Statistical inference

or

Some (out-of-)bed time stories about $\log p(x|\theta)$ and its derivatives

Jean-François Cardoso. CNRS-LTCI / UP7-APC

Caractérisation statistique d'échantillons cosmologiques

Cargese, 2006

<u>Outline</u>

- Introduction (selected topics)
- Some simple parametric models, some less simple, all $p(X|\theta)$.
- Parameter estimation: estimators, consistency, efficiency, Fisher information, the Cramér-Rao bound, sufficient statistics.
- Exponential families (the wonderful world of).
- A bit of asymptotics
- Information geometry (the big picture)

Warning

Warning:

This is an unfinished set of slides.

And there must be quite a few random bugs.

1) In your computer:

 $X = \begin{bmatrix} .23 & .45 & .67 & .09 & .90 & .32 & .73 & .55 \\ .98 & .11 & .22 & .33 & .41 & .31 & .53 & .03 \end{bmatrix} \in \mathcal{X} = \mathbb{R}^{2 \times 8}$

2) On your screen, look at your data.

In any possible way.

Maybe decide that the data should be modeled as the realization of some random process.

3) In your brain: build a statistical model (or several of them)

 $\mathcal{M} = \{p(x)\}$ A set of probability distributions

We will mostly focus on regular statistical models

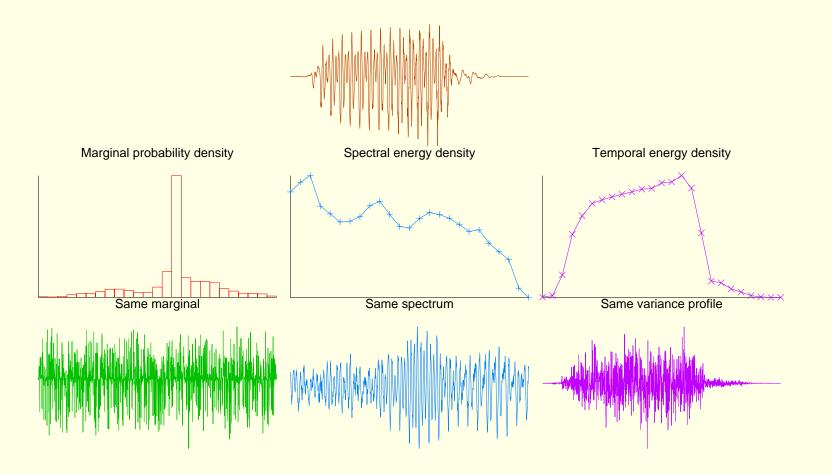
 $\mathcal{M} = \{ p(x; \theta), \ \theta \in \Theta \subset \mathbb{R}^d \}$

where $p(x; \theta)$ is a a smooth function of θ .

The most important slide of this talk

All models are wrong

All models are wrong, but some are useful. George Box.

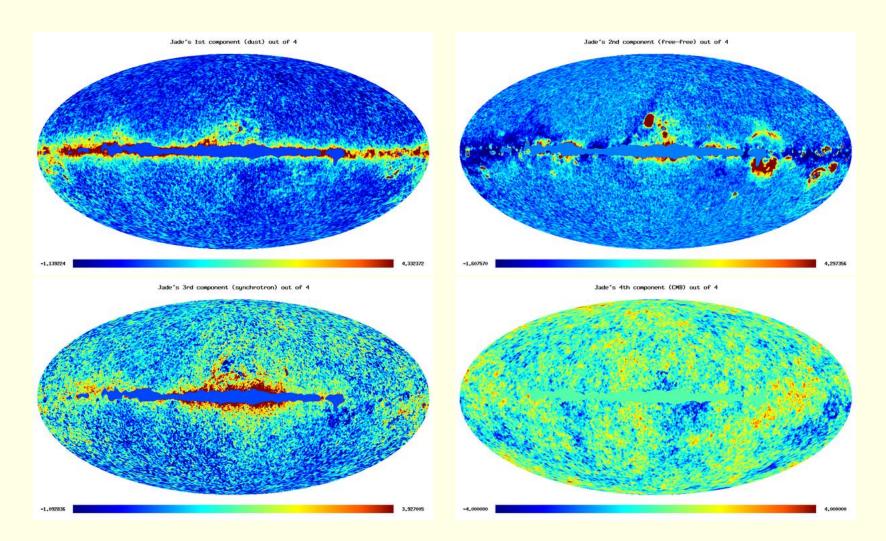


Three points of view on a time series. What is the right statistics?

Simple jading of W-MAP 3-year

Blindly looking for four components which are:

1) uncorrelated 2) as independent as possible and 3) modelled as i.i.d.



yields promising results...

Numerical work by Frédéric Guilloux.

It goes without saying

Assume basic notions of probability: probability distributions p(X), expectation $\mathbb{E}X$, joint and conditional distributions p(X,Y) = p(X|Y)p(Y) = p(Y|X)p(X).

For two random column vectors, define the covariance matrix:

 $Cov(X,Y) = \mathbb{E}(XY^{\dagger}) - \mathbb{E}(X)\mathbb{E}(Y)^{\dagger}$ Notation: Cov(X) = Cov(X,X)

Linearity $Cov(AX) = ACov(X)A^{\dagger}$.

A symmetric matrix **Q** is said to be positive: $\mathbf{Q} \ge 0$ if $Z^{\dagger}\mathbf{Q}Z \ge 0$ for any Z.

A covariance matrix is positive since $Z^{\dagger}Cov(X)Z = Var(Z^{\dagger}X) \ge 0$.

For parametric models $p(X|\theta)$:

 $\mathbb{E}_{\theta}X = \mathbb{E}_{\theta}(X) = \int Xp(X|\theta)dX, \quad \operatorname{Cov}_{\theta}(X) = \mathbb{E}_{\theta}XX^{\dagger} - \mathbb{E}_{\theta}X\mathbb{E}_{\theta}X^{\dagger}.$

Statistical models

Outline:

- Univariate
- Multivariate
- Time series, parametric
- Stationary fields

Some simple statistical models. 1

Well known families

• Gaussian (or normal) distribution

- Exponential
- Poisson
- Multinomial
- <Some British guy> distribution ...

Some simple statistical models. 2

- Transformation models
 - Location model: $X = \mu + N$ $\mu \in \mathbb{R}^d$ and $N \sim p_N$

$$p(X|\theta) = p_N(X - \mu) \quad \theta = \{\mu\}$$

• Scale model $X = \sigma N$ $\sigma \in \mathbb{R}$

$$p(X|\theta) = p_N(X/\sigma)/\sigma \quad \theta = \{\sigma\}$$

• Location-scale model: $X = \mu + \sigma N$

$$p(X|\theta) = p_N((X - \mu)/\sigma)/\sigma \quad \theta = \{\mu, \sigma\}$$

• Contamination $X = Y + \alpha Z$ for independent Y and Z random variables $\theta = \{\alpha\}.$

• Including the distribution p_N into the unknown parameter yields *semi-parametric* models where θ now is infinite-dimensional *e.g.* $\theta = \{\mu, \sigma, p_N\}$.

Some simple statistical models. 3

Models for an $m \times 1$ vector in terms of q (noisy) factors: X = AS + N with an $m \times q$ matrix A and (usually) uncorrelated factors: $Cov(S) = diag(\sigma_1^2, \ldots, \sigma_q^2)$ and uncorrelated noise $Cov(N) = diag(p_1, \ldots, p_m)$ (but all kinds of perversions are to be found).

• Principal component analysis: Orthogonal factors $AA^{\dagger} = I_m$ and no noise. So $\theta = (A, \{\sigma_i^2\})$.

• Factor analysis: Matrix A is known. The variances are to be found: $\theta = (\{\sigma_i^2\}, \{p_j^2\})$. Interesting in conjunction with factor selection.

• (regular) Independent component analysis: matrix A is unknown but S_i is independent from S_j for all $i \neq j$. Needs non-Gaussianity!

• Direction finding. Uses a physical model to connect the direction α of an impinging wave to the corresponding column so $\theta = (\{\alpha_i\}, \text{Cov}(N))$ with $\mathbf{A} = [a(\alpha_1), \dots, a(\alpha_q)].$

Time series 1. Deterministic signal in random noise

We build a model $p(X|\theta)$ for a sequence $X = \{X(1), X(2), \dots, X(n)\}$ by assuming a determistic signal in noise: X(i) = S(i) + N(i).

• For instance, for the signal part:

$$S(t) = S(t; \theta_S) = \sum_{p=1}^{P} a_p \cos(\omega_p t + \phi_p)$$

Then $\theta_S = \{a_p, \omega_p, \phi_p\}$ (or some subset of it).

- For instance for the noise part:
 - {N(t)} is i.i.d. with scale σ : $p_N(N(1), \dots N(n)) = \prod_{t=1}^n \frac{1}{\sigma}q(\frac{N(t)}{\sigma})$. Then $\theta_N = \{\sigma, q\}$ or $\theta_N = \{\sigma\}$.
 - {N(t)} is zero-mean Gaussian stationary with correlation $\mathbb{E}N_t N_{t'} = \rho(t'-t)$. Then $\theta_N = \{\rho(\tau)\}$.
- Combining the deterministic and the stochastic parts: $\theta = (\theta_S, \theta_N)$ $p_X(X|\theta) = p_X(X|\theta_S, \theta_N) = P_N(X - S(\theta_S); \theta_N)$

Time series 2. Parametric stationary models

• Auto-regressive (AR) model:

$$X(t) = \sum_{\ell=1}^{L} a_{\ell} X(t-\ell) + \sigma N(t) \quad \theta = \{a_1, a_2, \dots, a_L, \sigma\}$$

where $\{N(t)\}$ an i.i.d. zero-mean unit-variance Gaussian sequence.

• Linear model

$$X(t) = \sum_{t_1 \le t' \le t_2} h(t') N(t - t') \quad \theta = \{\{h(t)\}, p_N(\cdot)\}$$

• A whole zoology

Like, you know, heteroscedastic models (*i.e.* an AR model where $\sigma^2 = \sigma^2(t)$ now is a weighted average of the past values of $X(t)^2$.

Non parametric stationary models

• Stationary time series: the second-order structure:

 $X = \{X(t)\}_{t=1}^T \quad \mathbb{E}x(t) = 0 \quad \mathbb{E}x(t)x(t') = \rho(t'-t) \quad \rho(\tau) = \int e^{i\omega\tau} P(\omega)d\omega$

• Gaussian stationary field on the sphere $\{X(\xi), \xi \in S^2\}$.

$$X(\xi) = \sum_{\ell \ge 0} X^{(\ell)}(\xi) \quad \widehat{C}_{\ell} = \frac{\|X^{(\ell)}\|^2}{2\ell + 1} \quad C_{\ell} = \mathbb{E}\widehat{C}_{\ell} \quad \text{harmonic spectrum}$$

p(X) depends only on the harmonic spectrum and on its empirical value:

$$p(X|\theta) = \exp\left(-\frac{1}{2}\sum_{\ell\geq 0}(2\ell+1)\left(\frac{C_{\ell}}{C_{\ell}} + \log C_{\ell}\right) + \operatorname{cst} \quad \theta = \{C_{\ell}, \ell\geq 0\}$$

• Poisson processes, Markov fields, multi-scale models, wavelet models...

The sad truth about parameters

- A vector $\theta \in \mathbb{R}^d$ is just a (continuous) label to a probability distribution $p(\cdot|\theta)$ (think GR).
- The model *is* the manifold.

 $\mathcal{M} = \{ p(\cdot | \theta), \ \theta \in \Theta \in \mathbb{R}^d \}$

and it can be smoothly reparameterized in infinitely many ways.

- Hence, parameterization often is arbitrary to some large extent.
- Q: Is there a best parameterization?
 A: Yes, for some models which have canonical parameters.
- Later: The (differential) geometry of statistical models.

Estimation

- Warning: this is mostly the frequentist story.
- Estimation, estimators, estimates
- Method of moments
- Cramér-Rao bound
- Fisher efficiency
- Maximum likelihood
- Sufficient statistics

Parametric estimation

Once we have selected a parametric model $p(X|\theta)$, we need to adjust the model to the data.

Meaning: find the 'best' (?) parameter value $\hat{\theta}$ given the available data X.

An estimator is a function $T : \mathcal{X} \mapsto \Theta$. Notation $\hat{\theta} = T(X)$.

```
Unbiasedness: \mathbb{E}_{\theta}T(X) = \theta.
```

```
Dispersion: Cov_{\theta}(T(X)).
```

Important note:

unbiasedness and accuracy should not be taken too seriously on a manifold because parameterization is arbitrary. What do the expectation and the covariance mean when, for instance, θ parameterizes a rotation matrix?

The method of moments / least squares

Let $\hat{S} = \hat{S}(x)$ be a *q*-valued statistic: $\hat{S} : \mathcal{X} \mapsto \mathbb{R}^q$ whose expected value under $p(x|\theta)$ is a known (meaning: computable) function of θ :

 $\mathbb{E}_{\theta}\widehat{S}(x) = S_{\theta}$

- If $q = \dim(\theta)$, the method of moments estimates θ by $\hat{\theta}$ such that

 $S_{\widehat{\theta}} = \widehat{S}(x)$

- If $q > \dim(\theta)$, the *method of moments* estimates θ by finding the best match

$$\widehat{\theta} = \arg\min_{\theta} \phi(x; \theta) \quad \phi(x; \theta) = \|S_{\theta} - \widehat{S}(x)\|^2$$

A better estimator may be obtained using a (positive) weighting matrix W

$$\phi(x;\theta) = (S_{\theta} - \hat{S}(x))^{\dagger} W(S_{\theta} - \hat{S}(x))$$

An even better estimator may be obtained with a parameter dependent weight $W = W_{\theta}$.

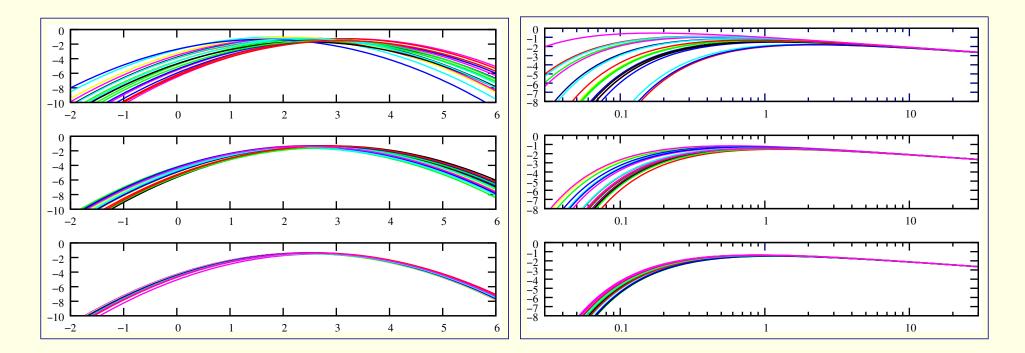
Moment/LS square methods require only $\mathbb{E}_{\theta}\widehat{S}(X)$ and possibly $Cov_{\theta}\widehat{S}(X)$ but *not* the full distribution $p(x|\theta)$.

Can least-squares beat $\phi(x; \theta) = -\log p(x|\theta)$?

Likelihood

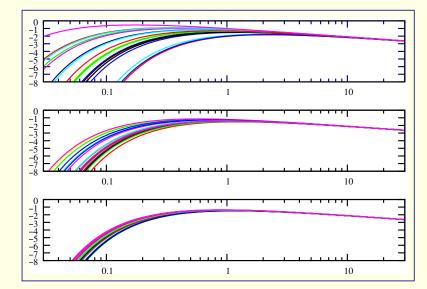
A likelihood:

- Data: X is n i.i.d. $\mathcal{N}(\mu_{\star}, \sigma_{\star}^2)$ samples. Top to bottom: n = 3, 30, 300
- Model: 'true' model.
- Left: $\phi(\mu) = \frac{1}{n} \log p(X|\mu, \sigma^2 = \sigma_\star^2)$. - Right: $\phi(\sigma^2) = \frac{1}{n} \log p(X|\mu = \mu, \sigma^2)$
- Right: $\phi(\sigma^2) \stackrel{n}{=} \frac{1}{n} \log p(X|\mu = \mu_{\star}, \sigma^2).$



The likelihood is $p(x|\theta)$ seen as a function of the parameter vector. Given the data x and lacking prior information, *this is all we have*. What is the meaning of

- the maximum value of the the likelihood,
- the value of θ which maximizes it,
- the dispersion of the latter,
- the width of the likelihood peak,
- the general shape of the likelihood function?



Note on Bayes: there is a transparent interpretation of the likelihood function when a prior distribution $\pi(\theta)$ on θ is available. By the Bayes theorem

$$p(\theta|x) = \frac{p(x|\theta)\pi(\theta)}{p(x)} = \frac{p(x|\theta)\pi(\theta)}{\int p(x|\theta')\pi(\theta')d\theta'}$$

Hence, the shape of the log-likelihood $\log p(x|\theta)$ is the shape of the log-posterior distribution $\log p(\theta|x)$ if the prior distribution $\pi(\theta)$ is uniform.

In spite of the maths, likelihood analysis is *not* Bayesian with a flat prior!
 WHAT DO YOU MEAN "UNIFORM" ?

<u>Intermezzo</u>

Plausible definitions of the "straight segment" from one probability distribution $p_a(x)$ to another $p_b(x)$?

The *mixture segment* makes some statistical sense:

 $p(x|\alpha) = (1 - \alpha)p_a(x) + \alpha p_b(x)$

The exponential segment also seems pretty darn reasonable $\log p(x|\alpha) = (1 - \alpha) \log p_a(x) + \alpha \log p_b(x) - \psi(\alpha)$ with $\psi(\alpha)$ for normalization.

In 'traditional' exponential form

$$p(x|\alpha) = p_a(x)e^{\alpha S(x) - \psi(\alpha)} \quad S(x) = \log \frac{p_b(x)}{p_a(x)}$$

Score and consequences

The log-likelihood: $\ell(x|\theta) \stackrel{\text{def}}{=} \log p(x|\theta)$ is a very interesting random function. Its derivatives with respect to θ , even more so.

For a *d*-dimensional model ($\theta \in \mathbb{R}^d$), define

$$\partial \ell(x|\theta) = \frac{\partial \log p(x|\theta)}{\partial \theta}$$
 random $d \times 1$ vector: the score
$$\partial^2 \ell(x|\theta) = \frac{\partial^2 \log p(x|\theta)}{\partial \theta^2}$$
 random $d \times d$ matrix

The score function has zero mean under $p(x|\theta)$:

$$\mathbb{E}_{\theta} \partial \ell(x|\theta) \stackrel{a}{=} 0$$

and its covariance is called the Fisher information matrix

$$\mathbf{F}_{\theta} \stackrel{\text{def}}{=} \mathbb{E}_{\theta} \left(\partial \ell(x|\theta) \partial \ell(x|\theta)^{\dagger} \right) \stackrel{b}{=} -\mathbb{E}_{\theta} \partial^{2} \ell(x|\theta)$$

Properties a and b stem from $\int p(x|\theta)dx = 1$.

Unbiased estimation and the score

For an estimator $\hat{\theta} = T(x)$, differentiating the unbiasedness condition

$$\mathbb{E}_{\theta}T(x) = \theta$$

with respect to θ yields the covariance between two zero-mean random vectors $T(x) - \theta = \hat{\theta} - \theta$ and $\partial \ell(x|\theta)$:

$$\operatorname{Cov}_{\theta}\left(\partial \ell(x|\theta), \widehat{\theta} - \theta\right) = \mathbf{I}$$
 (the identity matrix)

Hence an unbiased estimator T(x) necessarily has a very specific correlation to the score function and we have

$$\operatorname{Cov}_{\theta}\left(\begin{bmatrix}\widehat{\theta}\\\partial\ell(x|\theta)\end{bmatrix}\right) = \begin{bmatrix}\operatorname{Cov}(\widehat{\theta}) & \mathbf{I}\\ \mathbf{I} & \mathbf{F}_{\theta}\end{bmatrix}$$

Since a covariance matrix must be positive, it must hold that

 $\operatorname{Cov}_{\theta}(\widehat{\theta}) \geq \operatorname{F}_{\theta}^{-1}$

The amazing CRB

Covariance matrices are positive. In particular

 $\operatorname{Cov}_{\theta}\left(\widehat{\theta} - \theta - \mathbf{F}_{\theta}^{-1}\partial\ell(x|\theta)\right) \geq 0$

Expand this covariance matrix, recalling that $Cov_{\theta}(\partial \ell(x|\theta), T(X)) = I$:

$$\begin{aligned} \operatorname{Cov}_{\theta}\left(\widehat{\theta} - \theta - \mathbf{F}_{\theta}^{-1}\partial\ell\right) &= \operatorname{Cov}(\widehat{\theta}) + \operatorname{Cov}(\mathbf{F}_{\theta}^{-1}\partial\ell) - \mathbb{E}\left(\mathbf{F}_{\theta}^{-1}\partial\ell, \widehat{\theta} - \theta\right) - \operatorname{symm} \\ &= \operatorname{Cov}(\widehat{\theta}) + \mathbf{F}_{\theta}^{-1}\operatorname{Cov}(\partial\ell)\mathbf{F}_{\theta}^{-1} - \mathbf{F}_{\theta}^{-1}\mathbb{E}\left(\partial\ell, \widehat{\theta} - \theta\right) - \operatorname{symm} \\ &= \operatorname{Cov}(\widehat{\theta}) + \mathbf{F}_{\theta}^{-1}\mathbf{F}_{\theta}\mathbf{F}_{\theta}^{-1} - \mathbf{F}_{\theta}^{-1}\mathbf{I} - \mathbf{I}\mathbf{F}_{\theta}^{-1} \\ &= \operatorname{Cov}(\widehat{\theta}) - \mathbf{F}_{\theta}^{-1} \end{aligned}$$

Therefore an unbiased estimator cannot have arbitrarily small variance:

$$\operatorname{Cov}_{\theta}(\widehat{\theta}) \geq \operatorname{F}_{\theta}^{-1}$$
 (Fréchet-Darmois)-Cramér-Rao bound

Remember it is a *matrix* inequality. We may look at individual entries:

$$\mathsf{Cov}_{\theta}(\widehat{\theta}_i) \ge [\mathbf{F}_{\theta}^{-1}]_{ii} \ge [\mathbf{F}_{\theta}]_{ii}^{-1}$$

The last inequality is 'statistically obvious'.

Fisher information and efficiency

• (again) An unbiased estimator cannot have arbitrarily small variance: $\operatorname{Cov}_{\theta}(\hat{\theta}) \geq \operatorname{F}_{\theta}^{-1}$ Cramér-Rao bound = CRB and also nothing can travel faster than light.

Breakthrough

- Our statistical model $\mathcal{M} = \{p(x|\theta)\}$ seen as a manifold is given a natural metric by the FIM matrix \mathbf{F}_{θ} .

- Even better: it gives the statistical resolution cell.

 Also, there *does* exist a canonical prior: Jeffreys prior which gives the same prior weight to all resolution cells. This construction is parameter independent.

- **Definition**: An estimator reaching the CRB is called (Fisher)-*efficient*.
- Question: Do efficient estimators exist? Model dependent ?

Maximum likelihood

Note An efficient estimator (if it exists) has no choice. It must behave as

 $T(x) = \hat{\theta} = \theta + \mathbf{F}_{\theta}^{-1} \partial \ell(x|\theta)$

Recalling $\mathbf{F}_{\theta} = -\mathbb{E}_{\theta} \partial^2 \ell(x|\theta)$, this looks very very much like a Newton step...

This suggests estimating θ as the most likely parameter *i.e.*

$$\hat{\theta}_{\mathsf{ML}} \stackrel{\mathsf{def}}{=} \arg\max_{\theta} \ell(x|\theta)$$

This is a solution of

$$\partial \ell(x|\hat{\theta}_{\mathsf{ML}}) = 0$$

Compare to a key property of the score:

 $\mathbb{E}_{\theta} \partial \ell(x|\theta) = 0$

• Note. The ML estimate is perfectly invariant under re-parameterization.

• Question. The ML estimate is a least-square fit when the model is a deterministic signal in Gaussian noise. How to understand $-\log p(x|\theta)$ as a measure of mismatch between model data *in general*?

<u>A detour</u>

The next two slides give a quick view of likelihood for *discrete* valued data.

Discrete random variables are easy to deal with because the probability distribution π of a *d*-valued random variable is specified by *d* numbers $\pi = (\pi_1, \ldots, \pi_d)$.

Hence, we can always picture the set of all probability distributions of a d-valued variable as the simplex:

$$S = \{\pi = (\pi_1, \dots, \pi_d), \ \pi_j \ge 0, \ \sum_{j=1}^d \pi_j = 1\}$$

In the discrete case, several important concepts show up right away. After enlightenment from the discrete world, we return to the general case.

Likelihood for discrete data

Take x a discrete variable taking d possible values with probability $\pi = (\pi_1, \dots, \pi_d)$. The probability of a sequence (x_1, \dots, x_n) modeled as i.i.d. is

$$p(x_1,...,x_n) = p(x_1)p(x_2)\cdots p(x_n) = \prod_{j=1}^d \pi_j^{n_j}$$

where n_j is the number of occurrences of the *j*-th symbol in the sequence. So

$$\log p(x_1, \dots, x_n) = \sum_j n_j \log \pi_j = n \sum_j \hat{\pi}_j \log \pi_j \quad \text{where} \quad \hat{\pi}_j \stackrel{\text{def}}{=} \frac{n_j}{n}$$
$$= -n \sum_j \hat{\pi}_j \log \frac{\hat{\pi}_j}{\pi_j} + n \sum_j \hat{\pi}_j \log \hat{\pi}_j$$

Hence

$$p(x_1,\ldots,x_n|\pi) = e^{-nK[\widehat{\pi},\pi]}e^{-nH[\widehat{\pi}]}$$

with

$$\begin{split} K[p,q] &\stackrel{\text{def}}{=} \sum_{j} p_{j} \log \frac{p_{j}}{q_{j}} \quad \text{Kullback divergence from } p \text{ to } q \\ H[p] &\stackrel{\text{def}}{=} -\sum_{j} p_{j} \log p_{j} \quad \text{(Shannon) entropy of } q \end{split}$$

Likelihood for discrete data (cont.)

x a discrete variable taking d possible values with probability $\pi = (\pi_1, \ldots, \pi_d)$.

Again, the probability of an i.i.d. *n*-sequence depends only on $\hat{\pi} = [\frac{n_1}{n}, \dots, \frac{n_d}{n}]$:

$$-\frac{1}{n}\log p(x_1,\ldots,x_n) = K[\widehat{\pi},\pi] + H[\widehat{\pi}] \quad \text{with} \begin{cases} K[p,q] = \sum_j p_j \log \frac{p_j}{q_j} \\ H[q] = -\sum_j q_j \log q_j \end{cases}$$

 \rightarrow Note: the number of sequences with $\hat{\pi}$ roughly is $\exp nH[\hat{\pi}]$.

The empirical distribution $\hat{\pi}$ is an *exhaustive statistic*: \rightarrow Statistical compression, a.k.a. "Keep $\hat{\pi}$, trash your data."

The Kullback divergence K[p, q] is positive unless p = q. It is a (non-symmetric) measure of mismatch between two probability distributions.

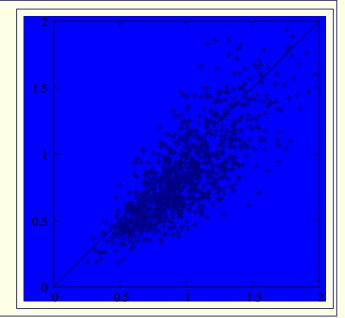
For a parametric model $\mathcal{M} = \{\pi = \pi(\theta), \theta \in \Theta\}$, nothing really changes:

$$-\frac{1}{n}\log p(x_1,\ldots,x_n|\theta) = K[\hat{\pi},\pi(\theta)] + H[\hat{\pi}] \qquad \mathsf{ML} = \mathsf{Kullback matching!}$$

Sufficiency. 1

Let T values x_1, \ldots, x_T be modeled as i.i.d. Laplace:

$$p(x|\theta) = \frac{1}{\theta} \exp{-\frac{x}{\theta}} \quad x \ge 0$$



Since $\mathbb{E}_{\theta} x = \theta$ and $\mathbb{E}_{\theta} x^2 = 2\theta^2$, two possible estimates of θ are

$$\widehat{\theta}_1 = \frac{1}{T} \sum_{t=1}^T x_t$$
$$\widehat{\theta}_2 = \left(\frac{1}{2T} \sum_{t=1}^T x_t^2\right)^{\frac{1}{2}}$$

Plot: many realizations of $\hat{\theta}_1$ versus $\hat{\theta}_2$.

Question: Among all these statistics

$$\hat{\theta}_1, \quad \hat{\theta}_2, \quad \hat{\theta}_3 = (\hat{\theta}_1 + \hat{\theta}_2)/2, \quad \hat{\theta}_4 = \frac{\sigma_1^{-2}\hat{\theta}_1 + \sigma_2^{-2}\hat{\theta}_2}{\sigma_1^{-2} + \sigma_2^{-2}} \quad \text{with} \quad \sigma_i^2 = \text{Var}(\hat{\theta}_i)$$

(which also are estimates of θ) which one (or which combination thereof) contains the most information about the scale parameter θ ?

Sufficiency. (cont. example)

If T values x_1, \ldots, x_T are modeled as i.i.d. realizations of an exponential distribution $p(x|\theta) = \frac{1}{\theta} \exp{-\frac{x}{\theta}}$ and we define the statistics

$$\widehat{\theta}_1 = \frac{1}{T} \sum_{t=1}^T x_t \quad \widehat{\theta}_2 = \left(\frac{1}{2T} \sum_{t=1}^T x_t^2\right)^{\frac{1}{2}}$$

then, there is no information about θ in $\hat{\theta}_2$ in addition to $\hat{\theta}_1$!

 $p(\hat{\theta}_1, \hat{\theta}_2 | \theta) = p(\hat{\theta}_2 | \hat{\theta}_1, \theta) p(\hat{\theta}_1 | \theta)$ Conditioning, always true = $p(\hat{\theta}_2 | \hat{\theta}_1) p(\hat{\theta}_1 | \theta)$ Factorization theorem (next slide)

i.e. the distribution of $\hat{\theta}_2$ given that $\hat{\theta}_1$ has been observed does not depend on the unknown parameter θ . This is because $\hat{\theta}_1$ is a sufficient statistic.

If you know how to extract optimally information from $\hat{\theta}_1$, there is no need to involve $\hat{\theta}_2$.

The French call it "statistique exhaustive" which is pas mal non plus.

$$\log p(x_1, \dots, x_T | \theta) = -T(\frac{\widehat{\theta}_1}{\theta} + \log \theta)$$

Sufficiency

Official definition: S(x) is a sufficient statistic for the model $p(x|\theta)$ if the distribution of x conditionned on the observation of S(x) does not depend on θ :

 $p(x|S(x),\theta) = p(x|S(x))$

This is equivalent (theorem) to the factorization property: there exist some functions g and h such that:

 $p(x|\theta) = g(x) h(S(x); \theta)$

In effect, S(x) exhausts the information in x since the likelihood of θ depends on x only through S(x).

Of course, S(x) = x always is a sufficient statistic. A sufficient statistic is interesting if it does compress the data in the sense that $\dim(S(x)) < \dim(x)$...

... or maybe also if it makes our life easier. As in exponential models.

Exponential models

Outline

- Definition
- Examples
- Some stupendous properties
- Maximum likelihood estimation within exponential models
- Convexity and duality
- More stupendous properties
- Connection to maximum entropy

Exponential families: Informal definition

When a statistical model $\mathcal{M} = \{p(x|\theta); \theta \in \Theta\}$ admits a sufficient statistic S(x), one has (by definition) the form

```
\log p(x|\theta) = g(x) + h(S(x);\theta)
```

"Exponential families" have an even more favorable form. By definition, an exponential model has, possibly after some serious massaging of both x and θ , the structure

 $\log p(x|\theta) = g(x) + h(\theta) + S(x)^{\dagger}\theta$

that is: the part of the log-density which connects the variable x and the parameter θ is just their scalar product.

Exponential families

If a family \mathcal{M} of probability distributions can be parameterized by a d-dimensional vector $\theta \in \Theta \subset \mathbb{R}^d$ in such a way that

$$p(x|\theta) = g(x) e^{S(x)^{\dagger}\theta - \psi(\theta)}$$

- i) using a function $S : \mathcal{X} \mapsto \mathbb{R}^d$, ii) a function $\psi : \Theta \subset \mathbb{R}^d \mapsto \mathbb{R}$ iii) using a measure g(x)then,
- \mathcal{M} is said to be an *exponential family* (of probability distributions),
- S(x) is a sufficient statistic,
- θ is a canonical parameter,
- we are happy.

Is that too much too ask?

Let's see why we are happy and when such a happiness is possible.

Who's exponential?

- Many 'standard' families can be massaged into exponential form.
- Many other families are 'curved' exponential families, *i.e.* can be naturally embedded into exponential families as $\mathcal{M} = \{p(x|\theta); \theta = \theta(\alpha)\}$.
- Asymptotically (in the number of samples), all regular families are exponential.
- Note: Exponentiality is a property of a *family* of distributions; it is *not* the property of a single given distribution. Any single distribution is part of (infinitely many) exponential families.

Some examples

- Example 1: Laplace
- Example 2: Multinomial
- Example 3: Location scale normal
- Example 4: Multivariate Gaussian
- Example 5: Poisson
- Example 6: Beta
- Example 7: Gamma
- Example 8: Dirichlet...

Try this at home:

1) Pick a probability distribution with density p(x)

2) Pick a function $S : \mathcal{X} \mapsto \mathbb{R}^p$, $x \to S(x)$.

3) Define $\psi(\theta) = \log \int p(x) e^{S(x)^{\dagger}\theta}$ for all $\theta \in \Theta = \{\theta \in \mathbb{R}^q | \int p(x) e^{S(x)^{\dagger}\theta} < \infty \}.$

- 4) Enjoy your own home-made, probably *p*-dimensional, exponential family $p(x; \theta) = p(x)e^{S(x)^{\dagger}\theta - \psi(\theta)} \quad \theta \in \Theta \subset \mathbb{R}^{p}$
- Simple example 1: $p(x) = \mathcal{N}(0, \mathbf{I}_m)$ and $S(x) = [\dots, x_i, \dots]_{1 \le i \le m}$.
- Simple example 2: $p(x) = \mathcal{N}(0, \mathbf{I}_m)$ and $S(x) = [\dots, x_i^2 1, \dots]_{1 \le i \le m}$.
- Simple example 3: $p(x) = \mathcal{N}(0, \mathbf{I}_m)$ and $S(x) = [\dots, x_i x_j, \dots]_{1 \le i < j \le m}$.

Uniqueness

An exponential family with sufficient statistic $S(x) \in \mathbb{R}^p$ and canonical parameter $\theta \in \mathbb{R}^p$:

$$p(x|\theta) = g(x) e^{S(x)^{\dagger}\theta - \psi(\theta)}$$

If T is an invertible $p \times p$ matrix: $TT^{-1} = I_p$, then the exponential family

$$q(x|\theta) = g(x) e^{S(x)^{\dagger}\theta - \psi(\theta)}$$

Centering

1) Rescaling: for any $\alpha > 0$, if $\overline{g} = \alpha g$ and $\overline{\psi} = \psi + \log \alpha$, then

$$p(x|\theta) = g(x) e^{S(x)^{\dagger}\theta - \psi(\theta)} = \overline{g}(x) e^{S(x)^{\dagger}\theta - \overline{\psi}(\theta)}$$

Thus, if $\int g(x) < \infty$, then g(x) can always be rescaled to sum to be a pdf.

2) Centering the statistic: for any fixed S_{\star} , let $\bar{S}(x) = S(x) - S_{\star}$ and $\bar{\psi} = \psi - S_{\star}^{\dagger}\theta$

$$p(x|\theta) = g(x) e^{S(x)^{\dagger}\theta - \psi(\theta)} = g(x) e^{\bar{S}(x)^{\dagger}\theta - \bar{\psi}(\theta)}$$

Thus, we can shift the statistic as we please and, in particular, we may ensure $E_{\theta}S(x) = 0$ for some fixed θ .

3) Centering the parameter vector: for any fixed point θ_{\star} , define $\bar{\theta} = \theta - \theta_{\star}$, $\bar{g}(x) = g(x) \exp S(x)^{\dagger}\bar{\theta}$, $\bar{\psi}(\bar{\theta}) = \psi(\bar{\theta} + \theta_{\star})$ and check that

$$p(x|\theta) = g(x) e^{S(x)^{\dagger}\theta - \psi(\theta)} = \overline{g}(x) e^{S(x)^{\dagger}\overline{\theta} - \overline{\psi}(\overline{\theta})}$$

Thus, any point can be used as the origin.

Subfamilies

Start with some exponential family $\ensuremath{\mathcal{M}}$

$$p(x|\theta) = g(x) e^{S(x)^{\dagger}\theta - \psi(\theta)}$$

A q-dimensional subset of Θ defined by some mapping $\theta(\eta) : \mathbb{R}^q \mapsto \mathbb{R}^p$ defines a subfamily

 $q(x|\eta) = p(x|\theta(\eta))$

If q > p, over-parameterization. What's the point?

If q = p and the mapping is invertible, what's the point?

If q < p this defines a *curved family* embedded in the ambient exponential family.

This sub-family is an exponential family itself only when $\theta(\eta) = \mathbf{T}\eta$ for some fixed $p \times q$ matrix **T**. It then has obviously sufficient statistic $\mathbf{T}^{\dagger}S(x)$.

Example: binned spectra.

Partition function. First derivative

Consider an exponential family $\ensuremath{\mathcal{M}}$ parameterized as

$$p(x;\theta) = p(x)e^{S(x)^{\dagger}\theta - \psi(\theta)}$$

Then the score function splits additively as

$$\frac{\partial \log p(x;\theta)}{\partial \theta} = S(x) - \frac{\partial \psi(\theta)}{\partial \theta}$$

Remember that the score has zero mean under θ . Therefore

$$\frac{\partial \psi(\theta)}{\partial \theta} = \mathbb{E}_{\theta} S(x)$$

i.e. the first derivative of ψ is the mean value of the sufficient statistic.

We will see shortly that there is a one-to-one mapping between θ and $\mathbb{E}_{\theta}S(x)$. Thus, we can use it to label any distribution in the family. This is the *dual* parameterization using

$$\eta = \eta(\theta) = \mathbb{E}_{\theta} S(x) = \frac{\partial \psi(\theta)}{\partial \theta}$$

Partition function. Second derivative

The second derivative of the log-likelihood is

$$\frac{\partial^2 \log p(x;\theta)}{\partial \theta^2} = -\frac{\partial^2 \psi(\theta)}{\partial \theta^2}$$

which is not random. Thus

$$0 \leq \mathbf{F}_{\theta} = -\mathbb{E}_{\theta} \partial^2 \ell(x|\theta) = \frac{\partial^2 \psi(\theta)}{\partial \theta^2}$$

i.e. the second derivative of ψ is the (positive) Fisher information matrix.

Hence ψ is a convex fonction. Thus, there is a unique point θ where $\psi(\theta)$ takes a given value η of the gradient.

Therefore we can label any distribution in an exponential family either by θ or by $\eta = \mathbb{E}_{\theta} S(x)$. The two labels θ and η are related by $\eta = \frac{\partial \psi(\theta)}{\partial \theta}$.

Repeat

In an exponential family $\ensuremath{\mathcal{M}}$

 $p(x|\theta) = g(x) e^{S(x)^{\dagger}\theta - \psi(\theta)}$

• the gradient of the partition function can be used as a dual parameter:

$$\eta = \frac{\partial \psi(\theta)}{\partial \theta}$$

• the Hessian of the partition function is the Fisher information matrix:

$$\frac{\partial^2 \psi(\theta)}{\partial \theta^2} = \mathbf{F}_{\theta}$$

Maximum likelihood estimation in exponential models

Maximum likelihood in the canonical parameter. Recall

$$\frac{\partial \log p(x;\theta)}{\partial \theta} = S(x) - \frac{\partial \psi(\theta)}{\partial \theta}$$

Hence the ML estimate $\hat{\theta}_{ML}$ of θ given data x is the solution of

$$\frac{\partial \psi(\hat{\theta}_{\mathsf{ML}})}{\partial \theta} = S(x)$$

This is not a statistical problem any longer. It is just a matter of inverting the mapping $\theta \to \frac{\partial \psi(\theta)}{\partial \theta}$

This is trivial (void) in the dual parameterization

Recall
$$\eta \stackrel{\text{def}}{=} \frac{\partial \psi(\theta)}{\partial \theta}$$
 so that $\hat{\eta}_{\text{ML}} = S(x)$

Even more obviously

$$\mathbb{E}_{\widehat{\eta}_{\mathsf{ML}}}S(x) = S(x)$$

That is Under the likeliest distribution, the mean value of the sufficient statistic is equal to the observed value.

Inverse problems, MaxEnt and Kullback

We want to estimate (the distribution p of) a variable x based on the sole knowledge of the value s of a statistic S(x).

Problem:

if $\dim(x) < \dim(S(x))$, then x is not uniquely determined from s = S(x). Even if s = S(x) is invertible, it may be an ill-posed problem.

The "Maximum entropy on the mean" proposal:

- Select a prior a reference distribution q(x) and estimate p as

$$p_{\star} = \arg\min_{n} K[p|q]$$
 subject to $\mathbb{E}_p S(x) = s$

– Optionally, estimate x as $\mathbb{E}_{p_{\star}}x$.

The solution in terms of an *d*-dimensional Lagrange multiplier θ :

$$p(x|\theta) = q(x)e^{\theta^{\dagger}S(x) - \psi(\theta)}$$

The observations define mixture families $\mathcal{M}(s) = \{p(x) | \mathbb{E}_p S(x) = s\}.$ \rightarrow Exponential/mixture foliation.

Asymptotics

- Simple i.i.d. asymptotics makes your life easy
- The two basic convergence theorems for large sample size
- Influence function
- Asymptotic covariance
- Asymptotics for the likelihood
- The MLE is asymptotically efficient

Asymptotics

Somehow, statistics is all about asymptotics because we need repetition. Actually, *non* asymptotics are difficult. Asymptotics makes our life easy.

We consider only simple asymptotics: the observation of n samples $X^n = \{x_1, x_2, \ldots, x_n\}$ assumed to be independently and identically distributed (i.i.d.) according to some distribution in a parametric family $p(x|\theta)$:

$$p(X^n|\theta) = p(x_1, \dots, x_n|\theta) = \prod_{t=1}^n p(x_t|\theta)$$

Denote $\hat{\theta}^n = \hat{\theta}^n(X^n)$ an estimate of θ based on n samples.

We hope for, at least, asymptotic unbiasedness: $\mathbb{E}\widehat{\theta}_n \xrightarrow{n \to \infty} \theta$

But we may expect better. Consistency: $\hat{\theta}_n \xrightarrow{n \to \infty} \theta$.

In which sense? At which rate? Asymptotic behavior of the estimate.

Two big shots in asymptopia: LLN and CLT

Big question: what happens to an average

$$\bar{X}_n \stackrel{\text{def}}{=} \frac{1}{n} \sum_{t=1}^n x_t$$

of n i.i.d. samples $\{x_1, x_2, \ldots, x_n\}$ when the sample size n goes to infinity?

• **LLN** Law of large numbers: $\bar{X}_n \xrightarrow{\mathcal{P}} \mathbb{E}x$ meaning

$$\forall \epsilon > 0 \quad \operatorname{Prob}\left(|\bar{X}_n - \mathbb{E}x| < \epsilon \right) \xrightarrow{n \to \infty} 1$$

• **CLT** Central limit theorem. Zooming in on the convergence $\sqrt{n}(\bar{X}_n - \mathbb{E}x) \xrightarrow{\mathcal{D}} \mathcal{N}(0, \text{Cov}(x))$

So, we have a rate! Namely: the regular "square root" rate.

Square root consistency.

Influence function

Influence function: A key tool for asymptotics.

Again consider $\hat{\theta}^n$ an estimator of θ based on n samples $\{x_1, \ldots, x_n\}$.

An *influence function* for the estimator is $f(x; \theta)$ such that

$$\mathbb{E}_{\theta}f(x;\theta) = 0$$
 and $\hat{\theta} = \theta + \frac{1}{n}\sum_{t=1}^{n}f(x_t;\theta) + \text{hot}$

It tells how much each data point is "perturbating" the estimation.

If the data points are i.i.d. then, by the CLT

$$\sqrt{n}(\widehat{\theta}^n - \theta) \xrightarrow{\mathcal{D}} \mathcal{N}(0, \operatorname{Cov}_{\theta}(f(x; \theta)))$$

Loosely speaking: the estimation error is asympotically Gaussian with (asymptotic) covariance matrix $\frac{1}{n}$ Cov(f).

Example

Estimation of the variance σ^2 of a zero mean data set:

$$\hat{\sigma}^2 = \frac{1}{n} \sum_t x_t^2$$

Finding the estimating function

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{t} (x_t^2 - \sigma^2 + \sigma^2) = \sigma^2 + \frac{1}{n} \sum_{t} (x_t^2 - \sigma^2)$$

so the influence of x is $f(x; \sigma^2) = x^2 - \sigma^2$.

 $Cov(f) = \mathbb{E}(x^2 - \sigma^2)^2 = \mathbb{E}x^4 - 2\sigma^2\mathbb{E}x^2 + \sigma^4 = 2\sigma^4 + k$ where $k = \mathbb{E}x^4 - 3\mathbb{E}^2x^2$ is the *kurtosis* of x.

The (asymptotic) covariance of the estimation error is

$$\operatorname{Cov}(\widehat{\sigma}^2) = \frac{2\sigma^4 + k}{n}$$

It boils down to σ^4/n for Gaussian variables for which k = 0 but it can be much larger (how much?) or much smaller (how much?).

Influence of the MLE

The i.i.d. model: $\log p(X^n|\theta) = \sum_{t=1}^n \log p(x_t|\theta)$

The MLE $\hat{\theta}^n = \arg \max \log p(X^n | \theta)$ is characterized by

$$O = \sum_{t=1}^{n} \frac{\partial \log(x_t | \hat{\theta})}{\partial \theta}$$

First order expansion denoting $\partial \ell(x|\theta) \stackrel{\text{def}}{=} \frac{\partial \log(x|\theta)}{\partial \theta}$ and $\partial^2 \ell(x|\theta) \stackrel{\text{def}}{=} \frac{\partial^2 \log(x|\theta)}{\partial \theta^2}$

$$0 = \sum_{t=1}^{n} \partial \ell(x_t | \theta + \hat{\theta} - \theta) \approx \sum_{t=1}^{n} \partial \ell(x_t | \theta) + \sum_{t=1}^{n} \partial^2 \ell(x_t | \theta) (\hat{\theta} - \theta)$$

But (LLN)

$$\sum_{t=1}^{n} \partial^{2} \ell(x_{t}|\theta) \approx n \mathbb{E} \partial^{2} \ell(x|\theta) = -n \mathbb{E} \partial \ell(x|\theta) \partial \ell(x|\theta)^{\dagger} = -n F_{\theta}$$

Putting all together gives us the influence function

$$\hat{\theta} \approx \theta + \frac{1}{n} \sum_{t=1}^{n} f(x_t; \theta) \quad \text{for} \quad f(x; \theta) = \mathbf{F}_{\theta}^{-1} \partial \ell(x|\theta)$$

MLE asymptotics

Therefore

$$\operatorname{Cov}(\widehat{\theta}_{\mathsf{ML}}) \approx \frac{1}{n} \operatorname{Cov}(f) = \frac{1}{n} \operatorname{Cov}(\mathbf{F}^{-1} \partial \ell(x|\theta)) = \frac{1}{n} \mathbf{F}^{-1} \operatorname{Cov}(\partial \ell(x|\theta)) \mathbf{F}^{-1}$$

But
$$\operatorname{Cov}_{\theta}(\partial \ell(x|\theta)) \stackrel{\text{def}}{=} \mathbf{F}_{\theta}$$
 so $\operatorname{Cov}_{\theta}(\widehat{\theta}_{\mathsf{ML}}) = \frac{1}{n} \mathbf{F}_{\theta}^{-1} \mathbf{F}_{\theta} \mathbf{F}_{\theta}^{-1} = \frac{1}{n} \mathbf{F}_{\theta}^{-1}$.

The FIM for *n* independent samples is $n\mathbf{F}_{\theta}$.

Therefore, the MLE is asymptotically efficient!

When the model does not hold

We still assume i.i.d. samples but $p(x) \neq p(x|\theta)$ for all θ .

The MLE is still defined by

$$0 = \sum_{t=1}^{n} \frac{\partial \log(x_t | \hat{\theta})}{\partial \theta}$$

As the sample size n grows to ∞ , the MLE $\hat{\theta}^n$ tends to the solution θ_{\star} of

$$\mathsf{D} = \mathbb{E}_p \frac{\partial \log(x|\theta_\star)}{\partial \theta}$$

We will see later that $p(x|\theta_*)$ is the best approx. to the true distribution p(x). Meaning: the MLE does something meaningful even for wrong models.

The MLE is thus "'biased" but $\hat{\theta}_{ML} \approx \theta_{\star} + \frac{1}{n} \sum_{t} f(x_t)$ with influence function

$$f(x) = -\left(\mathbb{E}_p \partial^2 \ell(x|\theta_\star)\right)^{-1} \partial \ell(x|\theta_\star)$$

and thus has, around θ_{\star} , the asymptotic covariance matrix

$$\operatorname{Cov}(\widehat{\theta}_{\mathsf{ML}}) = \left(\mathbb{E}_p \partial^2 \ell(x|\theta_{\star})\right)^{-1} \operatorname{Cov}_p \left(\partial \ell(x|\theta_{\star})\right) \left(\mathbb{E}_p \partial^2 \ell(x|\theta_{\star})\right)^{-1}$$