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We study the autocorrelation function of a conserved spin system following a quench at the critical
temperature. Defining the correlation length L(t) ∼ t1/z, we find that for times t′ and t satisfying
L(t′) ¿ L(t) ¿ L(t′)φ well inside the scaling regime, the autocorrelation function behaves like

〈s(t)s(t′)〉 ∼ L(t′)−(d−2+η) [L(t′)/L(t)]
λ′c . For the O(n) model in the n → ∞ limit, we show that

λ′c = d + 2 and φ = z/2. We give a heuristic argument suggesting that this result is in fact valid for
any dimension d and spin vector dimension n. We present numerical simulations for the conserved
Ising model in d = 1 and d = 2, which are fully consistent with this result.

The quench of a ferromagnetic spin system [1], from
high temperature (T0 > Tc) to low temperature (typi-
cally T = 0 or T = Tc) is characterized by the growth of
a correlation length scale (or domain length scale when
domains can be identified), L(t) ∼ t1/z. In the non con-
served case, z depends on the final temperature of the
quench (z = 2 for T < Tc, while z is the dynamical
critical exponent for T = Tc [2]). If the order parame-
ter s(x, t) (possibly a vector) is locally conserved, z = 3
(scalar) or z = 4 (vector) for a quench below Tc [1],
while z = 4 − η [2] for a quench at Tc. Another in-
teresting and fundamental quantity is the spin autocor-
relation A(t, 0) = 〈s(x, t)s(x, 0)〉 ∼ L(t)−λ [3–5]. For
non conserved dynamics, whatever the temperature of
the quench, λ is non trivial (except in d = 1 [1]) and only
approximate theories are available for T = 0 [1, 4], while
for T = Tc [3], the ε-expansion of λ can be calculated. In
the case of conserved dynamics, it is now well established
that λ = d for quenches at and below Tc [6–8]. Hence for
fixed t′ and t → +∞, A(t, t′) ∼ L(t)−d. However, for t′

and t > t′ both in the scaling regime (in a sense to be
defined later), several authors have observed numerically
[9–11] and experimentally [12] a faster power law decay of
the autocorrelation as a function of L(t). More precisely,
in the case of a quench of an Ising system at Tc (criti-
cal quench), the authors of [11] obtained numerically the
following form

A(t, t′) ∼ L(t′)−(d−2+η)

[
L(t′)
L(t)

]λ′c
, (1)

in d = 1 (where formally η = 1 and Tc = 0) and d = 2.
They respectively found λ′c ≈ 2.5 in d = 1 and λ′c ≈ 3.5
in d = 2. They also suggested a general scaling relation

A(t, t′) ∼ L(t)−dC

[
L(t)

L(t′)φ

]
, (2)

where C(x) goes to a non zero constant for x → +∞,

C(x) ∼ x−(λ′c−d) for x → 0, and

φ = 1 +
2− η

λ′c − d
. (3)

As noticed in [11], this scaling implies the existence of
a new relevant length scale L(t′)φ for conserved critical
dynamics, which is the crossover length between the two
observed regimes. Its physical meaning has yet to be
elucidated.

In the present Letter, we address the problem of the
actual analytical derivation of λ′c in the case of the O(n)
model in the limit of infinite n. Within this model, the
nature of this new length scale can be understood and
one finds λ′c = d + 2 and φ = 2. By generalizing the
interpretation of this crossover length scale to any O(n)
spin system, we conjecture that the result λ′c = d + 2
holds and that φ = 2− η/2 = z/2.

We first examine the exactly solvable O(n) model in
the limit n →∞ and for dimensions d > 2. This model is
known to be pathological for a quench at zero tempera-
ture, displaying multiscaling [13], whereas normal scaling
should be restored at finite n [1, 14]. However, after a
quench at Tc, the structure factor obeys standard scal-
ing even for n → ∞ [7], and it is natural to expect that
this model should give a better insight concerning the
existence and nature of the exponent λ′c. In the stan-
dard Cahn-Hilliard equation describing the evolution of
the magnetization field s(x, t), s2(x, t)/n can be replaced
by its average in the limit n → ∞. Thus, any given
component of s(x, t) satisfies

∂s

∂t
= −∆

[
∆s + k2

0s− 〈s2〉s] + η, (4)

where k2
0 is a constant, η(x, t) is a conserved delta-

correlated noise satisfying 〈η(k, t)η(k′, t′)〉 = 2Tck
2δ(k+

k′)δ(t−t′), and 〈s2〉 has to be computed self-consistently.
Although the derivation of the structure factor has al-
ready appeared in the literature [7], we briefly repeat it
as it furnishes a useful basis for our final derivation.
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Eq. (4) can be readily solved in Fourier space, leading
to

s(k, t) =
[
s(k, 0) +

∫ t

0

eq(k,τ)η(k, τ) dτ

]
e−q(k,t), (5)

where

q(k, t) = k4t− k2

∫ t

0

[k2
0 − 〈s2(x, τ)〉] dτ. (6)

Assuming an uncorrelated initial condition such that
〈s(−k, 0)s(k, 0)〉 = s2

0, we then find the structure factor
S(k, t) = 〈s(−k, t)s(k, t)〉

S(k, t) =
[
s2
0 + 2Tc

∫ t

0

e2q(k,τ) dτ

]
e−2q(k,t). (7)

We now express the self-consistent condition 〈s2(x, t)〉 =∫ Λ
S(k, t) ddk

(2π)d , where Λ is the inverse of a lattice cut-
off. Tc is such that S(k, t → ∞) ∼ k2−η, where η is the
usual critical exponent controlling the decay of the static
correlation function (η = 0 for n →∞). This leads to

Tc

∫ Λ

k−2 ddk
(2π)d

= k2
0. (8)

Finally, if the above condition is satisfied, we find that
q(k, t) obeys a scaling relation for large t

q(k, t) = q(kt1/4) = k4t− cdk
2t1/2, (9)

where cd is a universal constant determined by a simple
integral relation (cd = 0 for d > 4) [7], and q(u) = u4 −
cdu

2. We thus find L(t) = t1/z, with z = 4, in agreement
with the general result z = 4−η [2]. We hence reproduce
the general form of the structure factor

S(k, t) = s2
0e
−2q(kt1/z) + t(2−η)/zF (kt1/z). (10)

For the O(n = ∞) model, we have z = 4, η = 0, and

F (u) = 2Tcu
2

∫ 1

0

e−u4(1−v)+cdu2(1−v1/2) dv. (11)

Note the following asymptotics for F (u)

F (u) ∼ 2Tcu
2, u → 0, (12)

F (u) ∼ Tcu
−2, u → +∞. (13)

In the scaling limit, the first term of the right hand side
(RHS) of Eq. (10) is negligible compared to the second
term. In real space, Eq. (10) illustrates the fact that
conventional (critical) scaling is obeyed

〈s(x, t)s(0, t)〉 = L(t)−(d−2+η)f [x/L(t)], (14)

where f is simply the inverse Fourier transform of F .

We now move to the calculation of the two-time cor-
relation function, focusing on the case where both con-
sidered times t′ and t > t′ are in the scaling regime, a
notion which will be made more precise hereafter. Us-
ing Eq. (5), and working along the line of the derivation
of S(k, t), we find the following expression for C(k, t) =
〈s(−k, t′)s(k, t)〉

C(k, t, t′) = eq[kt′1/4]−q[kt1/4]S(k, t′), (15)

= s2
0e
−q[kL(t′)]−q[kL(t)] + (16)

L(t′)2eq[kL(t′)]−q[kL(t)]F [kL(t′)]. (17)

For a fixed t′ and t → ∞, the contribution of Eq. (17)
becomes negligible, as for large t and hence L(t), only
the contribution of small wave vector k ∼ L(t)−1 mat-
ters. Using the result of Eq. (12), we indeed find that
that this term is of order k2 ∼ L(t)−2, whereas the main
contribution of Eq. (16) is of order s2

0 which is a constant.
Contrary to what occurs in S(k, t), it is now the term de-
pending on the initial conditions via s2

0 which dominates.
Hence in this limit of fixed t′ and t →∞, we find

C(k, t, t′) ∼ C(k, t, 0) ∼ s2
0e
−q[kL(t)] = G[kL(t)], (18)

and in real space

〈s(x, t)s(0, t′)〉 ∼ L(t)−dg[x/L(t)], (19)

where g is the inverse Fourier transform of G. One recov-
ers, in the limit t À t′ to be made more precise later, that
the large time autocorrelation exponent is λc = d, which
is so far observed in all conserved models including ther-
mal fluctuations [6, 7]. Again, in this limit, conventional
scaling holds. However, we will now show that the con-
tribution of Eq. (17) which has not so far been considered
is in fact the leading term in a well defined time regime,
and will prompt us to introduce another autocorrelation
exponent λ′c.

For general t′ and t > t′, we now proceed to cal-
culate the autocorrelation for a spin on a given lattice
site. Defining A(t, t′) = 〈s(x, t′)s(x, t)〉, we finally find
A(t, t′) = A1(t, t′) + A2(t, t′), where

A1(t, t′) = s2
0

∫ Λ

e−q[kL(t′)]−q[kL(t)] ddk
(2π)d

. (20)

After a change of variable and noting that the region of
k À L(t)−1 barely contributes to the integral, we find

A1(t, t′) = L(t)−da1[L(t′)/L(t)]. (21)

Thus, A1(t, t′) obeys conventional scaling for any t′ and
t > t′. We explicitly find

a1(u) = s2
0

∫ ∞
e−k4(1+u4)+cdk2(1+u2) ddk

(2π)d
, (22)

where this integral is now over the entire space. a1(u)
remains bounded and of order s2

0 for any value of u =
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L(t′)/L(t) ≤ 1. Keeping the notation u = L(t′)/L(t) ≤
1, the expression for A2(t, t′) can be written in the
rescaled form

A2(t, t′) = L(t′)−(d−2)ud× (23)
∫ L(t)Λ

e−k4(1−u4)+cdk2(1−u2)F (ku)
ddk

(2π)d
.

Let us analyze the different asymptotics for A2(t, t′).
First of all, for large t = t′ (u = 1), the integral is
dominated by the region of large k’s. Using Eq. (17),
we find the expected result A2(t, t′) ≈ k2

0, which is the
equilibrium value of 〈s2〉. Note that if t − t′ ¿ 1,
we obtain A2(t, t′) = A2(t, t) − Kd(t − t′) + ..., where
Kd is a computable constant. We now assume that
1 ¿ L(t) − L(t′) ¿ L(t′), which ensure that u is very
close to 1. In this regime, we find that

A2(t, t′) ∼ JdL(t)−(d−2)

[
1− L(t′)

L(t)

]−(d−2)/4

, (24)

∼ J ′d (t− t′)−(d−2)/4, (25)

where Jd and J ′d can be written exactly as simple inte-
grals. Finally, and this constitutes the central result of
this Letter, we consider the new scaling regime behavior
corresponding to 1 ¿ L(t′) ¿ L(t). In this case, u ¿ 1,
and the integral of Eq. (23) is dominated by the region of
k of order unity, so that the small argument asymptotics
can be taken for F (ku) in Eq. (23). We find

A2(t, t′) ∼ κd L(t′)−(d−2)

[
L(t′)
L(t)

]d+2

, (26)

κd = 2Tc

∫ ∞
k2e−k4+cdk2 ddk

(2π)d
. (27)

Eq. (26) takes exactly the expected form of Eq. (1), with

λ′c = d + 2. (28)

A1(t, t′) will prevail over A2(t, t′) for L(t) À L0(t′), with
L0(t′) ∼ L(t′)φ and φ = 2. Eq. (23) shows that instead
of Eq. (2), the correct scaling is rather

A(t, t′) = A(t, 0) + L(t′)−(d−2+η)D[L(t)/L(t′)], (29)

with D(1/u) ∼ uλc for u ¿ 1. Both scaling are equiv-
alent only for u ¿ 1. We now present an heuristic ar-
gument, based on dimensional analysis which suggests
that the result λ′c = d + 2 may be of general validity for
conserved spin systems. Indeed, the occurrence of a new
length scale bigger than L(t) could have been inferred
from the small k behavior of S(k, t). In the n →∞ limit
and for k → 0, Eq. (10) leads to

S(k, t) ≈ s2
0 + 2Tck

2L(t)4 + ... (30)

A natural momentum scale k0(t) ∼ L0(t)−1 arises by
matching the two terms of the RHS of Eq. (30), which
leads to φ = 2 and hence λ′c = d + 2.
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FIG. 1: Illustrating the result of Eq. (29), we plot A(t, tk)−
A(t, 0) = D[L(t)/L(tk)], for L(tk) ≈ L(0)rk, with r = 1.75
and k = 1, ..., 7 (40000 samples of length N = 5000). Al-
though the initial slope is smaller (λ′c ≈ 2.5 [11]; dotted line),
the asymptotic exponent is very close to λ′c = 3 (dashed line
fit). The bottom inset shows the original data for A(t, tk)
and A(t, tk) − A(t, 0) (dashed lines). The top inset shows
L(t)[A(t, tk) − A(t, 0)] as a function of L(t)/L(tk)φ (with
φ = 3/2). Lines of slope λ′c − 1 are shown for λ′c = 3 (dashed
line) and λ′c ≈ 2.5 (dotted line).

In the general case, for short-range correlated initial
conditions, we expect the following general form to hold

S(k, t) = F1[kL(t)] + L(t)2−ηF2[kL(t)], (31)

with F1(0) = s2
0 being a non zero constant (equal to the

variance of the initial total magnetization normalized by
the volume), while the scaling contribution should vanish
for k = 0, implying F2(0) = 0. Imposing F2(p) ∼ pγ , γ
is necessarily an even integer. If γ were not integer, the
correlation function scaling function f defined in Eq. (14)
would have a power law decay for large distance, which
is unphysical as such correlations cannot develop in a
finite time starting from short-range ones. γ cannot be
an odd integer as space isotropy guarantees that f should
be an even function. Contrary to the case of a quench
at T = 0, for which convincing theoretical arguments for
d ≥ 2 [15] and experiments [16] show that F2(p) ∼ p4 (so
that the second moment of f vanishes), there is no reason
to expect the same for critical quenches. Generically, we
expect F2(p) ∼ p2 as found for the d = 1 conserved Ising
model [6, 7], and in the present Letter for the O(n) model
for n →∞. Finally, the small k behavior of the structure
factor should be of the form

S(k, t) ≈ s2
0 + C0k

2L(t)4−η + ..., (32)

where C0 > 0 is a constant. Assuming that the length
scale obtained by matching both terms of the RHS of
Eq. (32) is the same as the crossover length between the
two observed regimes for the autocorrelation, and using
the general result of Eq. (3), we obtain

φ = 2− η/2 = 1 +
2− η

λ′c − d
, (33)
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which implies λ′c = d + 2. This result also extends to
d = 1 after formally taking η = 1, leading to λ′c = 3 and
φ = 3/2. Note that the crossover scale can also be written
L0(t) ∼ tφ/z ∼ t1/2, which behaves like a diffusion scale.
At least in d = 1, this scale can be associated to the
equilibrium diffusion of tagged spins observed in [17].
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FIG. 2: In the bottom inset, we plot A(t, tk) and A(t, tk) −
A(t, 0) (dashed lines) as a function of L(t), for L(tk) ≈ rk,
with r = 1.5 and k = 1, ..., 5 (16 samples of size N = 500×500,
L(0) = 1/

√
2). The main plot shows L(tk)η[A(t, tk) −

A(t, 0)] = D[L(t)/L(tk)]. Although the initial slope is con-
sistent with λ′c ≈ 3.5 [11] (dotted line), the effective exponent
certainly increases and the asymptotic slope is more com-
patible with λ′c = 4 (dashed line fit). The top inset shows
L(t)2[A(t, tk) − A(t, 0)] as a function of L(t)/L(tk)φ (with
φ = 15/8). Although not as clean as in d = 1, the scaling
plot is better described by the line corresponding to λ′c = 4
(dashed line) rather than λ′c ≈ 3.5 (dotted line).

We now present simulations of the Ising model
Kawasaki dynamics in d = 1 and d = 2 after a quench at
Tc. In the d = 1 case, we use the accelerated algorithm
introduced in [7], which is faster than that used in [11]
(but does not permit to compute simply the response
function as was needed in [11]). By fitting A(t, t′) in
the scaling regime, the authors of [11] found λ′c ≈ 2.5
lower than our prediction λ′c = 3. However, for the
moderately large numerically accessible times, the con-
tribution of A1(t, t′) ≈ A(t, 0) is significant. When plot-
ting A(t, t′) − A(t, 0) as a function of L(t), one actually
finds λ′c ≈ 3 instead of λ′c ≈ 2.5. In Fig. 1, we plot
L(t′)[A(t, t′)−A(t, 0)] as a function of L(t)/L(t′)3/2, lead-
ing to an almost perfect scaling plot. The hull scaling
function is well fitted by 0.9 x−2. Since we also find that
A(t, 0) ∼ 0.92/L(t), we conclude that in d = 1, the scal-
ing function introduced in Eq. (2) is well approximated
by C(u) = 1 + u−2. Result of simulations for the d = 2
Ising model evolving with Kawasaki dynamics at Tc are
shown on Fig. 2. Considering the very slow growth of
L(t) ∼ t4/15, it is difficult to obtain data spanning more
than one decade in L(t). Hence, the regime of interest
1 ¿ L(t′) ¿ L(t) cannot be reached and the separa-
tion of scales properly achieved. Still, subtracting A(t, 0)

from A(t, t′) leads to λ′c ≈ 4, significantly greater than
the value λ′c ≈ 3.5 found in [11].

In conclusion, in view of the exact result for the
O(n = ∞) model, a general argument for any n and
d, and convincing simulations in d = 1 (and consistent in
d = 2), we have strongly suggested that λ′c = d + 2 and
φ = z/2 generally holds. We also find that the scaling
form of Eq. (29) is more appropriate than Eq. (2). The
compelling generalization of our heuristic argument to a
quench at T < Tc (in d ≥ 2, and admitting F2(p) ∼ p4)
leads to A(t, t′) ∼ [L(t′)/L(t)]λ

′
for L(t′) ¿ L(t) ¿

L(t′)φ, with λ′ = d + 4 and φ = 1 + d/4. In d = 2,
the prediction λ′ = 6 is significantly larger than the nu-
merical result λ′ ≈ 4 [9]. However, the fit in [9] was
performed in the short scaling regime over less than a
decade in L(t), and subtracting A(t, 0) before perform-
ing the fit could lead to a significantly higher value for
λ′, as noted in the two examples treated in this Letter.
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