian

♦ Observable string

not in scaling O

 \bigcirc

Isoscele triangle configurations

Wavenumbers such that
$$k_1 = k_2 = k$$
 and $k_3 = 2k\sin(\theta/2)$

$$B_{\ell\ell\theta}(k,\theta) = -\epsilon^3 \pi c_0 \frac{\bar{v}^2}{\bar{t}^4} \frac{L\hat{\xi}}{\mathcal{A}} \frac{1}{\hat{\xi}^2 k^6} \frac{1 + 4\cos\theta \sin^2(\theta/2)}{\sin^3\theta}$$

• Amplified on elongated triangles; \pm at $\theta_0 = 2 \arccos \frac{\sqrt{3} - \sqrt{3}}{2}$

 Bispectrum comes from expansion
 Isoscele triangle

✤ Bispectrum of string

induced CMB anisotropies

configurations

Compatible with small angle simulated maps

String non-Gaussianities with Planck

 Perspectives and conclusion

Theoretical aspects Nambu–Goto simulations Analytical models

Cosmological signatures Power spectrum of string induced anisotropies String-induced CMB distorsions O Small angles and flat sky limit

Systematics from loops

String effects since last scattering

Basic non-Gaussian estimators

Observable string

correlators

* Bispectrum of string induced CMB anisotropies

 Bispectrum comes from expansion

Asoscele triangle

configurations

Compatible with small angle simulated maps

String non-Gaussianities with Planck

Perspectives and Oconclusion

• • • •

 $\bigcirc \bigcirc$

Compatible with small angle simulated maps

Estimator:
$$\Theta_u(\boldsymbol{x}) \equiv \int \frac{\mathrm{d}\boldsymbol{l}}{(2\pi)^2} \hat{\Theta}_{\boldsymbol{l}} W_u(l) e^{-i\boldsymbol{l}\cdot\boldsymbol{x}}$$

$$B_{k_1k_2k_3} = \frac{\left\langle \int \Theta_{k_1}(\boldsymbol{x})\Theta_{k_2}(\boldsymbol{x})\Theta_{k_3}(\boldsymbol{x})\mathrm{d}\boldsymbol{x} \right\rangle}{\int \frac{\mathrm{d}\boldsymbol{p}\mathrm{d}\boldsymbol{q}}{(2\pi)^4} W_{k_1}(p) W_{k_2}(q) W_{k_3}(|\boldsymbol{p}+\boldsymbol{q}|)}$$

Power-law and dependency in θ recovered

Nambu-Goto simulations O Analytical models

Cosmological signatures

String non-Gaussianities with Planck

Filling the transparent
 Ouniverse with strings
 Massively parallel ray tracing method

After a million of cpu-hours

 Comparison between flat and full sky
 Non-Gaussian searches for cosmic strings

 \bigcirc

 \bigcirc

 \bigcirc

Perspectives and conclusion

 \cap

0

 \bigcirc

String non-Gaussianities with Planck

Theoretical aspects Nambu–Goto simulations Analytical models Cosmological signatures String non-Gaussianities with Planck ✤ Filling toe transparent universe with strings ♦ Massively parallel ray tracing method After a million of \bigcirc cpu-hours Comparison between flat and full sky * Non-Gaussian searches for cosmic strings \mathbf{C} Perspectives and 0 conclusion \bigcirc

 \bigcirc

 \bigcirc

Outline

String non-Gaussianities with Planck

Filling the transparent universe with strings Massively parallel ray tracing method After a million of cpu-hours Comparison between flat and full sky Non-Gaussian searches for cosmic strings

Nambu–Goto simulations

Analytical models

Cosmological signatures

String non-Gaussianities with Planck Filling the transparent universe with strings

♦ Massively parallel gay
 Ctracing method

After a million of cpu-hours

Comparison between flat and full sky
Non-Gaussian searches

 \bigcirc

for cosmic strings

Perspectives and conclusion

 \bigcirc

0

Filling the transparent universe with strings

Searching for string NG with Planck requires full sky \Rightarrow simulations

- Each simulation is a box of initial resolution 2000^3 (movie box)
- Have to be stacked to fill 13 billion light years (HEALpix)

- This can be done with 3072 CS runs
- In which we propagate the CMB...

Nambu–Goto simulations

Analytical models

Cosmological signatures String non-Gaussianities with Planck

Filling the transparent universe with strings

Massively parallel ray tracing method

♦ After a million of cpu-hours

Comparison between flat and full sky

Non-Gaussian searches for cosmic strings

Perspectives and conclusion

 \bigcirc

Massively parallel ray tracing method

- Sky pixelized with 200 000 000 lines of sight (4 times Planck maps)
 - Each direction receives cumulative contributions from all CS
 - Account for roughly 10^{17} iterations
- Parallelization implementation
 - MPI over the 3072 boxes + reduction
 - OpenMP over the 200 000 000 pixels
 - Vectorization of the most inner loop (string segments)
- Code development performed on the CP3-cosmo cluster (100 cores)
- Reasonable computing time demands a 100 TeraFlops computer :-/
 - The Planck collaboration has a few...(thanks to J. Borrill) :)

Nambu–Goto simulations

Analytical models

Cosmological signatures

String non-Gaussianities with Planck

✤Filling the transparent universe with strings

Massively parallel ray tracing method

After a million of cpu-hours
Comparison between flat and full sky
Non-Gaussian searches

for cosmic strings

Perspectives and conclusion

512 nodes / 12K cores runs at NERSC

National Energy Research Scientific Computing Center (Berkeley U.S.)

- The "Hopper" Cray XE6 machine (world rank 8 in Nov 2011)
 - ♦ More than 6000 nodes with Dual processor 24 cores
 - ✤ 3D Cray Gemini: Maximum injection bandwidth per node 20 GB/s

Analytical models

with Planck

tracing method After a million of

flat and full sky

cpu-hours

Nambu–Goto simulations

Cosmological signatures

Filling the transparent
 universe with strings
 Massively parallel ray

Comparison between

 Non-Gaussian searches for cosmic strings
 Perspectives and conclusion

 \bigcirc

0

After a million of cpu-hours

Full sky synthetic string map of 2 × 10⁸ pixels [Ringeval:2012tk, Ade:2013xla]
 Temperature anisotropies

 $\times 4$ for tests and string challenges

Analytical models

with Planck

tracing method ♦ After a million of

flat and full sky

cpu-hours

Nambu–Goto simulations

Cosmological signatures String non-Gaussianities

Filling the transparent universe with strings

✤ Massively parallel ray

Comparison between

♦ Non-Gaussian searches for cosmic strings Perspectives and conclusion

 \cap

 \mathbf{O}

0

0

After a million of cpu-hours

Full sky synthetic string map of 2×10^8 pixels [Ringeval:2012tk, Ade:2013xla] Gradient magnitude

 $\times 4$ for tests and string challenges

Nambu–Goto simulations

Analytical models

Cosmological signatures

String non-Gaussianities with Planck

Filling the transparent universe with strings

Massively parallel ray?
tracing method
After a million of O

cpu-hours

Comparison between flat and full sky

Non-Gaussian searches for cosmic strings

Perspectives and conclusion

Small spherical distorsions on the edges and smoother temperature contrasts

Comparison between flat and full sky

Gnomic projection

-70.0

70.0 DT/T/GU

Flat sky

Comparison between flat and full sky

CMB angular power spectrum match

Theoretical aspects

Nambu–Goto simulations

Analytical models

Cosmological signatures

String non-Gaussianities with Planck

Filling the transparent universe with strings

♦ Massively parallel ray? tracing method ♦ After a million of ○

cpu-hours

Comparison between flat and full sky

✤ Non-Gaussian searghes for cosmic strings

C

 \mathbf{C}

Perspectives and conclusion

Non-Gaussian searches for cosmic strings

Theoretical aspects Nambu–Goto simulations

Cosmological signatures

String non-Gaussianities with Planck

• Filling the transparent universe with strings

Massively parallel ray tracing method
 After a million of

cpu-hours _〇

Comparison between flat and full sky

Non-Gaussian searches for cosmic strings

0

Perspectives and conclusion

0

 \bigcirc

- Different methods used
 - Modal bispectrum
 - Wavelets
 - Minkowski functionals

Planck constraints on cosmic strings non-Gaussianities

 $f_{\rm NL}^{\rm strg} = 0.30 \pm 0.21 \Rightarrow GU < 8.8 \times 10^{-7}$ Real space $\Rightarrow GU < 7.8 \times 10^{-7}$

Very robust (ISW only) but slightly weaker than power spectrum bounds $GU < 1.3 \times 10^{-7} \rightarrow 3.2 \times 10^{-7}$

Perspectives and conclusion

Analytical models

with Planck

Perspectives and conclusion

Nambu–Goto simulations

Cosmological signatures O String non-Gaussianities

 Four-point function of the CMB anistropies
 Loops and CMB trispectrom
 Example: kite quadrilaterals
 Conclusion

0

0

 \bigcirc

 \bigcirc

 \bigcirc

Outline

Perspectives and conclusion

Four-point function of the CMB anistropies Loops and CMB trispectrum Example: kite quadrilaterals Conclusion

Theoretical aspects
Nambu–Goto simulation
Analytica models
Cosmological signatures
String non-Gaussianities
with Planck
Perspectives and
conclusion
 Four-point function of
the CMB anistropies
Loops and CMB

trispectrum
 Example: kite
 quadrilaterals
 Conclusion

0

 \cap

C

Four-point function of the CMB anistropies

Same method as for the bispectrum with new features [Hindmarsh:2009es]

$$\left\langle \hat{\Theta}_{\boldsymbol{k}_{1}} \hat{\Theta}_{\boldsymbol{k}_{2}} \hat{\Theta}_{\boldsymbol{k}_{3}} \hat{\Theta}_{\boldsymbol{k}_{4}} \right\rangle = T(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}, \boldsymbol{k}_{3}, \boldsymbol{k}_{4})(2\pi)^{2} \delta(\boldsymbol{k}_{1} + \boldsymbol{k}_{2} + \boldsymbol{k}_{3} + \boldsymbol{k}_{4})$$
$$T_{1234} = \frac{\epsilon^{4}}{\mathcal{A}} \frac{k_{1_{A}} k_{2_{B}} k_{3_{C}} k_{4_{D}}}{k_{1}^{2} k_{2}^{2} k_{3}^{2} k_{4}^{2}} \int \mathrm{d}\sigma_{1} \mathrm{d}\sigma_{2} \mathrm{d}\sigma_{3} \mathrm{d}\sigma_{4} \left\langle \dot{X}_{1}^{A} \dot{X}_{2}^{B} \dot{X}_{3}^{C} \dot{X}_{4}^{D} e^{i\delta^{ab} \boldsymbol{k}_{a} \cdot \boldsymbol{X}_{b}} \right\rangle$$

Flat directions: sensitive to higher order in the correlators

Polchinski–Rocha model
$$\Rightarrow T(\sigma) \simeq \vec{t}^2 - c_1 \left(\frac{\sigma}{\hat{\xi}}\right)^{2\chi}$$

• Trispectrum sensitives to the string microstructure!

- $0 < \chi < 1, c_1 > 0$
- ♦ NG: power-law exponent of the loop distribution
- Other strings: related to the mean square velocity

Analytical models

with Planck

 \bigcirc

 \bigcirc

Perspectives and conclusion

Nambu-Goto simulations

Cosmological signatures String non-Gaussianities

 Four-point function of the CMB anistropies
 Loops and CMB

 \circ

Ο

Loops and CMB trispectrum

CMB trispectrum from strings is sensitive to $\left< \acute{X}^A(\sigma) \acute{X}^B(\sigma') \right>$

$$T_{\infty}(\boldsymbol{k}_{1},\boldsymbol{k}_{2},\boldsymbol{k}_{3},\boldsymbol{k}_{4}) \simeq \epsilon^{4} \frac{\bar{v}^{4}}{\bar{t}^{2}} \frac{L\hat{\xi}}{\mathcal{A}} \left(c_{1}\hat{\xi}^{2}\right)^{-1/(2\boldsymbol{\chi}+2)} f(\boldsymbol{\chi})g(\boldsymbol{k}_{1},\boldsymbol{k}_{2},\boldsymbol{k}_{3},\boldsymbol{k}_{4})$$
$$f(\boldsymbol{\chi}) = \frac{\pi}{\boldsymbol{\chi}+1} \Gamma\left(\frac{1}{2\boldsymbol{\chi}+2}\right) \left[4(2\boldsymbol{\chi}+1)(\boldsymbol{\chi}+1)\right]^{1/(2\boldsymbol{\chi}+2)}$$

Geometrical factor scales as
$$k^{\rho}$$
: $\rho = 6 + 1/(1 + \chi)$
 $g(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3, \mathbf{k}_4) = \frac{\kappa_{12}\kappa_{34} + \kappa_{13}\kappa_{24} + \kappa_{14}\kappa_{23}}{k_1^2 k_2^2 k_3^2 k_4^2} \left[Y^2\right]^{-1/(2\chi+2)}$
 $Y^2(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3, \mathbf{k}_4) \equiv -\kappa_{12} \left(k_3^2 k_4^2 - \kappa_{34}^2\right)^{\chi+1} + \circlearrowleft,$

This is a consistency relation for loops production mechanism

Analytical models

Perspectives and conclusion

with Planck

trispectrum ◆ Example: kite guadrilaterals

Conclusion

Ο

C

Nambu-Goto simulations

Cosmological signatures

String non-Gaussianities

Four-point function of
 the CMB anistropies
 Loops and CMB

 \bigcirc

 \bigcirc

Example: kite quadrilaterals

Geometrical factor for kites: boost on elongated

$$g(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}, \mathbf{k}_{4}) = \frac{\cos^{2}(\alpha) \left[1 - 2\cos(2\alpha)\cos(\theta)\right]}{\sin^{2}(\theta/2)} \frac{1}{k^{\rho} y^{2/(2+2\chi)}(\theta, \alpha)}$$
$$\rho = 6 + \frac{1}{1+\chi}$$

Bump for parallelograms at $\theta = \pi - 2\alpha$ $(Y^2 = 0)$

k

Conclusion

Theoretical aspects

Nambu–Goto simulations

Analytical models

Cosmological signatures String non-Gaussian(ties with Planck

Perspectives and conclusion

 Four-point function of the CMB anistropies
 Loops and CMB trispectrum
 Example: kite quadrilaterals

 \bigcirc

0

 \bigcirc

 \bigcirc

Conclusion

0

- Currently: no string non-Gaussianities $\implies GU < 7.8 \times 10^{-7}$
- Future improvements
 - Searching for string induced trispectrum ⇒ window on their nature (trispectrum)
 - Next Planck data release + polarization + small scales experiments (BB [Seljak 06])
- Other observables than CMB: signal $\propto (G oldsymbol{U})^{2,3,4}$
 - ♦ Galaxy surveys
 - GW direct detection (strongly depent on the loop distribution)
 - ♦ 21 cm
- Detecting strings would give a lower bound on the energy scale of inflation!