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Outline

• Introduction (selected topics)

• Some simple parametric models, some less simple, all p(X|θ).

• Parameter estimation:

estimators, consistency, efficiency, Fisher information, the Cramér-Rao

bound, sufficient statistics.

• Exponential families (the wonderful world of).

• A bit of asymptotics

• Information geometry (the big picture)



Warning

Warning:

This is an unfinished set of slides.

And there must be quite a few random bugs.



Your brain on drugs in three easy steps

1) In your computer:

X =

[
.23 .45 .67 .09 .90 .32 .73 .55
.98 .11 .22 .33 .41 .31 .53 .03

]
∈ X = R2×8

2) On your screen, look at your data.

In any possible way.

Maybe decide that the data should be modeled as the realization of some
random process.

3) In your brain: build a statistical model (or several of them)

M = {p(x)} A set of probability distributions

We will mostly focus on regular statistical models

M = {p(x; θ), θ ∈ Θ ⊂ Rd}

where p(x; θ) is a a smooth function of θ.



The most important slide of this talk

All models are wrong

All models are wrong, but some are useful. George Box.

A sequence

Marginal probability density Spectral energy density Temporal energy density

Same marginal Same spectrum Same variance profile

Three points of view on a time series. What is the right statistics?



Simple jading of W-MAP 3-year

Blindly looking for four components which are:

1) uncorrelated 2) as independent as possible and 3) modelled as i.i.d.

yields promising results. . . Numerical work by Frédéric Guilloux.



It goes without saying

Assume basic notions of probability:

probability distributions p(X), expectation EX,

joint and conditional distributions p(X,Y ) = p(X|Y )p(Y ) = p(Y |X)p(X).

For two random column vectors, define the covariance matrix:

Cov(X,Y ) = E(XY †)− E(X)E(Y )† Notation: Cov(X) = Cov(X,X)

Linearity Cov(AX) = ACov(X)A†.

A symmetric matrix Q is said to be positive: Q ≥ 0 if Z†QZ ≥ 0 for any Z.

A covariance matrix is positive since Z†Cov(X)Z = Var(Z†X) ≥ 0.

For parametric models p(X|θ):

EθX = Eθ(X) =
∫
Xp(X|θ)dX, Covθ(X) = EθXX† − EθXEθX†.



Statistical models

Outline:

• Univariate

• Multivariate

• Time series, parametric

• Stationary fields



Some simple statistical models. 1

Well known families

• Gaussian (or normal) distribution

• χ2
p

• Exponential

• Poisson

• Multinomial

• <Some British guy> distribution . . .



Some simple statistical models. 2

• Transformation models

• Location model: X = µ+N µ ∈ Rd and N ∼ pN

p(X|θ) = pN(X − µ) θ = {µ}

• Scale model X = σN σ ∈ R

p(X|θ) = pN(X/σ)/σ θ = {σ}

• Location-scale model: X = µ+ σN

p(X|θ) = pN((X − µ)/σ)/σ θ = {µ, σ}

• Contamination X = Y + αZ for independent Y and Z random variables
θ = {α}.

• Including the distribution pN into the unknown parameter yields semi-parametric
models where θ now is infinite-dimensional e.g. θ = {µ, σ, pN}.



Some simple statistical models. 3

Models for an m× 1 vector in terms of q (noisy) factors:

X = AS +N with an m× q matrix A and

(usually) uncorrelated factors: Cov(S) = diag(σ2
1, . . . , σ

2
q ) and

uncorrelated noise Cov(N) = diag(p1, . . . , pm)

(but all kinds of perversions are to be found).

• Principal component analysis: Orthogonal factors AA† = Im and no noise.

So θ = (A, {σ2
i }).

• Factor analysis: Matrix A is known.

The variances are to be found: θ = ({σ2
i }, {p

2
j }).

Interesting in conjunction with factor selection.

• (regular) Independent component analysis: matrix A is unknown but Si is

independent from Sj for all i 6= j. Needs non-Gaussianity!

• Direction finding. Uses a physical model to connect the direction α of

an impinging wave to the corresponding column so θ = ({αi},Cov(N)) with

A = [a(α1), . . . , a(αq)].



Time series 1. Deterministic signal in random noise

We build a model p(X|θ) for a sequence X = {X(1), X(2), . . . , X(n)} by as-
suming a determistic signal in noise: X(i) = S(i) +N(i).

• For instance, for the signal part:

S(t) = S(t; θS) =
P∑
p=1

ap cos(ωpt+ φp)

Then θS = {ap, ωp, φp} (or some subset of it).

• For instance for the noise part:

• {N(t)} is i.i.d. with scale σ: pN(N(1), . . . N(n)) =
∏n
t=1

1
σq(

N(t)
σ ).

Then θN = {σ, q} or θN = {σ}.

• {N(t)} is zero-mean Gaussian stationary with correlation ENtNt′ = ρ(t′−t).
Then θN = {ρ(τ)}.

• Combining the deterministic and the stochastic parts: θ = (θS, θN)

pX(X|θ) = pX(X|θS, θN) = PN(X − S(θS); θN)



Time series 2. Parametric stationary models

• Auto-regressive (AR) model:

X(t) =
L∑
`=1

a`X(t− `) + σN(t) θ = {a1, a2, . . . , aL, σ}

where {N(t)} an i.i.d. zero-mean unit-variance Gaussian sequence.

• Linear model

X(t) =
∑

t1≤t′≤t2
h(t′)N(t− t′) θ = {{h(t)}, pN(·)}

• A whole zoology

Like, you know, heteroscedastic models (i.e. an AR model where σ2 = σ2(t)

now is a weigthed average of the past values of X(t)2.



Non parametric stationary models

• Stationary time series: the second-order structure:

X = {X(t)}Tt=1 Ex(t) = 0 Ex(t)x(t′) = ρ(t′− t) ρ(τ) =
∫
eiωτP (ω)dω

• Gaussian stationary field on the sphere {X(ξ), ξ ∈ S2}.

X(ξ) =
∑
`≥0

X(`)(ξ) Ĉ` =
‖X(`)‖2

2`+ 1
C` = EĈ` harmonic spectrum

p(X) depends only on the harmonic spectrum and on its empirical value:

p(X|θ) = exp−
1

2

∑
`≥0

(2`+ 1)

(
Ĉ`
C`

+ logC`

)
+ cst θ = {C`, ` ≥ 0}

• Poisson processes, Markov fields, multi-scale models, wavelet models. . .



The sad truth about parameters

• A vector θ ∈ Rd is just a (continuous) label to a probability distribution

p(·|θ) (think GR).

• The model is the manifold.

M = {p(·|θ), θ ∈ Θ ∈ Rd}

and it can be smoothly reparameterized in infinitely many ways.

• Hence, parameterization often is arbitrary to some large extent.

• Q: Is there a best parameterization?

A: Yes, for some models which have canonical parameters.

• Later: The (differential) geometry of statistical models.



Estimation

- Warning: this is mostly the frequentist story.

• Estimation, estimators, estimates

• Method of moments

• Cramér-Rao bound

• Fisher efficiency

• Maximum likelihood

• Sufficient statistics



Parametric estimation

Once we have selected a parametric model p(X|θ), we need to adjust the

model to the data.

Meaning: find the ‘best’ (?) parameter value θ̂ given the available data X.

An estimator is a function T : X 7→ Θ.

Notation θ̂ = T (X).

Unbiasedness: EθT (X) = θ.

Dispersion: Covθ(T (X)).

Important note:

unbiasedness and accuracy should not be taken too seriously on a manifold

because parameterization is arbitrary. What do the expectation and the co-

variance mean when, for instance, θ parameterizes a rotation matrix?



The method of moments / least squares

Let Ŝ = Ŝ(x) be a q-valued statistic: Ŝ : X 7→ Rq whose expected value under
p(x|θ) is a known (meaning: computable) function of θ:

EθŜ(x) = Sθ

− If q = dim(θ), the method of moments estimates θ by θ̂ such that

S
θ̂
= Ŝ(x)

− If q > dim(θ), the method of moments estimates θ by finding the best match

θ̂ = argmin
θ
φ(x; θ) φ(x; θ) = ‖Sθ − Ŝ(x)‖2

A better estimator may be obtained using a (positive) weighting matrix W

φ(x; θ) = (Sθ − Ŝ(x))†W (Sθ − Ŝ(x))

An even better estimator may be obtained with a parameter dependent weight
W = Wθ.

Moment/LS square methods require only EθŜ(X) and possibly CovθŜ(X) but
not the full distribution p(x|θ).

Can least-squares beat φ(x; θ) = − log p(x|θ)?



Likelihood

A likelihood:
• Data: X is n i.i.d. N (µ?, σ2

?) samples. Top to bottom: n = 3, 30, 300

• Model: ‘true’ model.
− Left: φ(µ) = 1

n log p(X|µ, σ2 = σ2
?).

− Right: φ(σ2) = 1
n log p(X|µ = µ?, σ2).
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The likelihood is p(x|θ) seen as a function of the parameter vector.
Given the data x and lacking prior information, this is all we have.



Legitimate questions about the (log)-likelihood

What is the meaning of

• the maximum value of the the likelihood,

• the value of θ which maximizes it,

• the dispersion of the latter,

• the width of the likelihood peak,

• the general shape of the likelihood function?
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Note on Bayes: there is a transparent interpretation of the likelihood function

when a prior distribution π(θ) on θ is available. By the Bayes theorem

p(θ|x) =
p(x|θ)π(θ)

p(x)
=

p(x|θ)π(θ)∫
p(x|θ′)π(θ′)dθ′

Hence, the shape of the log-likelihood log p(x|θ) is the shape of the log-

posterior distribution log p(θ|x) if the prior distribution π(θ) is uniform.

1) In spite of the maths, likelihood analysis is not Bayesian with a flat prior!

2) WHAT DO YOU MEAN “UNIFORM” ?



Intermezzo

Plausible definitions of the “straight segment” from one probability distribution

pa(x) to another pb(x)?

The mixture segment makes some statistical sense:

p(x|α) = (1− α)pa(x) + αpb(x)

The exponential segment also seems pretty darn reasonable

log p(x|α) = (1− α) log pa(x) + α log pb(x)− ψ(α)

with ψ(α) for normalization.

In ‘traditional’ exponential form

p(x|α) = pa(x)e
αS(x)−ψ(α) S(x) = log

pb(x)

pa(x)



Score and consequences

The log-likelihood: `(x|θ) def
= log p(x|θ) is a very interesting random function.

Its derivatives with respect to θ, even more so.

For a d-dimensional model (θ ∈ Rd), define

∂`(x|θ) =
∂ log p(x|θ)

∂θ
random d× 1 vector: the score

∂2`(x|θ) =
∂2 log p(x|θ)

∂θ2
random d× d matrix

The score function has zero mean under p(x|θ):

Eθ∂`(x|θ)
a
= 0

and its covariance is called the Fisher information matrix

Fθ
def
= Eθ

(
∂`(x|θ)∂`(x|θ)†

) b
= −Eθ∂2`(x|θ)

Properties a and b stem from
∫
p(x|θ)dx = 1.



Unbiased estimation and the score

For an estimator θ̂ = T (x), differentiating the unbiasedness condition

EθT (x) = θ

with respect to θ yields the covariance between two zero-mean random vectors

T (x)− θ = θ̂ − θ and ∂`(x|θ):

Covθ
(
∂`(x|θ), θ̂ − θ

)
= I (the identity matrix)

Hence an unbiased estimator T (x) necessarily has a very specific correlation

to the score function and we have

Covθ

([
θ̂

∂`(x|θ)

])
=

[
Cov(θ̂) I

I Fθ

]
Since a covariance matrix must be positive, it must hold that

Covθ(θ̂) ≥ F−1
θ



The amazing CRB

Covariance matrices are positive. In particular

Covθ
(
θ̂ − θ − F−1

θ ∂`(x|θ)
)
≥ 0

Expand this covariance matrix, recalling that Covθ (∂`(x|θ), T (X)) = I:

Covθ
(
θ̂ − θ − F−1

θ ∂`
)
= Cov(θ̂) + Cov(F−1

θ ∂`)− E
(
F−1
θ ∂`, θ̂ − θ

)
− symm

= Cov(θ̂) + F−1
θ Cov(∂`)F−1

θ − F−1
θ E

(
∂`, θ̂ − θ

)
− symm

= Cov(θ̂) + F−1
θ FθF

−1
θ − F−1

θ I− IF−1
θ

= Cov(θ̂)− F−1
θ

Therefore an unbiased estimator cannot have arbitrarily small variance:

Covθ(θ̂) ≥ F−1
θ (Fréchet-Darmois)-Cramér-Rao bound

Remember it is a matrix inequality. We may look at individual entries:

Covθ(θ̂i) ≥ [F−1
θ ]ii ≥ [Fθ]

−1
ii

The last inequality is ‘statistically obvious’.



Fisher information and efficiency

• (again) An unbiased estimator cannot have arbitrarily small variance:

Covθ(θ̂) ≥ F−1
θ Cramér-Rao bound = CRB

and also nothing can travel faster than light.

• Breakthrough

− Our statistical model M = {p(x|θ)} seen as a manifold is given a natural

metric by the FIM matrix Fθ.

− Even better: it gives the statistical resolution cell.

− Also, there does exist a canonical prior: Jeffreys prior which gives the

same prior weight to all resolution cells. This construction is parameter

independent.

• Definition: An estimator reaching the CRB is called (Fisher)-efficient.

• Question: Do efficient estimators exist? Model dependent ?



Maximum likelihood

Note An efficient estimator (if it exists) has no choice. It must behave as

T (x) = θ̂ = θ+ F−1
θ ∂`(x|θ)

Recalling Fθ = −Eθ∂2`(x|θ), this looks very very much like a Newton step. . .

This suggests estimating θ as the most likely parameter i.e.

θ̂ML
def
= argmax

θ
`(x|θ)

This is a solution of

∂`(x|θ̂ML) = 0

Compare to a key property of the score:

Eθ∂`(x|θ) = 0

• Note. The ML estimate is perfectly invariant under re-parameterization.

• Question. The ML estimate is a least-square fit when the model is a
deterministic signal in Gaussian noise. How to understand − log p(x|θ) as a
measure of mismatch between model data in general?



A detour

The next two slides give a quick view of likelihood for discrete valued data.

Discrete random variables are easy to deal with because the probability distribu-

tion π of a d-valued random variable is specified by d numbers π = (π1, . . . , πd).

Hence, we can always picture the set of all probability distributions of a d-

valued variable as the simplex:

S = {π = (π1, . . . , πd), πj ≥ 0,
d∑

j=1

πj = 1}

In the discrete case, several important concepts show up right away. After

enlightenment from the discrete world, we return to the general case.



Likelihood for discrete data

Take x a discrete variable taking d possible values with probability π = (π1, . . . , πd).
The probability of a sequence (x1, . . . , xn) modeled as i.i.d. is

p(x1, . . . , xn) = p(x1)p(x2) · · · p(xn) =
d∏

j=1

π
nj
j

where nj is the number of occurences of the j-th symbol in the sequence. So

log p(x1, . . . , xn) =
∑
j

nj logπj = n
∑
j

π̂j logπj where π̂j
def
=

nj

n

= −n
∑
j

π̂j log
π̂j

πj
+ n

∑
j

π̂j log π̂j

Hence

p(x1, . . . , xn|π) = e−nK[π̂, π]e−nH[π̂]

with

K[p, q]
def
=

∑
j

pj log
pj

qj
Kullback divergence from p to q

H[p]
def
= −

∑
j

pj log pj (Shannon) entropy of q



Likelihood for discrete data (cont.)

x a discrete variable taking d possible values with probability π = (π1, . . . , πd).

Again, the probability of an i.i.d. n-sequence depends only on π̂ = [n1
n , . . . ,

nd
n ]:

−
1

n
log p(x1, . . . , xn) = K[π̂, π] +H[π̂] with

 K[p, q] =
∑
j pj log

pj
qj

H[q] = −
∑
j qj log qj

→ Note: the number of sequences with π̂ roughly is expnH[π̂].

The empirical distribution π̂ is an exhaustive statistic:

→ Statistical compression, a.k.a. “Keep π̂, trash your data.”

The Kullback divergence K[p, q] is positive unless p = q. It is a (non-symmetric)

measure of mismatch between two probability distributions.

For a parametric model M = {π = π(θ), θ ∈ Θ}, nothing really changes:

−
1

n
log p(x1, . . . , xn|θ) = K[π̂, π(θ)] +H[π̂] ML = Kullback matching!



Sufficiency. 1

Let T values x1, . . . , xT be modeled as i.i.d. Laplace:

p(x|θ) =
1

θ
exp−

x

θ
x ≥ 0
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Since Eθx = θ and Eθx2 = 2θ2,

two possible estimates of θ are

θ̂1 =
1

T

T∑
t=1

xt

θ̂2 =

 1

2T

T∑
t=1

x2t

1
2

Plot: many realizations of θ̂1 versus θ̂2.

Question: Among all these statistics

θ̂1, θ̂2, θ̂3 = (θ̂1 + θ̂2)/2, θ̂4 =
σ−2
1 θ̂1 + σ−2

2 θ̂2

σ−2
1 + σ−2

2

with σ2
i = Var(θ̂i)

(which also are estimates of θ) which one (or which combination thereof)

contains the most information about the scale parameter θ?



Sufficiency. (cont. example)

If T values x1, . . . , xT are modeled as i.i.d. realizations of an exponential dis-

tribution p(x|θ) = 1
θ exp−xθ and we define the statistics

θ̂1 =
1

T

T∑
t=1

xt θ̂2 =

 1

2T

T∑
t=1

x2t

1
2

then, there is no information about θ in θ̂2 in addition to θ̂1!

p(θ̂1, θ̂2|θ) = p(θ̂2|θ̂1, θ)p(θ̂1|θ) Conditioning, always true

= p(θ̂2|θ̂1)p(θ̂1|θ) Factorization theorem (next slide)

i.e. the distribution of θ̂2 given that θ̂1 has been observed does not depend

on the unknown parameter θ. This is because θ̂1 is a sufficient statistic.

If you know how to extract optimally information from θ̂1, there is no need to

involve θ̂2.

The French call it “statistique exhaustive” which is pas mal non plus.

log p(x1, . . . , xT |θ) = −T (θ̂1θ + log θ)



Sufficiency

Official definition: S(x) is a sufficient statistic for the model p(x|θ) if the

distribution of x conditionned on the observation of S(x) does not depend on

θ:

p(x|S(x), θ) = p(x|S(x))

This is equivalent (theorem) to the factorization property:

there exist some functions g and h such that:

p(x|θ) = g(x)h(S(x); θ)

In effect, S(x) exhausts the information in x since the likelihood of θ depends

on x only through S(x).

Of course, S(x) = x always is a sufficient statistic. A sufficient statistic

is interesting if it does compress the data in the sense that dim(S(x)) <

dim(x). . .

. . . or maybe also if it makes our life easier. As in exponential models.



Exponential models
Outline

• Definition

• Examples

• Some stupendous properties

• Maximum likelihood estimation within exponential models

• Convexity and duality

• More stupendous properties

• Connection to maximum entropy



Exponential families: Informal definition

When a statistical model M = {p(x|θ); θ ∈ Θ} admits a sufficent statistic

S(x), one has (by definition) the form

log p(x|θ) = g(x) + h(S(x); θ)

“Exponential families” have an even more favorable form. By definition, an

exponential model has, possibly after some serious massaging of both x and

θ, the structure

log p(x|θ) = g(x) + h(θ) + S(x)†θ

that is: the part of the log-density which connects the variable x and the

parameter θ is just their scalar product.



Exponential families

If a familyM of probability distributions can be parameterized by a d-dimensional

vector θ ∈ Θ ⊂ Rd in such a way that

p(x|θ) = g(x) eS(x)†θ−ψ(θ)

i) using a function S : X 7→ Rd,
ii) a function ψ : Θ ⊂ Rd 7→ R
iii) using a measure g(x)

then,

• M is said to be an exponential family (of probability distributions),

• S(x) is a sufficient statistic,

• θ is a canonical parameter,

• we are happy.

Is that too much too ask?

Let’s see why we are happy and when such a happiness is possible.



Who’s exponential?

• Many ’standard’ families can be massaged into exponential form.

• Many other families are ‘curved’ exponential families, i.e. can be naturally

embedded into exponential families as M = {p(x|θ); θ = θ(α)}.

• Asymptotically (in the number of samples), all regular families are expo-

nential.

• Note: Exponentiality is a property of a family of distributions; it is not

the property of a single given distribution. Any single distribution is part

of (infinitely many) exponential families.



Some examples

• Example 1: Laplace

• Example 2: Multinomial

• Example 3: Location scale normal

• Example 4: Multivariate Gaussian

• Example 5: Poisson

• Example 6: Beta

• Example 7: Gamma

• Example 8: Dirichlet. . .



Recipe for generating an exponential family

Try this at home:

1) Pick a probability distribution with density p(x)

2) Pick a function S : X 7→ Rp, x→ S(x).

3) Define ψ(θ) = log
∫
p(x)eS(x)†θ for all θ ∈ Θ = {θ ∈ Rq|

∫
p(x)eS(x)†θ <∞}.

4) Enjoy your own home-made, probably p-dimensional, exponential family

p(x; θ) = p(x)eS(x)†θ−ψ(θ) θ ∈ Θ ⊂ Rp

− Simple example 1: p(x) = N (0, Im) and S(x) = [. . . , xi, . . .]1≤i≤m.

− Simple example 2: p(x) = N (0, Im) and S(x) = [. . . , x2
i − 1, . . .]1≤i≤m.

− Simple example 3: p(x) = N (0, Im) and S(x) = [. . . , xixj, . . .]1≤i<j≤m.



Uniqueness

An exponential family with sufficient statistic S(x) ∈ Rp and canonical parameter θ ∈ Rp:

p(x|θ) = g(x) eS(x)†θ−ψ(θ)

If T is an invertible p× p matrix: TT−1 = Ip, then the exponential family

q(x|θ) = g(x) eS(x)†θ−ψ(θ)



Centering

1) Rescaling: for any α > 0, if ḡ = αg and ψ̄ = ψ+ logα, then

p(x|θ) = g(x) eS(x)†θ−ψ(θ) = ḡ(x) eS(x)†θ−ψ̄(θ)

Thus, if
∫
g(x) <∞, then g(x) can always be rescaled to sum to be a pdf.

2) Centering the statistic: for any fixed S?, let S̄(x) = S(x)− S? and ψ̄ = ψ − S†?θ

p(x|θ) = g(x) eS(x)†θ−ψ(θ) = g(x) eS̄(x)†θ−ψ̄(θ)

Thus, we can shift the statistic as we please and, in particular, we may ensure EθS(x) = 0 for
some fixed θ.

3) Centering the parameter vector: for any fixed point θ?, define θ̄ = θ−θ?, ḡ(x) = g(x) expS(x)†θ̄,
ψ̄(θ̄) = ψ(θ̄+ θ?) and check that

p(x|θ) = g(x) eS(x)†θ−ψ(θ) = ḡ(x) eS(x)†θ̄−ψ̄(θ̄)

Thus, any point can be used as the origin.



Subfamilies

Start with some exponential family M

p(x|θ) = g(x) eS(x)†θ−ψ(θ)

A q-dimensional subset of Θ defined by some mapping θ(η) : Rq 7→ Rp defines a subfamily

q(x|η) = p(x|θ(η))

If q > p, over-parameterization. What’s the point?

If q = p and the mapping is invertible, what’s the point?

If q < p this defines a curved family embedded in the ambient exponential family.

This sub-family is an exponential family itself only when θ(η) = Tη for some fixed p× q matrix
T. It then has obviously sufficient statistic T†S(x).

Example: binned spectra.



Partition function. First derivative

Consider an exponential family M parameterized as

p(x; θ) = p(x)eS(x)†θ−ψ(θ)

Then the score function splits additively as

∂ log p(x; θ)

∂θ
= S(x)−

∂ψ(θ)

∂θ

Remember that the score has zero mean under θ. Therefore

∂ψ(θ)

∂θ
= EθS(x)

i.e. the first derivative of ψ is the mean value of the sufficient statistic.

We will see shortly that there is a one-to-one mapping between θ and EθS(x).

Thus, we can use it to label any distribution in the family. This is the dual

parameterization using

η = η(θ) = EθS(x) =
∂ψ(θ)

∂θ



Partition function. Second derivative

The second derivative of the log-likelihood is

∂2 log p(x; θ)

∂θ2
= −

∂2ψ(θ)

∂θ2

which is not random. Thus

0 ≤ Fθ = −Eθ∂2`(x|θ) =
∂2ψ(θ)

∂θ2

i.e. the second derivative of ψ is the (positive) Fisher information matrix.

Hence ψ is a convex fonction. Thus, there is a unique point θ where ψ(θ)

takes a given value η of the gradient.

Therefore we can label any distribution in an exponential family either by θ or

by η = EθS(x). The two labels θ and η are related by η = ∂ψ(θ)
∂θ .



Repeat

In an exponential family M

p(x|θ) = g(x) eS(x)†θ−ψ(θ)

• the gradient of the partition function can be used as a dual parameter:

η =
∂ψ(θ)

∂θ

• the Hessian of the partition function is the Fisher information matrix:

∂2ψ(θ)

∂θ2
= Fθ



Maximum likelihood estimation in exponential models

Maximum likelihood in the canonical parameter. Recall

∂ log p(x; θ)

∂θ
= S(x)−

∂ψ(θ)

∂θ

Hence the ML estimate θ̂ML of θ given data x is the solution of

∂ψ(θ̂ML)

∂θ
= S(x)

This is not a statistical problem any longer. It is just a matter of inverting

the mapping θ → ∂ψ(θ)
∂θ

This is trivial (void) in the dual parameterization

Recall η
def
=

∂ψ(θ)

∂θ
so that η̂ML = S(x)

Even more obviously

Eη̂ML
S(x) = S(x)

That is Under the likeliest distribution, the mean value of the sufficient statistic

is equal to the observed value.



Inverse problems, MaxEnt and Kullback

We want to estimate (the distribution p of) a variable x based on the sole

knowledge of the value s of a statistic S(x).

Problem:

if dim(x) < dim(S(x)), then x is not uniquely determined from s = S(x). Even

if s = S(x) is invertible, it may be an ill-posed problem.

The “Maximum entropy on the mean” proposal:

− Select a prior a reference distribution q(x) and estimate p as

p? = argmin
p
K[p|q] subject to EpS(x) = s

− Optionally, estimate x as Ep?x.

The solution in terms of an d-dimensional Lagrange multiplier θ:

p(x|θ) = q(x)eθ
†S(x)−ψ(θ)

The observations define mixture families M(s) = {p(x) |EpS(x) = s}.
→ Exponential/mixture foliation.



Asymptotics

• Simple i.i.d. asymptotics makes your life easy

• The two basic convergence theorems for large sample size

• Influence function

• Asymptotic covariance

• Asymptotics for the likelihood

• The MLE is asymptotically efficient



Asymptotics

Somehow, statistics is all about asymptotics because we need repetition. Ac-

tually, non asymptotics are difficult. Asymptotics makes our life easy.

We consider only simple asymptotics: the observation of n samples Xn =

{x1, x2, . . . , xn} assumed to be independently and identically distributed (i.i.d.)

according to some distribution in a parametric family p(x|θ):

p(Xn|θ) = p(x1, . . . , xn|θ) =
n∏
t=1

p(xt|θ)

Denote θ̂n = θ̂n(Xn) an estimate of θ based on n samples.

We hope for, at least, asymptotic unbiasedness: Eθ̂n n→∞−−−−→ θ

But we may expect better. Consistency : θ̂n
n→∞−−−−→ θ.

In which sense? At which rate? Asymptotic behavior of the estimate.



Two big shots in asymptopia: LLN and CLT

Big question: what happens to an average

X̄n
def
=

1

n

n∑
t=1

xt

of n i.i.d. samples {x1, x2, . . . , xn} when the sample size n goes to infinity?

• LLN Law of large numbers: X̄n
P−→ Ex meaning

∀ε > 0 Prob
(
|X̄n − Ex| < ε

) n→∞−−−−→ 1

• CLT Central limit theorem. Zooming in on the convergence

√
n(X̄n − Ex) D−→ N (0,Cov(x))

So, we have a rate! Namely: the regular “square root” rate.

Square root consistency.



Influence function

Influence function: A key tool for asymptotics.

Again consider θ̂n an estimator of θ based on n samples {x1, . . . , xn}.

An influence function for the estimator is f(x; θ) such that

Eθf(x; θ) = 0 and θ̂ = θ+
1

n

n∑
t=1

f(xt; θ) + hot

It tells how much each data point is “perturbating” the estimation.

If the data points are i.i.d. then, by the CLT

√
n(θ̂n − θ)

D−→ N (0,Covθ(f(x; θ)))

Loosely speaking: the estimation error is asympotically Gaussian with (asymp-

totic) covariance matrix 1
nCov(f).



Example

Estimation of the variance σ2 of a zero mean data set:

σ̂2 =
1

n

∑
t

x2t

Finding the estimating function

σ̂2 =
1

n

∑
t

(x2t − σ2 + σ2) = σ2 +
1

n

∑
t

(x2t − σ2)

so the influence of x is f(x;σ2) = x2 − σ2.

Cov(f) = E(x2 − σ2)2 = Ex4 − 2σ2Ex2 + σ4 = 2σ4 + k where k = Ex4 − 3E2x2

is the kurtosis of x.

The (asymptotic) covariance of the estimation error is

Cov(σ̂2) =
2σ4 + k

n

It boils down to σ4/n for Gaussian variables for which k = 0 but it can be

much larger (how much?) or much smaller (how much?).



Influence of the MLE

The i.i.d. model: log p(Xn|θ) =
∑n
t=1 log p(xt|θ)

The MLE θ̂n = argmax log p(Xn|θ) is characterized by

0 =
n∑
t=1

∂ log(xt|θ̂)
∂θ

First order expansion denoting ∂`(x|θ) def
= ∂ log(x|θ)

∂θ and ∂2`(x|θ) def
= ∂2 log(x|θ)

∂θ2

0 =
n∑
t=1

∂`(xt|θ+ θ̂ − θ) ≈
n∑
t=1

∂`(xt|θ) +
n∑
t=1

∂2`(xt|θ)(θ̂ − θ)

But (LLN)

n∑
t=1

∂2`(xt|θ) ≈ nE∂2`(x|θ) = −nE∂`(x|θ)∂`(x|θ)† = −nFθ

Putting all together gives us the influence function

θ̂ ≈ θ+
1

n

n∑
t=1

f(xt; θ) for f(x; θ) = F−1
θ ∂`(x|θ)



MLE asymptotics

Therefore

Cov(θ̂ML) ≈
1

n
Cov(f) =

1

n
Cov(F−1∂`(x|θ)) =

1

n
F−1Cov(∂`(x|θ))F−1

But Covθ(∂`(x|θ))
def
= Fθ so Covθ(θ̂ML) = 1

nF
−1
θ FθF

−1
θ = 1

nF
−1
θ .

The FIM for n independent samples is nFθ.

Therefore, the MLE is asymptotically efficient!



When the model does not hold

We still assume i.i.d. samples but p(x) 6= p(x|θ) for all θ.

The MLE is still defined by

0 =
n∑
t=1

∂ log(xt|θ̂)
∂θ

As the sample size n grows to ∞, the MLE θ̂n tends to the solution θ? of

0 = Ep
∂ log(x|θ?)

∂θ

We will see later that p(x|θ?) is the best approx. to the true distribution p(x).

Meaning: the MLE does something meaningful even for wrong models.

The MLE is thus “‘biased” but θ̂ML ≈ θ? + 1
n

∑
t f(xt) with influence function

f(x) = −
(
Ep∂2`(x|θ?)

)−1
∂`(x|θ?)

and thus has, around θ?, the asymptotic covariance matrix

Cov(θ̂ML) =
(
Ep∂2`(x|θ?)

)−1
Covp (∂`(x|θ?))

(
Ep∂2`(x|θ?)

)−1


