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Centre Nat. de la Recherche Scientifique
& Ecole Nat. Sup. des Télécommunications

46 rue Barrault, 75634 Paris cedex 13, France
http://www.tsi.enst.fr/~cappe/

Ecole de Cosmologie, 28 août –2 septembre 2006
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Why Do We Need MCMC for Bayesian Inference?

Bayesian Modelling

The Bayesian Paradigm

Given a probabilistic model

Y ∼ `(y|x), x ∈ X

where `(y|x) denotes a parameterized density known as the
likelihood, Bayesian inference postulates that the parameter x be
embedded with a probability distribution π called the prior.

The Inference

is based on the distribution of x conditional on the realized value
of Y

π(x|Y ) =
`(Y |x)π(x)∫

X `(Y |x′) π(x′) dx′

which is known as the posterior.
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Why Do We Need MCMC for Bayesian Inference?

Bayesian Modelling

Feasibility of Bayesian Inference

In most of the cases, the normalizing constant (sometimes called
the evidence)

π(x|Y ) =
`(Y |x)π(x)∫

X `(Y |x′) π(x′) dx′

may not be determined analytically and hence the posterior is
known up to a constant only, which is usually denoted by writing

π(x|Y ) ∝ `(Y |x)π(x)

Posterior inference

Eg. determining the Minimum Mean Square Estimate of x,
E[x|Y ], is not feasible except in the simplest Bayesian models.
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Why Do We Need MCMC for Bayesian Inference?

Bayesian Modelling

Additional difficulty

For cosmological data analysis, we are only allowed to chose the
prior (while in many case the statistician is also responsible for
building the likelihood)
Hence, several major tools in Bayesian computational inference are
useless in this context:

I latent variables

I hierarchical models

I conjugate priors

I . . .

I the Gibbs sampler

I methods that rely on likelihood slices being log-concave or
with computable level sets, etc.

I . . .



Monte Carlo Methods for Bayesian Inference

Why Do We Need MCMC for Bayesian Inference?

Basic Monte Carlo

Basic Monte Carlo Doesn’t Solve the Problem

Standard independent Monte Carlo — with π(x) as instrumental
distribution — usually is very unreliable

Self-Normalized Importance Sampling

Simulate {Xi}1≤i≤n from r and estimate E[f(X)|Y ] by∑n
i=1 Wif(Xi)∑n

i=1 Wi

where
Wi = `(Y |Xi)π(Xi)/r(Xi)

Works better but requires that some aspects of π(x|Y ) be known
(tail behavior) and does not scale well either in large dimensions
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MCMC Basics

(Minimal) Markov Chain Theory

Transition Kernel

The probability distribution of a Markov chain {Xi}i≥1 on X is
fully determined by its initial distribution ν(x) and its transition
kernel q(x, x′), which are such that

P(X1 ∈ A) =

∫
A

ν(x)dx

P(Xi ∈ A|X1, . . . , Xi−1) =

∫
A

q(Xi−1, x)dx
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MCMC Basics

(Minimal) Markov Chain Theory

Chapman-Kolmogorov Equations

P(Xn+1 ∈ A) =

∫
x∈X

∫
x′∈A

ν(x)qn(x, x′)dxdx′

where

qn(x, x′′)
def
=

∫
qn−1(x, x′)q(x′, x′′)dx′

=

∫
qn−k(x, x′)qk(x′, x′′)dx′

for any 0 ≤ k ≤ n.

I qn(X1, x) is the conditional probability density function of
Xn+1 given X1.
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MCMC Basics

(Minimal) Markov Chain Theory

Stationary Distribution

Definition

π is stationary for q if∫
π(x)q(x, x′)dx = π(x′)

Hence π is a stationary point of the kernel q, viewed as an operator
on probability density functions.

I It is easily checked that this implies that if ν = π,

P(Xi ∈ A) =

∫
π(x)dx

for all i ≥ 1.
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MCMC Basics

(Minimal) Markov Chain Theory

Detailed Balance Condition and Reversibility

Determining the stationary distribution(s) is hard in general,
except in cases where the following stronger condition holds.

Detailed Balance Condition

π(x)q(x, x′) = π(x′)q(x′, x) for all (x, x′) ∈ X2

The chain is then said to be π-reversible and π is a stationary
distribution.

Proof. ∫
π(x)q(x, x′)dx =

∫
π(x′)q(x′, x)dx = π(x′)
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MCMC Basics

(Minimal) Markov Chain Theory

Convergence to Stationary Distribution

If π is a stationary distribution, and under additional regularity
conditions not discussed here, the following properties hold

Convergence in Distribution

P(Xn ∈ A) →
∫

A
π(x)dx (irrespectively of ν)

Law of Large Numbers (Ergodic theorem)

1

n

n∑
i=1

f(Xi)
a.s.−→

∫
f(x)π(x)dx

Central Limit Theorem
√

n

σπ,q,f

[
1

n

n∑
i=1

f(Xi)−
∫

f(x)π(x)

]
D−→ N (0, 1)

. . .
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MCMC Basics

MCMC Essentials

Markov Chain Monte Carlo (MCMC) in a Nutshell

1. Given a target distribution π, which may be known up to a
constant only, find a transition kernel which is π-reversible,
i.e., such that

π(x)q(x, x′) = π(x′)q(x′, x)

2. Simulate a (long) section X1, . . . , Xn of a chain with kernel q
started from an arbitrary point X1 and compute the Monte
Carlo estimate

Êπ(f) =
1

n

n∑
i=1

f(Xi)

of
∫

f(x)π(x)dx, perhaps discarding in the sum the very first
iterations (so called burn-in period).
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MCMC Basics

MCMC Essentials

Rao-Blackwellization
If we can find (X, Z) such that X ∼ π, Z ∼ ν and E [f(X)|Z]
may be computed in closed-form,
MCMC simulation Z1, . . . , Zn are performed using ν as target
distribution and the Rao-Blackwellized estimator

ÊRB
π (f) =

1

n

n∑
i=1

E [f(X)|Zi]

is used, rather than Êπ(f).

The Rao-Blackwell Theorem shows that

Var
(
ÊRB

π (f)
)
≤ Var

(
Êπ(f)

)
for independent simulations. This does not necessarily hold true for
MCMC simulations, but empirically it does in most settings.

I Usually, Rao-Blackwellization is used with Z being a
sub-component of X.
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MCMC Basics

Metropolis-Hastings

Metropolis-Hastings Algorithm

Simulate a Markov chain{Xi}i≥1 with the following mechanism:
given Xi,

1. Generate X? ∼ r(Xi, ·), independently of past simulations;

2. Set

Xi+1 =

{
X? with probability α(Xi, X?)

def
= π(X?) r(X?,Xi)

π(Xi) r(Xi,X?) ∧ 1

Xi otherwise

Note that the acceptance probability is computable also in cases
where π is known up to a constant only
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MCMC Basics

Metropolis-Hastings

π-Reversibility of the Metropolis-Hastings Kernel

Proof.

π(x)α(x, x′)r(x, x′) = π(x′)r(x′, x) ∧ π(x)r(x, x′)

which imply that the transition kernel K associated with the
Metropolis-Algorithm

K(x, dx′) = α(x, x′)r(x, x′) dx′ + pR(x) δx(dx′)

where pR(x) is the probability of remaining in the state x, given by

pR(x) = 1−
∫

α(x, x′)r(x, x′) dx′

is π(x)dx-reversible.
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MCMC Basics

Metropolis-Hastings

Two Simple Cases

Independent Metropolis-Hastings r(x, ·) is a fixed — that is,
independent of x — probability density function r(·):
the proposed chain updates are i.i.d. and the
acceptance probability then reduces to

α(x, x′) =
π(x′)/r(x′)

π(x)/r(x)
∧ 1

Random Walk Metropolis-Hastings r(x, x′) = r(x′ − x), that is,
the proposals are generated as X? = Xi + U where
U ∼ r. The acceptance probability is then

α(x, x′) =
π(x′)

π(x)
∧ 1
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MCMC Basics

Metropolis-Hastings

My First Sampler

Random Walk Metropolis-Hastings

for i = 1 ...
x new = x[i-1] + symmetric perturbation(scale)
post new = compute unnormalized posterior(x new)
if (rand < post new/post)

x[i] = x new
post = post new

else(if)
x[i] = x[i-1]

end(if)
end(for)
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MCMC Basics

Hybrid Kernels

Hybrid Kernels

Assume that K1, . . . ,Km are Markov transition kernels that all
admit π as stationary distribution. Then

1. Ksyst = K1K2 · · ·Km and

2. Krand =
∑m

i=1 αiKi, with αi > 0 for i = 1, . . . ,m and∑m
i=1 αi = 1,

also admit π as stationary distribution. If in addition K1, . . . ,Km

are π reversible, Krand also is π reversible but Ksyst need not be.

Most MCMC algorithms combine several type of transitions, in
particular with proposals that change only one component of X
(one-at-a-time Metropolis-Hastings)
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MCMC in Practice

How Does This Work?

Discuss the practical use of MCMC with topics such as

1. How fast does it converges?

2. Should I use a burn-in period, parallel chains?

3. How to chose the scale of the proposal in RW-MH ?

4. How does the method scales in large dimensions?

5. What’s the point of looking at the simulation path?

6. Should I trust convergence diagnostics (integrated
autocorrelation time, Raftery & Lewis, Gelman & Rubin)?
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MCMC in Practice

Speed of Convergence

How Fast Does it Converge?

Asymptotically, the error is controlled by the scaling term in the
CLT: σπ,q,f/

√
n where

σ2
π,q,f = Varπ(f)× τπ,q,f

and

τπ,q,f = 1 + 2
∞∑
i=1

Corrπ,q(f(X0), f(Xi))

is the integrated autocorrelation time

In Contrast With Independent Monte Carlo

I Only an asymptotic result (not finite n variance)

I Estimating τπ,q,f reliably is a hard task
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MCMC in Practice

Speed of Convergence

Burn-In Period and Parallel Chains

Not very popular among MCMC pundits as letting n be as large as
possible is the only way to ensure convergence

I The burn-in period is mostly and issue for those who know
that they are not using enough simulations

I Parallel chains are often used to assess convergence (more on
this latter) and estimating σπ,q,f

I Parallel chains are mostly of interest when parallel computing
is an option (otherwise use a single chain as long as possible)
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MCMC in Practice

Scaling Issues

How to Chose the Scale of the Proposal in RW-MH?

Try yourself at http://www.lbreyer.com/classic.html

From (Roberts & Rosenthal, 2001)

http://www.lbreyer.com/classic.html
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MCMC in Practice

Scaling Issues

How Does the Method Scales in Large Dimensions?

(Gelman, Gilks & Roberts, 1997), (Roberts et al., 1997-2001) have
studied scaling properties of RW-MH in large dimensions

2 3 4

5 10 20

30 50 100

Optimal scaling when acceptance rate is about 23% and proposal
standard deviation about 2.4 σπ/

√
d
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MCMC in Practice

Scaling Issues

Different Proposals May Tell a Different Story
2 3 4

5 10 20

30 50 100

I one-at-a-time RW-MH yields d independent chains in this
(very particular) case

I Numerical complexity of the alternatives must be evaluated
carefully
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MCMC in Practice

Scaling Issues

One-at-a-time Gaussian RW-MH with accept. rate 50%
(left σprop = 2, right σprop = 0.28)
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MCMC in Practice

Scaling Issues

One-at-a-time Gaussian RW-MH with accept. rate 50%
(left σprop = 2, right σprop = 0.28)
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MCMC in Practice

Scaling Issues

One-at-a-time Gaussian RW-MH with accept. rate 50%
(left σprop = 2, right σprop = 0.28)
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MCMC in Practice

Scaling Issues

One-at-a-time Gaussian RW-MH with accept. rate 50%
(left σprop = 2, right σprop = 0.28)
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MCMC in Practice

Scaling Issues

One-at-a-time Gaussian RW-MH with accept. rate 50%
(left σprop = 2, right σprop = 0.28)
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MCMC in Practice

Scaling Issues

One-at-a-time Gaussian RW-MH with accept. rate 50%
(left σprop = 2, right σprop = 0.28)
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MCMC in Practice

Scaling Issues

One-at-a-time Gaussian RW-MH with accept. rate 50%
(left σprop = 2, right σprop = 0.28)
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MCMC in Practice

Scaling Issues

One-at-a-time Gaussian RW-MH with accept. rate 50%
(left σprop = 2, right σprop = 0.28)
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MCMC in Practice

Scaling Issues

One-at-a-time Gaussian RW-MH with accept. rate 50%
(left σprop = 2, right σprop = 0.28)
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MCMC in Practice

Scaling Issues

One-at-a-time Gaussian RW-MH with accept. rate 50%
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MCMC in Practice

Scaling Issues

Gaussian RW-MH with accept. rate 50% (left σprop = 0.2;
right, with knowledge of Σπ and σprop = 1.2)
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MCMC in Practice

Scaling Issues

Gaussian RW-MH with accept. rate 50% (left σprop = 0.2;
right, with knowledge of Σπ and σprop = 1.2)

Number of Iterations 1, 2

, 3, 4, 5, 10, 25, 50, 100, 500

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4



Monte Carlo Methods for Bayesian Inference

MCMC in Practice

Scaling Issues

Gaussian RW-MH with accept. rate 50% (left σprop = 0.2;
right, with knowledge of Σπ and σprop = 1.2)
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MCMC in Practice

Scaling Issues

Gaussian RW-MH with accept. rate 50% (left σprop = 0.2;
right, with knowledge of Σπ and σprop = 1.2)
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MCMC in Practice

Scaling Issues

Gaussian RW-MH with accept. rate 50% (left σprop = 0.2;
right, with knowledge of Σπ and σprop = 1.2)
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MCMC in Practice

Scaling Issues

Gaussian RW-MH with accept. rate 50% (left σprop = 0.2;
right, with knowledge of Σπ and σprop = 1.2)
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MCMC in Practice

Scaling Issues

Gaussian RW-MH with accept. rate 50% (left σprop = 0.2;
right, with knowledge of Σπ and σprop = 1.2)
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MCMC in Practice

Scaling Issues

Gaussian RW-MH with accept. rate 50% (left σprop = 0.2;
right, with knowledge of Σπ and σprop = 1.2)
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MCMC in Practice

Scaling Issues
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MCMC in Practice

Scaling Issues

Gaussian RW-MH with accept. rate 50% (left σprop = 0.2;
right, with knowledge of Σπ and σprop = 1.2)
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MCMC in Practice

Convergence Diagnostics

When Should the Chain be Stopped?

Three types of convergence:

Convergence to the Stationary Distribution Minimal requirement
for approximation of simulation from π

Convergence of Averages convergence of the empirical averages

1

n

n∑
i=1

f(Xi) → Eπ(f)

most relevant in the implementation of MCMC
algorithms

Convergence to i.i.d. Sampling How close a sample Xi1 , . . . , Xid is
to being i.i.d.?



Monte Carlo Methods for Bayesian Inference

MCMC in Practice

Convergence Diagnostics

This is Not an Easy Task!

Theoretical Answers Only in very restricted class of models and
algorithms; nonetheless provide interesting insights
(eg. importance of tail behavior)

Graphical Methods Looking at trajectories of Xn, at partial sums
1/n

∑n
i=1 f(Xi)

∗, estimating the cumulated
autocorrelations, comparing half chain boxplots,
monitoring the acceptance rate, etc.

I None of this is effective in presence of a severe
mixing problem

∗(Raftery & Lewis, 1992) corresponds to a (very) approximate criterion
computed on binary functions f
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MCMC in Practice

Convergence Diagnostics

Multiple Runs are Helpful

(Gelman & Rubin, 1992) suggest a numerical criterion based on
the comparison of

Bn =
1

M

M∑
m=1

(ξm − ξ)2 ,

Wn =
1

M

M∑
m=1

1

n

n∑
i=1

(ξ
(m)
i − ξm)2 ,

with

ξm =
1

n

n∑
i=1

ξ
(m)
i , ξ =

1

M

M∑
m=1

ξm and ξ
(m)
i = f(X

(m)
i )

Bn and Wn represent the between- and within-chains variances
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Variable Dimension Models and the Reversible Jump Approach

Variable Dimension Models

Variable Dimension Model

A variable dimension model is defined as a collection of models
(here, identified with parameter spaces),

Xr, r = 1, . . . , R ,

associated with a collection of priors on these spaces,

πr(xr), r = 1, . . . , R ,

and a prior distribution on (the indices of) these spaces,

%(r), r = 1, . . . , R .

The model-and-parameter space is defined as

X =
R⋃

r=1

{r} × Xr
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Variable Dimension Models and the Reversible Jump Approach

Variable Dimension Models

Bayesian Posteriors in Variable Dimension Models

Structure of the Posterior Distribution

Given observations Y , the posterior is such that

π(x|Y ) = π(r, xr|Y ) =

data likelihood︷ ︸︸ ︷
`r(Y |xr)

parameter prior︷ ︸︸ ︷
πr(xr)

model prior︷︸︸︷
%(r)

R∑
r=1

∫
Xr

`r(Y |xr)πr(xr)%(r) dxr︸ ︷︷ ︸
non-computable normalizing constant

I How do we design MCMC moves that can connect points
from a smaller dimensional space Xs to a larger dimensional
one Xl?
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Reversible Jump MCMC

Reversible Jump Approach (Green, 1995)

1. The algorithm is of Metropolis-Hastings type (where proposed
moves are, or are not, accepted).

2. Move proposals must be very simple, as we must be able to
compute the probability of jumping from xs ∈ Xs to any
reachable xl ∈ Xl as well as the converse.

3. The simplest solution is to make the move from Xl to Xs

deterministic.

Note that each individual move may not be able to reach all the
points in Xl; but the combination of all possible moves (incl.
fixed-dimensional moves) has to, in order to ensure irreducibility.
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Reversible Jump MCMC

The Basic Case: Birth / Death Moves

Birth When in xs ∈ Xs, with probability Ps,l, draw an
independent V? ∼ p and let xl = (xs, V?)

†.

Death When in xl ∈ Xl, with probability Pl,s truncate xl to
its dim(Xs) first components.

The acceptance probability for the birth move may be written as
A(xs, xl) ∧ 1 where

A(xs, xl) =
%(l)πl(xl)`l(Y |xl)Pl,s

%(s)πs(xs)`s(Y |xs)Ps,l p(V?)

The acceptance probability for the death move is A−1(xs, xl) ∧ 1.

†Hence, V? is of dimension dim(Xl)− dim(Xs).
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Reversible Jump MCMC

The More Elaborate Case: Split / Merge

Split When in xs ∈ Xs, with probability Ps,l, draw an
independent V? ∼ p and let xl = m(xs, V?) where m
is an invertible transform.

Merge When in xl ∈ Xl, with probability Pl,s truncate
m−1(xl) to its dim(Xs) first components.

The acceptance ratio is now given by

A(xs, xl) =
%(l)πl(xl)`l(Y |xl)Pl,s

%(s)πs(xs)`s(Y |xs)Ps,l p(V?)
Js,l(xl)

where

Js,l(xl) =

∣∣∣∣∂m(xs, v)

∂(xs, v)

∣∣∣∣
(xs,v)=m−1(xl)

=

∣∣∣∣∂m−1(xl)

∂xl

∣∣∣∣−1

.

is the determinant of the Jacobian of m.
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Reversible Jump MCMC

Typical Choices of the Split Mapping

Most often, the split mapping operates on just one component of
xs, say xs(i) and the split is done according to, e.g.,

I m(xs(i), V?) = (xs(i)− V?, xs(i) + V?) with V? ∼ N(0, σ2)‡,
if xs(i) is a real parameter (mean, regression coefficient, etc.)

I m(xs(i), V?) = (xs(i) e−V? , xs(i) eV?) with V? ∼ N(0, σ2), if
xs(i) is a positive parameter (variance, etc.)

I . . .

‡Or other symmetric distribution on R.
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Reversible Jump MCMC

A (Reasonably) Simple Example: Gaussian Mixtures

A C code example in
http://www.tsi.enst.fr/~cappe/ctrj_mix/ for the model

p(y|θr) =
r∑

i=1

wi√
2πυi

exp

[
−(y − µi)

2

2υi

]
assuming independent observations Y1, . . . , Yn (and r unknown!).
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Reversible Jump MCMC

Birth or Death Moves

When in a r components configuration, we propose a new
component from the prior according to

1. w?
r+1 ∼ Beta(1, r) with w1:r+1 =

(
(1− w?

r+1)w1:r, w
?
r+1

)
2. µ?

r+1 ∼ Normal(0, κ)

3. υ?
r+1 ∼ Inverse-Gamma(α, β)

The acceptance ratio for the birth move is

`(Y1, . . . , Yn|θr+1)

`(Y1, . . . , Yn|θr)
× PD(r + 1)

PB(r)
∧ 1

Note that the choice of the prior as proposal simplifies the
acceptance ratio.
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Reversible Jump MCMC

Split or Merge Moves

When in a r components configuration, we propose to split
component i according to

1. wi −→ (w′, w′′
i ) = (V ?

wwi, (1− V ?
w)wi) with

V ?
w ∼ Beta(γS , γS)

2. µi −→ (µ′i, µ
′′
i ) = (µi − V ?

µ , µi + V ?
µ ) with

V ?
µ ∼ Normal(0, ρS)

3. υi −→ (υ′i, υ
′′
i ) = (υi/V ?

υ , υiV
?
υ ) with V ?

υ ∼ Log-Normal(0, νS)
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The End

Thank you for your attention.
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