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Some questions to ponder...

• “The Universe is homogenous and istropic on large scales” -- is this true?

• How does the luminous matter relate to the dark matter?

• How does clustering depend on galaxy type and environment?

• What happens on very small scales?

• What are the largest structures in the Universe?

• The statistical analysis of catalogues is the key to answering these questions...



2 P. J. E. Peebles

homogeneity was sparse; it now seems compelling (Peebles 1993, §3, §7; Davis
1997).

The number density, n, in a stationary point process in three dimensions
may be defined by the probability a point appears in the randomly placed volume
element dV ,

dP = n dV, (1)

and the two-point correlation function by the probability points appear in each
of the volume elements dV1 and dV2 at separation r12,

dP = n2dV1dV2[1 + ξ(r12)]. (2)

The analog for a continuous function, f("r), is the autocorrelation function,

ξc(r) = 〈f("x + "r)f("x)〉/〈f〉2 − 1. (3)

If f is constant, ξc vanishes. In a homogenous Poisson point process, the prob-
ability a point appears in a given volume element is statistically independent of
what happens everywhere else, so the reduced function, ξ, vanishes.

The Fourier amplitude of the distribution of points at positions "ri, in flat
space periodic in a box of volume Vu, is

δ!k =
∑

ei!k·!ri. (4)

The expectation value of the square of the amplitude defines the power spectrum,

P (k) =
∫

d3rξ(r)ei!k·!r =
〈|δ!k|

2〉

n2Vu
−

1

n
. (5)

The δ!k are uncorrelated,

〈δ!kδ!k′〉 = 0 if "k $= "k′, (6)

though not in general statistically independent. In a fair sample — size large
compared to the scale over which the process is statistically related — the proba-
bility distribution of the power spectrum for each "k is exponential, a consequence
of the central limit theorem.

The variance — the second central moment — of the count of points in a
randomly placed volume V is

σ2 = 〈(N − 〈N〉)2〉 = nV + n2

∫

V
dV1dV2ξ(r12), (7)

in terms of the correlation function, and

σ2 = nV + n2

∫

d3k P (k)|W!k|
2, W!k =

∫

V
d3rei!k·!r/(2π)3/2, (8)

in terms of the power spectrum.
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It was Totsuji and Kihara !1969" and, independently,
Peebles !1974b" who were first to present a computer-
based analysis of a complete catalog of galaxies. Totsuji
and Kihara used the published Lick counts in cells from
Shane and Wirtanen !1967", while Peebles and co-
workers analyzed a number of catalogs: the Reference
Catalog of Bright Galaxies, the Zwicky catalog, the Lick
catalog, and later on the very deep Jagellonian Field10

!Peebles and Hauser, 1974; Peebles, 1975; Peebles and
Groth, 1975". All this work was done on the projected
distribution of galaxies, since little or no redshift infor-
mation was available.

The central discovery was that the two-point correla-
tion function, describing the deviation of the galaxy dis-
tribution from homogeneity, scales like a simple power
law over a substantial range of distances. This result has
stood firm through numerous analyses of diverse cata-
logs over the subsequent decades.

The amplitudes of the correlation functions calculated
from the different catalogs were found to scale in accor-
dance with the nominal depth of the catalog. This was
one of the first direct proofs that the universe is homo-
geneous. Before that we knew about the isotropy of the
galaxy distribution at different depths and could only
infer homogeneity by arguing that we were not at the
center of the universe.

B. The correlation function: Galaxies

1. Definitions and scaling

The definition of the correlation function used in cos-
mology differs slightly from the definition used in other
fields. In cosmology we have a nonzero mean field !the
mean density of the universe" superposed on which are
the fluctuations that correspond to the galaxies and gal-
axy clusters. Since the universe is homogeneous on the
largest scales, the correlations tend to zero on these
scales.

On occasion, people have tried to use the standard
definition and in doing so have come up with anomalous
conclusions.

The right definition is as follows: In cosmology, the
two-point galaxy correlation function is defined as a
measure of the excess probability, relative to a Poisson
distribution, of finding two galaxies at the volume ele-
ments dV1 and dV2 separated by a vector distance r:

dP12 = n2#1 + !!r"$dV1dV2, !11"

where n is the mean number density over the whole
sample volume. When homogeneity11 and isotropy are
assumed, !!r" depends only on the distance r= %r%. From
Eq. !11" it is straightforward to derive the expression for
the conditional probability that a galaxy lies at dV at
distance r given that there is a galaxy at the origin of r:

dP = n#1 + !!r"$dV . !12"

Therefore !!r" measures the clustering in excess #!!r"
"0$ of a random Poisson point distribution, for which
!!r"=0 or in defect #!!r"#0$ of it. It is worth mentioning
that in statistical mechanics the correlation function nor-
mally used is g!r"=1+!!r", which is called the radial dis-
tribution function !McQuarrie, 1999". Statisticians call
this quantity the pair correlation function !Stoyan and
Stoyan, 1994". The number of galaxies, on average, lying
at a distance between r and r+dr from a given one is
ng!r"4$r2.

A similar quantity can be defined for projected cata-
logs, that is, surveys compiling the angular positions of
the galaxies on the celestial sphere. The angular two-
point correlation function w!%" can be defined by means
of the conditional probability of finding a galaxy within
the solid angle d& lying at an angular distance % from a
given galaxy !arbitrarily chosen":

dP = N#1 + w!%"$d& . !13"

N is the mean number density of galaxies per unit area
in the projected catalog. Since the first available catalogs
were two dimensional, with no redshift information,
w!%" was measured before any direct measurement of
!!r" was possible. Nevertheless, !!r" can be inferred from
its angular counterpart w!%" by means of the Limber
equation !Limber, 1954; Rubin, 1954", which provides an
integral relation between the angular and spatial corre-
lation functions for small angles,

w!%" = &
0

'

y4(2!y"dy&
0

'

!!'x2 + y2%2"dx . !14"

Here y is the comoving distance and (!y" is the radial
selection function normalized such that ((!y"y2dy=1. If
!!r" follows a power law, !!r"= !r /r0"−), it is straightfor-
ward to see that the angular correlation function is also
a power law, w!%"=A%1−) !Peebles, 1980". Totsuji and
Kihara !1969" were the first to derive a power-law model
for !!r" on the basis of the angular data. Their canonical
value for the scaling exponent, )=1.8, has remained un-
altered for more than 30 years.

Equation !14" provides the basis for an important scal-
ing relation. Peebles !1980" has shown that, in a homo-
geneous universe, w!%" must scale with the sample depth
D* as

w!%" =
1

D*
W!%D*" , !15"

where the function W is an intrinsic angular correlation
function that does not depend on the apparent limiting
magnitude of the sample. The characteristic depth D* is
the distance at which a galaxy with intrinsic luminosity
L* is seen at the limiting flux density f, which is in the
Euclidean geometry !neglecting expansion and curva-
ture"

10A catalog of 15 650 galaxies in a field of 6° *6°, prepared
by Rudnicki et al. !1973".

11This property is called stationarity in point field statistics.
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ber of neighbors, on average, that an object has within a
sphere of radius r. It is given by

N!!r" = n#
0

r

4"s2$1 + #!s"%ds . !18"

The distribution is said to follow fractal scaling if within
a large range of scales the behavior of N!!r" can be well
fitted to a power law,

N!!r" $ rD2, !19"

or, alternatively,

1 + #!r" $ rD2−3, !20"

where D2 is the so-called correlation dimension. The
scaling range has to be long enough to talk about fractal
behavior. However, the term has been used very often
for describing scaling behaviors within rather limited
scale ranges !Avnir et al., 1998". In Sec. V.B.4 we show
recent determinations of D2 for several galaxy samples
at different scale ranges.

2. Estimators

The two-point correlation function #!r" can be esti-
mated in several ways from a given galaxy sample. For a
discussion of these see, for example, Pons-Bordería et al.
!1999"; Kerscher et al. !2000"; Martínez and Saar !2002".
At small distances, nearly all the estimators provide very
similar performance. However, at large distances, their
performance is no longer equivalent and some of them
could be biased. Considering galaxy distribution as a
point process, one estimates the two-point correlation
function at a given distance r by counting and averaging
the number of neighbors each galaxy has at a given
scale. It is clear that the boundaries of the sample have
to be considered, because as no galaxies are observed
beyond the boundaries, the number of neighbors is sys-
tematically underestimated at larger distances. If we do
not make any assumption regarding the kind of point
process that we are dealing with, the only solution is to
use the so-called minus estimators, the kind of estima-
tors favored by Pietronero and co-workers !Sylos Labini
et al., 1998": The averages of the number of neighbors at
a given distance are taken omitting those galaxies lying
closer to the border than r. At large scales only a small
fraction of the galaxies in the sample enters in the esti-
mate, increasing the variance. To make full use of the
surveyed galaxies, the estimator has to incorporate an
edge correction. The most widely used estimators in cos-
mology are those of Davis and Peebles !1983", Hamilton
!1993", and Landy and Szalay !1993". Here we provide
their formulas when applied to a complete galaxy
sample in a given volume with N objects. A Poisson
catalog, a binomial process with Nrd points, has to be
generated within the same boundaries:

#̂DP!r" =
Nrd

N
DD!r"
DR!r"

− 1, !21"

#̂HAM!r" =
DD!r" · RR!r"

$DR!r"%2 − 1, !22"

#̂LS!r" = 1 + &Nrd

N
'2DD!r"

RR!r"
− 2

Nrd

N
DR!r"
RR!r"

, !23"

where DD!r" is the number of pairs of galaxies with
separation within the interval $r−dr /2%, r+dr /2, DR!r"
is the number of pairs between a galaxy and a point of
the Poisson catalog, and RR!r" is the number of pairs
with separation in the same interval in the Poisson cata-
log. At large scales the performance of the Hamilton
and Landy and Szalay estimators have proven to be bet-
ter !Pons-Bordería et al., 1999; Kerscher et al., 2000".

3. Recent determinations of the correlation

function

Earlier estimates of the pairwise galaxy correlation
function were obtained from shallow samples, and one
could suspect that they were not finding the true corre-
lation function. The first sample deep enough to get
close to solving that problem was the Las Campanas
Redshift Survey !LCRS". The two-point correlation
function for LCRS was determined by Tucker et al.
!1997" and by Jing et al. !1998" !see Fig. 10". Jing et al. get
slightly smaller values for the correlation length !r0
=5.1h−1 Mpc" than Tucker et al. !r0=6.3h−1 Mpc". When
making comparisons, it is necessary to take care that the
length scales have been interpreted in the same under-
lying cosmological model. Older papers tend to set %
=0 whereas more recent papers are often phrased in
terms of a flat-% plus cold-dark-matter cosmology.

Using data from the first batch of the SDSS, Zehavi et
al. !2002" analyzed 29 300 galaxies covering a 690-
square-degree region of sky, made up of a number of
long narrow segments !2.5°–5°". They arrived at an av-
erage real-space correlation function of

FIG. 10. The correlation function 1+#!r" for different samples
calculated with different estimators. We can see that the small-
scale fractal regime is followed by a gradual transition to ho-
mogeneity.
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ξ(r) = (r/r0)−γ

w(θ) = Aθ−γ

Pair count statistics...(see the talks from Stephane)

• Similarly, for projected catalogues:

• In general the LS estimator is the 
most optimal of the three as is 
least affected by plate boundaries 
and masks

• Note that these estimators are 
computationally intensive due to 
the calculation of large numbers of 
pair separations; but improved 
algorithms exist

• Note also: if 

• Then:

• Note that in general, the pair count analyses like this are most useful on 
small scales; on large scales fourier-space analysis are more useful
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The correlation functions of galaxies are almost unchanged with redshift, and the correlation
functions of dark halos only slightly evolve between z = 0 and 2. By contrast, the amplitude of
the dark matter correlation functions evolve rapidly by a factor of ∼ 10 from z = 2 to z = 0.
The biasing parameter bξ,g is larger at a higher redshift, for example, bξ,g " 2 – 2.5 at z = 2. The
biasing parameter bξ,h for dark halos is systematically lower than that of galaxies and DM cores
again due to the volume exclusion effect. At z = 0, galaxies and DM cores are slightly anti-biased
relative to dark matter at r " 1 h−1 Mpc. In lower panels, we also plot the one-point biasing
parameter bvar,i ≡ σi/σm at r = Rs for comparison. In general we find that bξ,i is very close to
bvar,i at z ∼ 0, but systematically lower than bvar,i at higher redshifts.

For each galaxy identified at z = 0, we define its formation redshift zf by the epoch when half of
its cooled gas particles satisfy our criteria of galaxy formation. Roughly speaking, zf corresponds
to the median formation redshift of stars in the present-day galaxies. We divide all simulated
galaxies at z = 0 into two populations (the young population with zf < 1.7 and the old population
with zf > 1.7) so as to approximate the observed number ratio of 3/1 for late-type and early-type
galaxies.

Figure 13: Two-point correlation functions for the old and young populations of galaxies at z = 0
as well as that of the dark matter distribution. The profiles of bias parameters bξ(r) for both of the
two populations are also shown in the lower panel. (Figure taken from [103].)

The difference of the clustering amplitude can be also quantified by their two-point correlation
functions at z = 0 as plotted in Figure 13. The old population indeed clusters more strongly than
the mass, and the young population is anti-biased. The relative bias between the two populations
brel
ξ,g ≡

√
ξold/ξyoung ranges 1.5 and 2 for 1 h−1 Mpc < r < 20 h−1 Mpc, where ξyoung and ξold are

the two-point correlation functions of the young and old populations.

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2004-8

The growth of structures in the universe

• Initial small perturbations in the CMB 
grow into structures under the influence 
of gravity

• In the linear regime (>10h-1Mpc) the 
growth of structure can be described 
analytically

• In the non-linear regime, structure 
growth depends on the details of galaxy 
formation! Some approximate analytic 
techniques do exist. 

• To find out what happens in these scales, 
we need to do very high-resolution 
simulations with gas, or to use semi-
analytic models (see Jeremy’s talk)
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Making measurements of galaxy clustering

• At small scales, where the 
number of pairs are small, we are 
dominated by Poisson counting 
errors

• At large scales, where the 
numbers of pairs are large, we are 
dominated by systematic errors  
and the effects of cosmic 
variance.

• The ideal survey would have a 
wide field of view, reach 
extremely faint limiting 
magnitudes, and have very 
accurate photometry. 

• It is possible to make an analytic 
estimate of the error in w(θ)..

• If possible we would prefer to estimate our 
errors from observations of several 
separate fields

• Unfortunately cosmic variance effects 
seem to be important even for very large 
fields!

Arnouts et al 2002

Finite volume error

Discreteness error
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Hubble (1934): the 
galaxy distrubtion 
is lognormal!
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A time-line of galaxy clustering measurements

1970s 1990s1980sPre-
history

Hubble and 
friends; “the realm 
of the nebulae”

Scanned Schmidt 
plates;
Counts in cells at 
low redshifts; 
Development of 
pair statistics for 
galaxy clustering 
measurements

Redshift surveys of the 
local universe; 
Imaging surveys of the 
distant universe using 
plates at the prime-focus 
of 4m telescopes; 
The first CCDs; pencil 
beam surveys of the 
distant universe

Multi-object 
spectrographs on 4m 
telescopes; 1000 
galaxies at z~1;  
10m telescopes;

1000 galaxies at z~1 



4 V.Reshetnikov: Sky surveys and deep fields

Fig. 2. Characteristics of the main modern observational projects. The horizontal dotted line in Fig. (a) shows the
total area of the sky. The black square and circle mark works performed with the 6-m SAO RAN telescope (see Section
4.9).

active nuclei (see, e.g., [10]). The calculation of the se-
lection function and, correspondingly, the space volume
probed by observations using this method is strongly de-
pendent on the precise knowledge of the spectral energy
distribution in the objects under study.

(3) Selection by narrow-band observations. The essence
of this method is the selection of galaxies that show an ex-
cess when observed in narrow-band filters with respect to
broad-band ones. This method is used to search for objects
with emission lines (star-forming galaxies, active galactic
nuclei). Observations are performed with narrow filters
cutting spectral ranges ≤100 Å (to increase the contrast
of the emission object against the sky background) cen-
tered on the wavelength (for example, Lα) corrected for
the expected redshift of a distant object. Clearly, in this
case, the selection function is determined by the equivalent
width of the emission line in the galaxy.

A shortcoming of this approach is that galaxies are
searched for only in a very narrow interval of redshifts z
and samples obtained in this way are relatively small. In
addition, only a small fraction of all galaxies from this
redshift interval is selected (namely, those that show a
large equivalent width of emission lines). These reserva-
tions restrict obtaining statistically significant results on
the general features of distant galaxies.

After the above comments, we turn to describing se-
lected projects. Projects similar to those described be-
low are currently being carried out at many observatories.
Many dozens of papers discussing the results of both new
and old surveys and deep fields are published each year.
This diversity of projects can be quite confusing (espe-
cially because many projects have similar abbreviations).
I therefore describe only the principal projects playing an
outstanding role in modern astronomy.

The main goal of the following ‘technical’ description
(Sections 3 and 4) is to give the reader a flavor of the very

rapidly growing observational base of modern astronomy.
A distinctive feature of the last years is that the observa-
tional data obtained are freely available for the scientific
community via the corresponding www pages.

3. Sky surveys

3.1. Photographic surveys

Photographic surveys performed with Schmidt telescopes
[11] had a great impact on the development of astronomy.
In the 1950s, a photographic survey of the sky available for
observations from California (δ > −33o) was performed
using the 1.2-m telescope of the Palomar Observatory.
Almost a thousand plates 6.o5×6.o5 each were obtained in
the blue and red spectral bands. Copies of the Palomar sky
survey (in the form of glass or printed copies of the plates)
were spread over most astronomical institutes in the world
and played a very important role in the development of
all fields of astronomy, from solar system studies to re-
mote galaxies and quasars [11]. Objects down to B ∼ 20m

can be distinguished in the Palomar prints, and the struc-
ture of tens of thousands of galaxies with B ≤ 15m can
be studied. In particular, based on the Palomar survey
(its official name is the Palomar Observatory Sky Survey
I, or POSS-I), catalogs of galaxies by Zwicky [12] and
Vorontsov-Velyaminov (MCG in Fig. 2a) [13] were com-
piled. It is by inspecting copies of this survey that system-
atic studies of galaxies, from interacting [14] and double
ones [15] to galaxy clusters [12, 16], began.

In the 1970s, the success of the Palomar survey
stimulated carrying out similar surveys of the southern
sky by the 1.2-m British Schmidt telescope (the Anglo–
Australian Observatory (AAO), Australia) and the 1.0-m
Schmidt telescope of the European Southern Observatory
in Chile. Due to great progress in constructing telescopes

A time-line of galaxy clustering measurements

1970s 1990s1980s 2000+Pre-
history

Hubble and 
friends; “the realm 
of the nebulae”

Scanned Schmidt 
plates;
Counts in cells at 
low redshifts; 
Development of 
pair statistics for 
galaxy clustering 
measurements

Redshift surveys of the 
local universe; 
Imaging surveys of the 
distant universe using 
plates at the prime-focus 
of 4m telescopes; 
The first CCDs; pencil 
beam surveys of the 
distant universe

Multi-object 
spectrographs on 4m 
telescopes; 1000 
galaxies at z~1;  
10m telescopes;

1000 galaxies at z~1 

MOS on 10m 
telescopes; 
10,000 galaxies at z~1;  
Million-galaxy redshift 
surveys at z~0;
Degree-scale imagers;
Accurate photo-zeds for 
100,000 galaxies out to 
z
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The Lick galaxy catalogues

• Before plate scanning machines like the 
SuperCOSMOS device and others, 
measuring the positions of enough galaxies 
was extremely time-consuming and 
demanded a heroic effort

• Lick astrograph was used for an ambitious 
survey of the entire sky to study object 
proper motions

x1246! 

Carnegie Astrograph (and Wirtanen)
• The resulting maps were made in 1 degree 

cells

...10 years of work to count 
10,000 galaxies by eye! 



1954AJ.....59..285S

Shane and Wirtanen, 1957

Magnitude limit: 
Mb<18

• Neyman, Scott and Shane 
(1953) were able to use this 
map to show that the 
observed distribution of 
galaxies could not be due to 
obscuration



Lick-North

Cells 20’x20’
M_b<19

Seldner, Siebers, Groth, Peebles 1977



Lick south

Seldner, Siebers, Groth, Peebles 1977
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Galaxy clustering statistics and the lick galaxy 
catalogues

• Lick galaxy counts were re-
measured at higher resolution using 
electronic counting

• w(θ) measured for the whole 
catalogue using counts-in-cells 
10’x10’ (original lick catalogue was 
1x1

• Full control of systematic errors a 
challenging problem (seeing, 
variation in limiting magnitudes and 
depth over the plate boundaries)

• Demonstrated that w(θ) follows a 
power-law shape (see also Totsuji 
and Kihara)

Correlation Functions 5

showing the spatial function is well approximated as1

ξ(r) = (ro/r)
γ , γ = 1.77 ± 0.04, hro = 5 ± 0.5 Mpc, (9)

at the range of separations

10 kpc ∼< hr ∼< 10 Mpc. (10)

At the lower bound the luminous parts of the galaxies nearly overlap. An ex-
tension to still smaller scales, in the galaxy-mass cross correlation function, is
discussed in §4.1. At hr ∼ 20 Mpc the galaxy correlation function breaks below
the power law. This appears in the Lick and Jagellonian samples (Groth & Pee-
bles 1977; Fry & Seldner 1982), but perhaps too close to the systematic errors to
be convincing. The break is well established in the APM sample. It is thought
that at larger separations the galaxy distribution is anticorrelated, ξ < 0. This
would mean that at small wavenumber, k, the power spectrum, P (k), increases
with increasing k. Detecting this requires a relatively deep sample and good
control of the selection function as a function of position in the sky. The effect
likely is seen (Sutherland et al. 1999, Fig. 9), in measurements of P (k) that
extend to hr ∼ 100 Mpc.

Catalogs in progress will tighten bounds on departures from a small-scale
power law, including the evidence that ξ(r) rises above the power law at r ∼ ro
before the break down at r ∼ 3ro (Soneira & Peebles 1978, Fig. 6). Modern
catalogs have distance measures from redshifts and predictors of luminosities,
but neither is accurate enough for a direct reconstruction of the small-scale
spatial distribution. Analyses will follow Limber (1953) and Rubin (1954) in
deriving spatial functions from projected functions (as in Davis & Peebles 1983).

2.5. Peculiar Velocities

One does need redshifts to measure galaxy peculiar velocities. In the space
of galaxy redshift and angular position the two-point correlation function is
a function of two variables, the transverse and radial separation, the former
probing spatial clustering and the latter relative peculiar velocities (Davis &
Peebles 1983). Large-scale flows are usefully measured by the power spectrum
in redshift space (Kaiser 1987), and by the peculiar velocity autocorrelation
function derived from distance predictors (Groth, Juszkiewicz & Ostriker 1989).
On relatively small scales the rms relative peculiar velocity is dominated by the
rich clusters (Marzke et al. 1995); here moments are not the best measure of
the distribution of relative velocities (Davis, Miller & White 1997).

In §4.2 I comment on early advances in the measurements of galaxy peculiar
velocities, in connection with the biased galaxy formation picture. For the state
of the art, see Courteau, Strauss & Willick (2000).

3. Higher Moments and Clustering Models

One uses statistics to reduce a lot of information to a more interesting and
understandable quantity. It can be useful to have a sequence of statistics, that

1Hubble’s constant is Ho = 100h km s−1 Mpc−1.
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Relativistic limber equation

Assuming w(θ) is a power law…

Which you get from computing pair 
counts on your catalogue….

The scaling relation
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Observed scaling relations in w(θ)

• The amplitude of the projected 
angular correlation function is a 
simple integral of the spatial 
correlation function

• For samples limited in apparent 
magnitude, at progressively fainter 
magnitudes, the amplitude of w(θ) 
diminishes 

• This is the the “Limber scaling 
relation”.

• Provided important confirmation of 
the homogeneity hympothesis

• The big problem, however, is that 
the scaling relation depends 
strongly on the underlying redshift 
distribution, which is unknown...but 
see the section on photo-zeds...

Groth and Peebles (1977)







The three dimensional distribution of galaxies

• The CfA redshift survey aimed to 
measure all galaxies brighter than 
14.5 in the UGC (cfa1)

• 2000 objects in total

• Galaxies distributed in a highly non-
uniform fashion (very bright, highly 
biased)
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The three-dimensional distribution of galaxies-II

• With redshift information one can 
completely remove the problems of 
‘projection effects’
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• Davis and Peebles applied this 
method to the CfA redshift survey

Davis and Peebles (1977)• The wp statistic is insensitive to the 
effects of coherent infall along the 
line of sight.









man, 1999!, for example rc=2.6"dc as shown in the figure
#Bahcall et al., 2003!.

Since rc and !c are not independent, the slope is usu-
ally constrained to a fixed value, !c=1.8. Dependence of
!c on cluster richness has been proposed #Martínez et al.,
1995!, although this dependence is better parametrized
by the correlation dimension—the exponent of the
power law fitting the correlation integral N#r!=ArD2 $see
Eq. #16!%. Multiscaling is the term used for scaling laws
in which D2 displays a slowly varying behavior with the
density threshold that characterizes the richness of clus-
ters. The higher the threshold, the richer the clusters,
and the smaller the value of D2. Within the multiscaling
framework, the relation r0 versus dc gets a more compli-
cated form, flattening for large values of dc as the obser-
vations confirm #Martínez et al., 1995!.

D. The pairwise velocity dispersion

The pairwise velocity dispersion of galaxies is a mea-
sure of the temperature of the “gas” of galaxies. By en-
ergy conservation, the kinetic energy of this gas has to
be balanced by its gravitational energy, which depends
mainly on the mean mass density of the universe. Thus
measuring the pairwise velocity dispersion gives us a
handle on the density. This is, however, more easily said
than done, since we measure only the radial component
of the velocity, and that is biased by larger density inho-
mogeneities than a linear theory can handle.

The following short argument shows how the velocity
dispersion relates to the fluctuations in the density field.
The non-Hubble component of a galaxy velocity
through the universe #its peculiar velocity! is due to the
acceleration caused by clumps in the matter distribution.
This is easy to estimate during the phase of linear evo-
lution of cosmic structure, since linear perturbation
theory applies.

A particle that has experienced a peculiar acceleration
gp for a time t would have acquired a peculiar velocity
vp&gpt. If this acceleration is due to a mass fluctuation
"M at distance r, we have

gp = G"M/r2 = #4#/3!G"$r = 0.5%0H0vH, #28!

which leads to

vp/vH ' #1/3!f#%!", f#%! = #3/2!H0t ' %0.6. #29!

For a more general approximation including the cosmo-
logical constant, see Lahav et al. #1991!. As one can see,
the ratio of the peculiar to Hubble velocity is the quan-
tity that gives a direct measure of the amplitude of pri-
mordial density fluctuations on a given scale for a given
value of %. If we have a scaling law for the density fluc-
tuations, we should also see a scaling law in the peculiar
velocity field.

A more detailed calculation, still using linear theory,
gives a direct relation between the rms amplitude of the
peculiar velocity and the power spectrum of primordial
density fluctuations #Strauss and Willick, 1995!:

(vp#R!2) =
H0

2f2

2#2 * P#k!W̃2#kR!dk , #30!

where W̃#kR! is the Fourier transform of a spherical
window function of radius R , W#R!. This equation also
works quite well for rather high ", well beyond the linear
regime. The main problem then becomes dealing with
the redshift distortion of the observed velocity field.

This equation, however, contains information only
about the rms magnitude of vp on a given scale. More
information about peculiar motions in different cosmo-
logical scenarios can be obtained from other types of
velocity correlation functions that can be estimated from
data sets.

As direct data on peculiar velocities of galaxies are
hard to obtain, the pairwise galaxy velocity dispersion is
measured from ordinary redshift surveys by modeling its
effect on the redshift space correlation function. This
modeling is not very certain, as it depends on the choice
both of the adopted mean streaming-velocity model and

FIG. 15. The correlation length
of different cluster samples as a
function of the intercluster dis-
tance. The solid line shows the
relation rc=2.6"dc that fits well
the observations and the &
cold-dark-matter #LCDM!
model. From Bahcall et al.,
2003.

1238 Jones et al.: Scaling laws in the distribution of galaxies
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ξgal(r) = b2ξdm(r)

Galaxy biasing -- how well do galaxies trace matter?

• Clusters of galaxies are much more 
more strongly clustered than 
galaxies

• We can compute the clustering of 
the dark matter from simulations

• The bias may be a function of type 
instrinsic luminosity; with new 
surveys we are able to determine 
this for this first time!



Redshift-space distortions and galaxy type

Passive:

β   =  Ωm
0.6/b  =  0.46 ± 0.13     

σp  =   618 ± 50 km s-1

Active:

β   =  Ωm
0.6/b  =  0.54 ± 0.15     

σp  =   418 ± 50 km s-1



Type-dependent and luminosity-dependent galaxy 
clustering at z~0

• At low instrinsic luminosities, the clustering amplitude depends only 
weakly on absolute luminosity

• At high instrinsic luminosities, the dependence is more pronounced

Tegmark et al 2003

Bias relative 
to M*=-20.83



Galaxy clustering dependence on physical properties

• Stellar population synthesis 
models are used to derve 
physical properties of the 
galaxies in the SDSS

• Scales of 0.2h1 Mpc probe 
objects inside a given halo

• Scales of 10h-1 probe halo-
halo clustering

• Clustering dependence less 
important on large scales for 
central concentration and for 
surface brightness?



rp bin in the projected correlation function wp (rp) we convert the
excess flux count for that separation to an excess of galaxy
counts in the sample. The square of this quantity will be the
excess in galaxy pairs allocated to that separation bin. We then
correct our projected correlation function by this factor for each
given separation (Fig. 1; Table 1). The result for the second case
with galaxies of different magnitudes is close enough to the first
case that we use only the first case to correct our sample.

3.4. Real-Space Correlation Function

The projected correlation functionwp(rp) can be ‘‘deprojected’’
to get !(r) by

!(r) ¼ " 1

"

Z 1

r

drp
dwp(rp)

drp
(r 2p " r 2)"1=2 ð7Þ

(e.g., Davis & Peebles 1983). We calculate this integral ana-
lytically by linear interpolation between the binned wp(rp)
values, following Saunders et al. (1992). This method under-
estimates !(r) due to the linear interpolation. We improved this
by first linearly interpolating logwp( log rp) at many interme-
diate points between each pair of bins and then running the
Saunders et al. (1992) algorithm. This improves the result be-
cause wp(rp) is indeed very close to a power law. At the end, this
estimate is only accurate to a few percent, due to limitations of
the interpolation.

Figure 4 shows the real-space correlation function, obtained in
this fashion, combined with the real-space correlation function
!(r) on intermediate scales fromZehavi et al. (2005a) and redshift-
space correlation function !(s) on large scales from Eisenstein
et al. (2005) for the LRG sample. Also shown are the power law
!(r) ¼ ½r /(10 h"1 Mpc)&"2:0 and the ‘‘one-halo term’’ of the cor-
relation function (which only counts pairs of galaxies within the
same dark matter halo) calculated for the HOD parameters given
by Zehavi et al. (2005b) for theMr <"22 SDSSMAIN sample,
which is close to the LRG sample.

Figure 5 shows the real-space correlation function divided by
a r"2 power law to accentuate the deviations from a power law.
The dip at 1 Mpc is described and quantified by the halo model
as the transition from the two-halo to the one-halo term (Zehavi

et al. 2004). The upturn at 0.03 Mpc could be real, but is not
highly significant. Finally, the drop of the innermost point at
0.01 Mpc is most probably due to deblending issues.

3.5. Merger Rate

If we interpret the LRG correlation function !(r), measured at
small scales as a quasi–steady state inflow leading to the mergers
of pairs of LRGs, we can straightforwardly turn the measured
!(r) into a merger rate. We assume that there is a length scale rf
inside of which dynamical friction is so effective that pairs at this
separation merge in a dynamical time tdyn, where the dynamical
time is

tdyn '
2"rf
vcirc

ð8Þ

Fig. 3.—Recovered Petrosian flux to input Sérsic flux as a function of the
separation of the two galaxies in the pair. The blue dots show the 3 # outlier–
rejected average of the recovered flux for different separations. It can be seen
that the pipeline completely fails for galaxies closer than 300 and that on
average there is an excess in the recovered flux of galaxies separated by less
than 2000.

Fig. 4.—Real-space correlation function !(r) for the LRG sample ("23:2 <
Mg < "21:2 and 0:16 < z < 0:36) calculated as described in the text on small
scales, combined with real-space correlation function on intermediate scales
from Zehavi et al. (2005a) and redshift-space correlation function !(s) on large
scales from Eisenstein et al. (2005; data points from Zehavi results are shifted by
5% in the radial direction for illustration purposes). The gray diamonds show the
result without photometric correction as in Fig. 1. The blue line shows the one-
halo term of the correlation function calculated for the HOD parameters given
by Zehavi et al. (2005b).

Fig. 5.—Same as Fig. 4, but !(r) divided by a r"2 power law to accentuate
the deviations from a power law. Note that the difference between Zehavi et al.
(2005a) and Eisenstein et al. (2005) is solely due to the difference between
redshift space and real-space correlation functions.

MASJEDI ET AL.58 Vol. 644

Large-scale and small scale correlation functions
and the slope of xi(r)

• w(theta) follows a power law 
with a great deal of precision 
out to very large scales

• Baryon acoustic oscillations 
could be a independent method 
to determine cosmological 
parameters if systematic errors 
can be kept under control

• We see now that different galaxy 
populations have a different slope 
in the galaxy correlation function

• Red galaxies reside in more dense 
environments, have more small-
scale clustering, trace the ’peaks’ 

64 Ofer Lahav and Yasushi Suto

Figure 28: The SDSS (EDR) projected correlation function for blue (squares), red (triangles) and
the full sample, with best-fitting models over the range 0.1 < rp < 16 h−1 Mpc (upper panel),
and the SDSS (EDR) projected correlation function for three volume-limited samples, with absolute
magnitude and redshift ranges as indicated and best-fitting power-law models (lower panel). (Figure
taken from [104].)
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Table 1. The best fit values for Sp and the 2−σ error (∆χ2 = 4),
obtained using the measurements for cell radii in the range 0.71 ≤

(R/h−1Mpc) ≤ 7.1. The 2−σ errors are approximately twice the
size of the 1−σ errors. The final column gives the reduced χ2

using the number of degrees of freedom derived from the principal
component analysis.

order Sp ±2σ χ2/ndof

3 1.95 0.18 6.1
4 5.50 1.43 2.8
5 17.8 10.5 1.9
6 46.3 50 1.1

which could be coherently shifted either low or high with
respect to a fixed value. This therefore drives the best fit
value of Sp to lie either below or above a sizeable fraction of
the data points. For the L∗ sample, we note that neither S3

nor S4 are particularly well described by a constant fit (see
the reduced χ2 values in Table 1).

For purely illustrative purposes, we have carried out
the experiment of removing the two superclusters from the
L∗ volume limited sample and repeating our measurement
of the higher order correlation functions. The corresponding
results for the hierarchical amplitudes are plotted using open
symbols in Fig. 3. The upturn in the Sp values at large radii
is no longer apparent. Rather than being considered as a cor-
rection, the results of this exercise simply serve to show the
influence of the supercluster regions on our measurements of
the ξ̄p. Where the difference matters, it effectively indicates
that the volume of even the 2dFGRS is too small to yield a
robust higher-order clustering measurement. A further dis-
cussion of this test is given by Croton et al. (2004a).

Armed with the best fit values of Sp, the hierarchical
model stated in Eq. 1 can be used to make predictions for the
form of the higher order correlation functions and compare
these with the measurements from the 2dFGRS L∗ galaxy
sample (symbols in Fig. 4, reproduced from Fig. 2). The
solid lines in Fig. 4 show the ξ̄p predicted from the hier-
archical scaling relation (Eq. 1), assuming a constant value
for the hierarchical amplitudes, Sp, and using the measured
variance, ξ̄2. The dotted lines show the uncertainty in the
theoretical predictions, derived from the 1−σ error in the
fitted values of the Sp and the error on the measured vari-
ance, ξ̄2. The theoretical predictions for the different orders
agree spectacularly well with the measured higher order cor-
relation functions over the range of scales for which the Sp

are fitted.

4 CONCLUSIONS

We have measured the higher order correlation functions of
L∗ galaxies up to sixth order in the 2dFGRS. Previous stud-
ies of galaxy clustering in redshift space have been limited to
fourth order (e.g. for optically selected samples: Gaztañaga
1992; Benoist et al. 1999; Hoyle et al. 2000: for infra-red se-
lected samples: Bouchet et al. 1993; Szapudi et al. 2000). The
volume limited sample of L∗ galaxies analysed here contains
100 times more galaxies and covers 10 times the volume of
the previous best measurements from an optically selected
galaxy redshift survey (Hoyle et al. 2000). The measured

Figure 2. The higher order correlation functions ξ̄p measured
for L∗ galaxies in the 2dFGRS (symbols). The orders p = 2–
6 are shown, as indicated by the key. The errorbars show the
rms scatter estimated using mock 2dFGRS catalogues. The lines
show the ξ̄p measured for the dark matter in redshift space in
the ΛCDM Hubble Volume simulation, for orders p = 2 to 6 in
sequence of increasing amplitude for R < 10h−1Mpc.

Figure 3. The hierarchical amplitudes, Sp, for p = 3, 4 and
5, plotted as a function of cell radius for the L∗ volume limited
sample. The filled symbols connected by solid lines show the re-
sults obtained using the full volume. The best fit constant values
of Sp are shown by the horizontal solid lines, which are plotted
over the range of scales used in the fit. The dotted lines show the
1−σ error on the fit. The open symbols connected by dashed lines
show the hierarchical amplitudes recovered when the two largest
superclusters are masked out of the volume.
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the observed distribution of galaxies (e.g. Benson et al.
2001). A direct test of this fundamental ingredient of struc-
ture formation models was made using the 2dFGRS by Pea-
cock et al. (2001). The size of the 2dFGRS allowed the first
accurate measurement of the two-point galaxy correlation
function on large scales. Peacock et al. demonstrated that
the two-point correlation function at large pair separations
displays a form that is characteristic of the bulk motions of
galaxies expected in the gravitational instability scenario.

We present an independent test of the gravitational in-
stability paradigm. For a Gaussian distribution of density
fluctuations, the volume averaged correlation functions, ξ̄p,
are identically zero for p > 2; the density field is completely
described by its variance, ξ̄2. The evolution of an initially
Gaussian density field due to gravitational instability gen-
erates non-zero ξ̄p (Peebles 1980). A basic test of the gravi-
tational origin of the higher order moments is to determine
their relation to the variance of the distribution. This is tra-
ditionally encapsulated in the hierarchical model:

ξ̄p = Spξ̄p−1

2
. (1)

This model applies to real space clustering; however, in red-
shift space the scaling still tends to hold even on small
scales where the “fingers-of-God” effect is prominent (La-
hav et al. 1993; Hoyle, Szapudi & Baugh 2000). Perturba-
tion theory predicts that the hierarchical amplitudes for the
mass distribution are independent of the cosmological den-
sity parameter, the cosmological constant and cosmic epoch
(Bernardeau et al. 2002).

We use the 2dFGRS (Colless et al. 2001, 2003) to mea-
sure the higher order correlation functions of the galaxy
distribution, focusing on the clustering of L∗ galaxies. The
size of the 2dFGRS is exploited to extract a volume limited
sample of L∗ galaxies, which greatly simplifies our analysis
(Section 2). The results for the volume averaged correlation
functions, up to sixth order, are presented in Section 3, in
which we also test how well the hierarchical scaling model
works. Our conclusions are given in Section 4.

2 DATA AND ANALYSIS

The density of galaxies is a strong function of radial distance
in a magnitude limited survey. This needs to be compen-
sated for in any clustering analysis by applying a suitable
weighting scheme (e.g. Saunders et al. 1991). Alternatively,
one may construct a volume limited sample by selecting cer-
tain galaxies from the full redshift survey. These galaxies are
chosen so that they would appear inside the apparent mag-
nitude range of the survey if displaced to any redshift within
the interval defining the sample. The only radial variation in
galaxy number density in a volume limited sample is due to
large scale structure in the galaxy distribution. This makes
volume limited samples much more straightforward to anal-
yse than flux limited samples. However, only a fraction of
the galaxies from the full redshift survey satisfy the selection
criteria in redshift and absolute magnitude. This reduction
in the density of galaxies has curtailed the utility of volume
limited subsamples constructed from earlier redshift surveys.

We construct a volume limited sample of L∗ galaxies
from the 2dFGRS. The motivation for the choice of a sam-
ple centred on L∗ is clear; this results in a volume limited

sample with the largest possible number of galaxies for mag-
nitude bins of a given size. As the luminosity used to define
a sample increases, the selected galaxies can be seen out
to larger redshifts and thus sample larger volumes. How-
ever, brighter than L∗, the space density of galaxies drops
exponentially (e.g. Norberg et al. 2002). Hence, the opti-
mum balance between volume surveyed and intrinsic galaxy
space density is achieved for L∗ galaxies. In addition, the
higher order clustering of L∗ galaxies provides a benchmark
or reference against which to compare trends in clustering
strength with galaxy luminosity (see Norberg et al 2001;
Croton et al. 2004a). We consider the two contiguous areas
of the 2dFGRS, referred to as the NGP and SGP regions,
which contain around 190,000 galaxies with redshifts and
cover an effective area of approximately 1200 square degrees
in total. After selecting galaxies with absolute magnitudes in
the range −19 > MbJ − 5 log10 h > −20 (corrected to z = 0
using the global k + e correction quoted by Norberg et al.
2002), the volume limited sample contains 44,931 galaxies.
The redshift interval of the sample is z = 0.021 to 0.130,
corresponding to a volume of 7.97 × 106h−3Mpc3 for the
combined NGP and SGP regions.

2.1 Counts in cells analysis

The distribution of counts in cells is estimated by throwing
down a large number of spherical cells, on the order of 107

for each cell radius considered, within the L∗ volume limited
2dFGRS sample. Full details of how we deal with the spec-
troscopic incompleteness and the angular mask are given in
Croton et al. (2004a); the corrections turn out to be small
in any case (see figure 1 of Croton et al.).

The higher order correlation functions, ξ̄p, are the re-
duced pth order moments of the distribution of galaxy counts
in cells. The estimation of the higher order correlation func-
tions from the cell count probability distribution is ex-
plained in a number of papers (e.g. Gaztañaga 1994; Baugh,
Gaztañaga & Efstathiou 1995; Croton et al. 2004a). The
variance or width of the count distribution is given by the
case p = 2. For p > 2, the correlation functions probe further
out into the tail of the count probability distribution.

We use mock 2dFGRS catalogues to estimate the errors
on the measured higher order correlation functions. Full de-
tails of the mocks can be found in Norberg et al. (2002) and
Croton et al. (2004a).

3 RESULTS

The projected density of galaxies in the L∗ volume limited
sample is shown in Fig. 1. The galaxy density projected onto
the right ascension–redshift plane is smoothed using circular
windows. Two different smoothing radii have been used to
produce these maps; the left-hand panel shows the density
after smoothing with a circular cell of radius 15h−1Mpc and
the right hand panel shows the distribution as sampled with
a cell of radius 3h−1Mpc. The redder colours indicate higher
galaxy densities, as shown by the scale that accompanies
each cone plot. Two ‘hot-spots’ are readily apparent, partic-
ularly in the cone plot smoothed on the larger scale. These
correspond to superclusters of galaxies that also appear in
the 2dFGRS Percolation Inferred Galaxy Group catalogue

Hierarchical galaxy clustering in the 2dFGRS 5

Figure 4. The higher order correlation functions, ξ̄p, measured
for L∗ galaxies in the 2dFGRS (symbols, as in Fig. 2) compared
with the predictions of the hierarchical model (Eq. 1; solid lines).
The hierarchical predictions are plotted only on the scales used to
fit Sp. The dotted lines indicate the errors on these predictions,
with contributions from the error on the fitted value of Sp and
on the measured variance ξ̄2.

correlation functions have a form that is in remarkably good
agreement with the predictions of hierarchical scaling, and
extend to smaller scales than those for which the perturba-
tion theory predictions are expected to be valid (Bernardeau
et al. 2002). A similar conclusion was reached by Croton et
al. (2004b), who found hierarchical scaling in the reduced
void probability function measured in the 2dFGRS.

On scales larger than about 4h−1Mpc, there is an up-
turn in the values of Sp, which we have demonstrated is
influenced by the presence of two large superclusters in the
2dFGRS (see Fig. 3). This suggests that finite sampling af-
fects our measurements on these scales. A similar feature was
found in the angular Edinburgh-Durham Southern Galaxy
Catalogue (EDSGC). Szapudi & Gaztañaga (1998) found
that the projected Sp measured from the EDSGC displayed
an up-turn for scales larger than 0.5 degrees, which corre-
sponds to ≈ 4h−1Mpc at the characteristic depth of the
survey. The EDSGC covers a similar part of the sky to the
2dFGRS. This feature in Sp was not found, however, in the
APM Survey, which covers a four times larger solid angle
than the EDSGC (Gaztañaga 1994). This behaviour is not
seen in the mock catalogues drawn from the ΛCDM Hubble
Volume simulation. Intriguingly, an upturn in the hierar-
chical amplitudes on large scales is expected in structure
formation models with non-Gaussian initial density fields
(Gaztañaga & Fosalba 1998; Bernardeau et al. 2002).

Finally, we note that the variance of the distribution
of cell counts for L∗ galaxies is in excellent agreement with
the predictions for CDM, obtained from the Hubble Volume
ΛCDM simulation, which includes the effects of peculiar mo-
tions on the clustering pattern. However, for cells with radii

R < 10h−1Mpc the higher order correlation functions of L∗

galaxies have significantly lower amplitudes than the dark
matter. This implies that the relation between the distribu-
tion of galaxies and the underlying dark matter may be more
complicated than the popular linear bias model, suggesting
that nonlinear contributions to the bias may be important
on small and intermediate scales (Fry & Gaztañaga 1993;
see also the analyses by Conway et al. 2004 and Wild et al.
2004). We note that on large scales (R > 10h−1Mpc), the ξ̄p

measured for L∗ galaxies agree better with the ΛCDM pre-
dictions, supporting the conclusion reached previously, that
on these scales, L∗ galaxies approximately trace the mass
distribution (Gaztañaga & Frieman 1994; Lahav et al. 2002;
Verde et al. 2002).

We explore the distribution of galaxy counts in cells
for the 2dFGRS in more detail in Croton et al. (2004a),
where we study the dependence of the correlation functions
on luminosity.
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Measurements of higher-order galaxy clustering

• In hierarchical models of structure 
formation, the higher order moments of the 
galaxy correlation function (the n-point 
functions) are related to each other and 
can be calculated with PT theory (see 
Bernardeau et al 2002).

• Only true if intal distribution of 
perturbations is Gaussian. 

• Measuring these moments is super hard as it 
requires a very large samples with perfect 
control of systematic errors

• Baugh et al find that the values of sn they 
measure from a volume-limited sample of 
40,000 2DF galaxies agree well with the 
predictions of the heiarchical structure 
formation models



Part II

Observations at high redshift
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ξ(r, z) = (r/r0)−γ(1 + z)−(3−γ+ε)

Measuring the evolution of galaxy clustering

• CFRS redshift survey was the first 
moderately deep redshift survey (z~1)

• With the increasingly large precision data 
sets, this formalism is no longer useful...
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Le Fevre et al (1996)

• ε=1 is the “stable clustering 
hypothesis”

• Note that this paper assumed that Ω=1; 
in low-Ω cosmologies the observed 
growth of structure is easier to explain.



Surveying the high-redshift universe

• Getting redshifts for galaxies at large 
redshifts is very hard

• Need new instruments on 8m class 
telescopes like VIMOS and DEIMOS

• VVDS and DEEP2 have produced large 
(>10,000) galaxy surveys with z~1

• Can attempt to investigate clustering as a 
function of environment at z~1

• Selection criteria for the two surveys is 
very different VIMOS on the VLT

DEIMOS



Structures at high redshift seen in DEEP2....
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and in the vvds...



Le Fevre & VVDS Team 2005 
Pollo & VVDS Team 2005

Evolution of two-point correlation function from VVDS first-epoch data

(magnitude-limited sample: 
~7000 galaxies with 
17.5<IAB<24 over 0.5 sq.deg)
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cosmology with !m ¼ 0:3, !" ¼ 0:7, !8 ¼ 0:9, and # ¼ 0:21.
Smith et al. (2003) analyze the nonlinear evolution of clustering
in a large library of N-body cosmological simulations, including
small scales where merging of dark matter halos is important.
They use an analytic halo-model approach to fit the nonlinear
structure evolution, which is more accurate than the popular
Peacock & Dodds (1994) prescription; we include a 5% error on
the dark matter wp(rp) in our calculation of the absolute bias to
reflect the uncertainty in the fit. We do not include an additional
uncertainty in the cosmological parameters; for !8 ¼ 0:8 the
large-scale bias is 13% higher, while for !8 ¼ 1:0 it is 10%
lower. The results are shown in Figure 6. While there is no sig-
nificant scale dependence to the bias on scales rp > 1 h"1 Mpc,

all four samples show a dip in the bias on scales rp # 0:3
0:8 h"1 Mpc and a rise on small scales below rp # 0:1 h"1 Mpc.
On scales of rp ¼ 1 10 h"1 Mpc, the mean absolute bias ranges
from b ¼ 1:26 $ 0:04 for theMB < "19 sample to b ¼ 1:54 $
0:05 for theMB < "20:5 sample; values are listed in Table 2. On
the smallest scales we measure here, rp ¼ 0:1 h"1 Mpc, the bias
ranges from b ¼ 1:2 $ 0:1 for the MB < "19 sample to b ¼
1:9 $ 0:2 for the MB < "20:5 sample.

We note that the absolute biases measured here are larger than
in Coil et al. (2004b) (although within 1 !, given the error on that
result), where we measured the clustering of all DEEP2 galaxies
in the first completed pointing. This is simply due to cosmic var-
iance, i.e., galaxies in that pointing exhibit lower clustering than
the mean of the completed DEEP2 survey; that region happened
to be less clustered than average.

From these large-scale bias measurements we can estimate the
minimum dark matter halo mass that each galaxy sample resides
in, on average, where the mass is defined as the mass enclosed in
a region that is 200 times the critical density. Using the formulae
of Sheth & Tormen (1999) for !m ¼ 0:3, !" ¼ 0:7, and !8 ¼
0:9, we find that the minimum dark matter mass for our samples
ranges from #9 ; 1011 3 ; 1012 h"1 M% (values are listed in
Table 2).

We compare our results with those of the Vimos-VLT Deep
Survey (VVDS). Marinoni et al. (2005) measure the luminosity
dependence of the galaxy bias averaged on scales 5–10 h"1 Mpc
using a sample 1044 VVDS galaxies in an area of 0.16 deg"2 be-
tween 0:7 < z < 0:9. They find that the bias is 1:02 $ 0:20 and
1:14 $ 0:21 for luminosity thresholds of MB < "18:7 andMB <
"20, where the quoted errors include the statistical error only and
do not include the dominant error due to cosmic variance. Their
bias values are lower than those shown here but are likely within
the errors if cosmic variance is included. In addition, amore recent
VVDSpaper on the luminosity dependence of galaxy clustering at
0:5 < z < 1:2 (Pollo et al. 2006) yields correlation amplitudes
and slopes that are similar to ours, but with a steeper trend in b/b&;
they find lower r0 values for the fainter samples (r0 ¼ 2:95 $
0:34 forMB < "19) and higher r0 values for the brighter samples

Fig. 4.—Deviations of wp(rp) from the best-fit power law for each luminosity
sample as a function of scale, using the values of r0 and " listed in Table 3. A thin
dotted line is drawn for reference at y ¼ 1.

Fig. 5.—Mean relative bias of each of our samples compared to theMB < "20:0 sample. The relative bias increases linearly with luminosity, although the trend is
stronger on smaller scales (left) than on larger scales (right). The dotted line in the right panel shows the same relation from Zehavi et al. (2005) in SDSS galaxies at
z # 0:1 as a function of L/L&, shown in the upper axis.
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We show in Figure 4 deviations from the best-fit power law
over all scales for each luminosity sample. A power lawfits the data
reasonably well on scales rp > 1 h!1 Mpc, but all samples depart
from power-law behavior at small scales (rp < 0:4 h!1 Mpc).
These deviations can be explained naturally by a halo occupation
approach to modeling the observed clustering; we will present
HOD fits to these data in a separate paper.

The clustering scale length, r0, is significantly larger for the
brighter samples; r0 increases from 3:69 " 0:14 to 4:43 " 0:14
over the luminosity ranges shown here. The slope is #1:73 "
0:03 for each of the three samples with L $ L% and increases to
! ¼ 1:82 " 0:03 for the brightest L > L% sample (at z ¼ 1,
M % ¼ !20:7 in our magnitude units; see Willmer et al. 2006).
This increase in ! is found on both small (rp < 1 h!1 Mpc) and
large (rp > 1 h!1 Mpc) scales. We note that the ratio of red to
blue galaxies is not widely different between the samples; 76%
of the galaxies are blue in the faintest sample, while 67% are blue
in the brightest sample (see Fig. 4 of Willmer et al. 2006 for a
color-magnitude diagram of DEEP2 galaxies).

As shown in Fig. 6 of Conroy et al. (2006), the clustering
results presented here are well fit by a simple model in which
luminosities are assigned to dark matter halos and subhalos in an
N-body simulation bymatching the observed DEEP2 luminosity
function (Willmer et al. 2006) to the subhalo/halo circular ve-
locity function (as a proxy for mass), with no free parameters.
Every subhalo with massM > 1:6 ; 1010 h!1M' (the resolution
limit of the halo catalog) is assumed to have a galaxy at the cen-
ter; therefore, the radial distribution of galaxies matches that of
the subhalos. This relatively simple model correctly reproduces

our clustering measurements as a function of luminosity and
scale presented here, on scales rp ¼ 0:1 10 h!1 Mpc, and im-
plies that brighter galaxies reside in more massive dark matter
halos.

5. GALAXY BIAS

We now calculate the relative bias of each luminosity sample
with respect to theMB < !20:0 sample, which has a median lu-
minosity near L% (M % ¼ !20:7 at z ¼ 0:9; see Willmer et al.
2006). The relative bias is defined as the square root of the ratio
of wp(rp) for a given sample divided by wp(rp) for the MB <
!20:0 sample. We calculate the relative bias at two scales, rp ¼
0:1 h!1 Mpc and rp ¼ 2:7 h!1 Mpc, using the power-law fits
given in Table 2 for small and large scales. Figure 5 plots the
relative bias as a function of median absolute magnitude (bot-
tom axis) and L/L% (top axis) at rp ¼ 0:1 h!1 Mpc (left) and
rp ¼ 2:7 h!1 Mpc (right). There is a linear trend of bias with
luminosity on both small and large scales, although the trend is
stronger on smaller scales.
In the right panel, we also show for comparison the bias of

SDSS galaxies as a function of L/L% measured by Zehavi et al.
(2005) on the same scale, rp ¼ 2:7 h!1Mpc. The bias of galaxies
is a stronger function of L/L% at z # 1 as compared to z # 0 over
the luminosity range that we sample here.
We further calculate the absolute bias of each sample using the

ratio of the observed galaxy clustering to the clustering expected
for the underlying dark matter density field. To estimate the dark
matter correlation function, we use the power spectrum pro-
vided by the publicly available code of Smith et al. (2003), for a

TABLE 3

Clustering Results for Luminosity Samples

rp = 0.1–20 h!1 Mpc rp = 0.1–1 h!1 Mpc rp = 1–20 h!1 Mpc

Source

r0
(h!1 Mpc) !

r0
(h!1 Mpc) !

r0
(h!1 Mpc) !

ba

(h!1 Mpc)

Mmin

(h!1 M')

MB < !19............... 3.69 " 0.14 1.71 " 0.03 3.78 " 0.23 1.68 " 0.04 3.76 " 0.09 1.76 " 0.05 1.26 " 0.04 9.0 ; 1011
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a Large-scale bias (rp ¼ 1 10 h!1 Mpc).

Fig. 3.—Clustering scale length, r0 (left), and slope, ! (right), of DEEP2 galaxies as a function of the median absolute magnitude of each sample. The values of r0
and ! for each sample are given in Table 3.
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We show in Figure 4 deviations from the best-fit power law
over all scales for each luminosity sample. A power lawfits the data
reasonably well on scales rp > 1 h!1 Mpc, but all samples depart
from power-law behavior at small scales (rp < 0:4 h!1 Mpc).
These deviations can be explained naturally by a halo occupation
approach to modeling the observed clustering; we will present
HOD fits to these data in a separate paper.

The clustering scale length, r0, is significantly larger for the
brighter samples; r0 increases from 3:69 " 0:14 to 4:43 " 0:14
over the luminosity ranges shown here. The slope is #1:73 "
0:03 for each of the three samples with L $ L% and increases to
! ¼ 1:82 " 0:03 for the brightest L > L% sample (at z ¼ 1,
M % ¼ !20:7 in our magnitude units; see Willmer et al. 2006).
This increase in ! is found on both small (rp < 1 h!1 Mpc) and
large (rp > 1 h!1 Mpc) scales. We note that the ratio of red to
blue galaxies is not widely different between the samples; 76%
of the galaxies are blue in the faintest sample, while 67% are blue
in the brightest sample (see Fig. 4 of Willmer et al. 2006 for a
color-magnitude diagram of DEEP2 galaxies).

As shown in Fig. 6 of Conroy et al. (2006), the clustering
results presented here are well fit by a simple model in which
luminosities are assigned to dark matter halos and subhalos in an
N-body simulation bymatching the observed DEEP2 luminosity
function (Willmer et al. 2006) to the subhalo/halo circular ve-
locity function (as a proxy for mass), with no free parameters.
Every subhalo with massM > 1:6 ; 1010 h!1M' (the resolution
limit of the halo catalog) is assumed to have a galaxy at the cen-
ter; therefore, the radial distribution of galaxies matches that of
the subhalos. This relatively simple model correctly reproduces

our clustering measurements as a function of luminosity and
scale presented here, on scales rp ¼ 0:1 10 h!1 Mpc, and im-
plies that brighter galaxies reside in more massive dark matter
halos.

5. GALAXY BIAS

We now calculate the relative bias of each luminosity sample
with respect to theMB < !20:0 sample, which has a median lu-
minosity near L% (M % ¼ !20:7 at z ¼ 0:9; see Willmer et al.
2006). The relative bias is defined as the square root of the ratio
of wp(rp) for a given sample divided by wp(rp) for the MB <
!20:0 sample. We calculate the relative bias at two scales, rp ¼
0:1 h!1 Mpc and rp ¼ 2:7 h!1 Mpc, using the power-law fits
given in Table 2 for small and large scales. Figure 5 plots the
relative bias as a function of median absolute magnitude (bot-
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rp ¼ 2:7 h!1 Mpc (right). There is a linear trend of bias with
luminosity on both small and large scales, although the trend is
stronger on smaller scales.
In the right panel, we also show for comparison the bias of

SDSS galaxies as a function of L/L% measured by Zehavi et al.
(2005) on the same scale, rp ¼ 2:7 h!1Mpc. The bias of galaxies
is a stronger function of L/L% at z # 1 as compared to z # 0 over
the luminosity range that we sample here.
We further calculate the absolute bias of each sample using the

ratio of the observed galaxy clustering to the clustering expected
for the underlying dark matter density field. To estimate the dark
matter correlation function, we use the power spectrum pro-
vided by the publicly available code of Smith et al. (2003), for a
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Clustering as a function of luminosity and scale in 
DEEP2 and VVDS

• Simple 
magnitude 
limited surveys 
sample a range 
of intrinsic 
luminosities

• Larger 
spectroscopic 
surveys mean 
we can try to 
investigate 
object 
parameters as a 
function of 
absolute 
luminosity for 
the first time

• However, the big problem with 
these observations is that the 
authors are not able to select by 
type as well

• More luminous slices are dominated 
by elliptical galaxies

Coil et al 2005

Coil et al 2005



CFHTLS-T03 photometric catalogues

• Input photometric catalogues: CFHTLS-T03 deep fields processed at 
TERAPIX/CFHT

• Ultra-deep photometrically uniform catalogues (chip-to-chip variations are 
less than 1%)

• Catalogues reach ~27AB in ugriz (>30hr integrations in some filters!)
• Total effective area: 3.1 deg2 in four fields
• We can compute ‘real’ cosmic variance error bars 
• Photometric redshifts calibrated using 8,000 VVDS spectra available in the 

d1 field
• Accuracy: around 3% in the redshift range 0.1<z<1.2

Megacam @CFHT Subfield from d1-t03



Template spectra redshifted every δz=0.04
Integrated through filters  predicted colors

z=0.4

Match observed and predicted colors with a χ2                                                                                     

The standard χ2 method (I)



Template spectra redshifted every δz=0.04
Integrated through filters  predicted colors

z=0.6

Match observed and predicted colors with a χ2                                                                                     

The standard χ2 method (I)



Template spectra redshifted every δz=0.04
Integrated through filters  predicted colors

z=0.8

Match observed and predicted colors with a χ2                                                                                     

The standard χ2 method (I)



Template spectra redshifted every δz=0.04
Integrated through filters  predicted colors

z=1.0

Match observed and predicted colors with a χ2                                                                                     

The standard χ2 method (I)



Template spectra redshifted every δz=0.04
Integrated through filters  predicted colors

z=1.2

Match observed and predicted colors with a χ2                                                                                     

The standard χ2 method (I)



Template spectra redshifted every δz=0.04
Integrated through filters  predicted colors

z=1.4

Match observed and predicted colors with a χ2                                                                                     

The standard χ2 method (I)



The standard χ2 method -Results

Expected
Degeneracy
between the 
Balmer and Lyman
breaks



The standard χ2 method -Results

Not expected
Systematic trends



The CFHTLS-T03 photometric redshift catalogues

• Using VVDS spectra we calibrated zphots for 
400,000 objects on the CFHTLS survey fields

• Our photometric redshift code produces a 
probability distribution function for each galaxy 
and we use this to compute our pair statistics

• These catalogues and pdfs are publically  
available from terapix.iap.fr



Accuracy per spectral type

Starburst:
20% of the galaxies,
half of the 
catastrophic errors

Small Balmer break,
emission lines,
extinction



redshift distributions

spectro

photo-z



• Bimodal colour 
redshift relation clearly 
observed in the 
CFHTLS fields

• We can also easily 
select objects by 
spectral type and 
luminosities

• Our redshift errors are 
larger than VVDS and 
DEEP2, but we have 
much larger galaxy 
samples



• We compute the projected correlation 
function w(θ) for each field and for each 
magnitude slice. 

• We select galaxies in redshift slices 
corresponding the ranges where our 
photometric redshifts have the highest 
accuracy (lowest numbers of catastrophic 
outliers)

• For the moment, we consider galaxies with 
0.2<z<1.2

• Using the limber transformation we can 
estimate the r0 at the effective redshift of our 
sample. 

% incompleteness



Computing comoving correlation lengths-I

• We compute the projected correlation 
function w(θ) for each field and for each 
magnitude slice. 

• We select galaxies in redshift slices 
corresponding the ranges where our 
photometric redshifts have the highest 
accuracy (lowest numbers of catastrophic 
outliers)

• For the moment, we consider galaxies with 
0.2<z<1.2

• Using the limber transformation we can 
estimate the r0 at the effective redshift of our 
sample. 

% contaminants

% incompleteness



Computing the comoving correlation length-II

• For each galaxy in each redshift slice we 
compute the area under that galaxy’s 
probability distribution function

• These areas are used as weights in the 
correlation function measurement

• This ensures that all information about 
the reliability of each photometric 
redshift is used

• The resulting measurements are then 
fitted with a power law with the 
appropriate finite-volume correction.



Galaxy clustering with photometric redshifts

• Providing you have a large spectroscopic 
sample you can calibrate your 
photometric redshifts

• Photometric redshifts can be used to 
make galaxy clustering measurements!

• First of all, we try to compute galaxy 
correlation lengths for the same redshift 
ranges as the VLT-VIRMOS deep survey

McCracken et 
al 2006



Volume-limited type-dependent clustering in the 
CFHTLS

• Can investigate for the first time the 
clustering of early and late type galaxies 
at the same absolute magnitude threshold

• Bluer galaxies are always less strongly 
clustered than red galaxies at the same 
absolute luminosity threshold

McCracken et al 2006



Volume-limited type-dependent clustering in the 
CFHTLS II 

• The clustering 
amplitude of the 
faint elliptical 
population 
decreases rapidly 
at higher redshift

• At the same absolute 
luminosity, the 
clustering amplitude 
of the late type 
population evolves 
very little

McCracken et al 2006



luminosities. Truncating the samples at a fixed absolute lumi-
nosity does not seem to be a good solution to us, however, since
the bright end of the UV luminosity function rises rapidly to-
ward higher redshifts (e.g., Adelberger & Steidel 2000) and
one would therefore be comparing rare objects at lower red-
shifts to common objects at higher redshifts. A better approach
is to compare galaxy samples of roughly the same comoving
number density. Since selection with a constant apparent mag-
nitude limit R < 25:5 happens to produce similar comoving
number densities for the three samples (see eqs. [37] and [38]
and the related discussion), we continue to use the constant ap-
parent magnitude limits of equation (1) for our samples in the
remainder of the paper. Readers should be aware that the re-
ported value of each sample’s correlation length is somewhat
arbitrary for this reason. It reflects the characteristics of the
sample as defined here, not of the general galaxy population at
high redshift.

4.2. Redshift

For our estimator of the redshift clustering strength we
took K0;20

20;40, the ratio of the number of galaxy pairs with comov-
ing radial separation 0 < jZj=(h!1 Mpc) < 20 to those with co-
moving radial separation 0 < jZj=(h!1 Mpc) < 40. Since 20 h!1

Mpc is significantly larger than the uncertainty in each galaxy’s
radial position [!Z ’ 300 km s!1(1þ z)=H(z) #3h!1 comov-
ing Mpc], and since 40 h!1 Mpc is significantly smaller than
the selection functions’ widths (!sel > 200 h!1 comoving Mpc),
the expected value of K0;20

20;40 should be given by equation (33).
We limited our analysis to pairs with transverse separations
"ij < 30000, equivalent to RijP 5:9 h!1 comoving Mpc at z ¼
2:5, to reduce the sensitivity of our results to any deviations of
the correlation function from a # ¼ 1:55 power law on large
scales.
Only the BX and LBG spectroscopic samples were large

enough to allow meaningful measurements of K0;20
20;40. For # ¼

1:55, the right-hand side of equation (33) is equal to the ob-
served ratio K0;20

20;40 when r0 ¼ 4:6 (LBG) or 4.5 h!1 comoving
Mpc (BX). The values change by roughly %2% as # is varied
from 1.45 to 1.65. When analyzed with this technique, mock
galaxy catalogs from the GIF simulation (x 2.2) with sizes sim-
ilar to our observed catalogs show a%1 ! dispersion in r0 around
the true mean of 0.6 (LBG) and 0.9 h!1 comoving Mpc (BX),
so we adopt 4:6 % 0:6 and 4:5 % 0:9 h!1Mpc as the best-fit val-
ues to r0 for our spectroscopic catalogs. The results do not
change significantly if we eliminate pairs with "ij < 6000 from
the analysis, showing that we have measured genuine large-
scale clustering and not merely the clumping of objects
within individual halos.
Figure 6 presents the result in a more graphical way. We

divided our lists of galaxy pairs into bins according to trans-
verse separation Rij, then calculated K0;20

20;40 separately for each
bin. Points with error bars show the values we found. The solid
lines show the values predicted by the # ¼ 1:55 correlation
function described in the preceding paragraph. The plot shows
that the derived correlation function parameters provide a rea-
sonable fit to the clustering of the galaxies in the spectroscopic
sample.

4.3. Summary

We presented two independent estimates of the correla-
tion function for each of our galaxy samples. The estimates were
consistent with each other, but the first, based on the galaxies’
angular clustering, had somewhat smaller uncertainties. This
resulted from the larger size of the photometric sample and
was accentuated by the serious systematics in the spectroscopic
sample that made us throwmuch of our data away.We adopt the
angular clustering results for the remainder of the paper.

5. IMPLICATIONS

5.1. Correspondence to Halos

On small scales, smaller than roughly the typical radius rvir of
a virialized halo, the spatial clustering of galaxies is difficult to
predict or interpret. It depends on the ease with which nearby
galaxies merge with each other, on the ability of a galaxy to
maintain its star formation rate as it orbits within a larger po-
tential well, on the possible impact of a galaxy’s feedback on its
surroundings, and so on. On larger scales these baryonic com-
plications have little effect and the correlation function of gal-
axies should be virtually identical to the correlation function of
the halos that host them. To see that this is true, consider the gal-
axy correlation function in a simplified situation where every

Fig. 5.—Correlation length r0 for bright and faint subsamples of the BM,
BX, and LBG samples.
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regardless of angular selection effects, of uncertainties in the se-
lection function,4 of peculiar velocities, and of redshift mea-
surement errors, provided that a2T"sel, b2T"sel, a2 % a1 3
"Z , b2 % b1 3"Z , the selection function does not have strong
features on scales smaller than "sel, and (1þ z)DA(z) varies
slowly with z. The second approximate equality exploits the fact
that C(Rij) is a very weak function of Rij in realistic situations.

We estimate the correlation function from the spectroscopic
sample by finding the parameters required to match the observed
ratioKb1;b2

a1;a2 . In principle,K
b1;b2
a1;a2

could be calculated separately for
pairs in different bins of transverse separation Rij, producing an
estimate of the function Kb1;b2

a1;a2
(R) and allowing one to estimate

both r0 and # from the data. In practice, a much larger sample is
needed to fit for both r0 and #, so we hold # fixed and estimate r0
only. Fortunately, as seen below, the best-fit value of r0 hardly
changes as # is varied across the range allowed by the galaxies’
angular clustering.

The dependence of this estimator on the clustering strength is
easy to understand intuitively. If the galaxies were unclustered
[!(r) ¼ 0], we would observe the same number of pairs at ev-
ery separation and Kb1;b2

a1;a2 would be equal, on average, to the ratio
of the bin sizes $ ! (b2 % b1)=(b2 % b1 þ a2 % a1). Correlation
functions that peak near r ¼ 0 will produce more pairs in bins at
smaller separations, driving Kb1;b2

a1;a2 away from $. The difference
between Kb1;b2

a1;a2
and $ is sensitive to the strength of the clus-

tering and therefore can be used to estimate it. Adelberger et al.
(2005) use Monte Carlo simulations to analyze the behavior
of Kb1;b2

a1;a2
in more detail.

4. RESULTS

4.1. Anggular

Figure 3 shows the raw (integral constraint correction I ¼ 0)
values of the Landy-Szalay estimator !LS (eq. [10]) as a func-

tion of angular separation for galaxies in the three samples.
We limited these data, as well as our subsequent fits, to angular
separations % < 20000, since at larger scales the weak angular
clustering signal could be swamped by various low-level sys-
tematics. The uncertainty "i in each bin was taken to be the
larger of (DDi)

1/2/(RRi) (Peebles 1980, x 48) and the observed
standard deviation of the mean of !LS(%i) among the different
fields in the survey. Typically the two were comparable. Numer-
ical &2 minimization produced the power-law fits shown with
dashed lines. The correlation function parameters implied by the
LBG fit, r0 ¼ 3:35 ' 0:20 h%1 comoving Mpc and # ¼ 1:74 '
0:1, agree well with the estimate of Giavalisco & Dickinson
(2001), which also assumed I ¼ 0. It is clear, however, that
these parameters cannot be correct. Substituting them into equa-
tions (23), (22), and (21) shows that a significant correction I
should have been applied to account for fluctuations on scales
larger than the field of view. (Porciani & Giavalisco [2002]
reached a similar conclusion and derived a result for LBGs that
agrees well with the integral constraint–corrected result we pre-
sent below.)
Figure 4 shows how our best-fit estimates of r0 and # change

as the correction I is applied. In our first iteration, described
above, we assumed I ¼ 0 and calculated the correlation func-
tion !1(%). For the second iteration we assumed the value of I
implied by !1 (eqs. [16], [23], [22], and [21]) and estimated
!2(%). For the third iteration we calculated I from !2(%). The
process continued in this way until convergence. It settled on
the same final parameters if we initially assumed a value for I
that was too large. As Figure 4 shows, the applied integral con-
straint corrections were comparable for each of the three sam-
ples. This is because the increase in I implied by the longer
correlation lengths at lower redshifts happened to be cancelled
by a decrease in I that resulted from the lower redshift samples’
greater comoving depths.
To check the plausibility of our adopted values for I, we

inserted into equation (18) the best power-law fits to !(%) from

4 More correctly, hKi is independent of uncertainties in the selection func-
tion width. The expectation value hKi will be affected by errors in the mean
redshift of the selection function if these errors are large enough to significantly
alter the mapping of redshifts and angles to distances.

Fig. 3.—Angular correlation functions uncorrected for the integral con-
straint I . Filled circles with error bars show the measured values of the esti-
mator !LS for each sample. The dashed line shows the power law ! ¼ A%%'

that fits the data best. The solid histogram indicates the number of galaxy pairs
(/1000) in each angular bin. [See the electronic edition of the Journal for a
color version of this figure.]
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advocate. Standard magnitude-limited spectroscopy or pho-
tometric redshifts might be preferable if (for example) one
wanted to create a sample that contained all galaxy types at all
redshifts.

Our approach exploits the fact that the wavelength-
dependent cross sections of various common atoms and ions
give distinctive colors to galaxies at different redshifts. It has
been recognized for decades that measuring a galaxy’s bright-
ness through a range of broadband filters should therefore
provide some indication of its redshift (e.g., Baum 1962; Koo
1985; Loh & Spillar 1986). Recent work suggests that a redshift
accuracy of !z P 0:1 can be achieved for galaxies at 0 P z P 6
given extravagantly precise photometry through seven filters
that span the wavelength range 0:3 "m P k P 2:2 "m (e.g.,
Hogg et al. 1998; Budavári et al. 2000; Fernández-Soto et al.
2001; Rowan-Robinson 2003). An accuracy !z P 0:1 is clearly
sufficient for finding galaxies at 1 < z < 3, but obtaining the
necessary deep images through numerous filters consumes
enormous amounts of telescope time that could be more prof-
itably devoted to galaxy spectroscopy. We were led to seek
specialized color selection techniques that could identify gal-
axies at 1 < z < 3 even in comparatively noisy images taken
through a small number of optical filters.4

Such techniques can succeed only if they take advantage of
strong and obvious features in galaxies’ spectra. No feature
is stronger than the Lyman break at 912 8 produced by the
photoelectric opacity of hydrogen in its ground state. Meier
(1976) argued that the strength of this break would allow high-

redshift galaxies to be identified in images taken through just
three filters, a claim that Steidel et al. (1996, 1999) have since
confirmed. Although the Lyman break itself is not visible from
the ground at z P 3, other weaker features are, and the success
of two-color selection at z > 3 inspired us to try to develop
similar two-color optical selection strategies for 1 < z < 3.
Figure 1 shows some of the spectral features that we had
to work with. Most obvious, after the Lyman break, is the
Balmer break at 3700 8. The strength of the Balmer break can
be estimated from the model galaxy spectra described in x 2
or from the galaxy observations described in x 3. Section 4
explains how it can be used to find galaxies at 1 P z P 1:5.
Franx et al. (2003) and Davis et al. (2003) have also used this
feature to find distant galaxies. At 1:5 P z P 2:5 no strong
breaks are present in the optical spectra of galaxies, but the
lack of spectral breaks is itself a distinguishing characteristic
of galaxies at these redshifts. Sections 5, 6, and 7 explain. Our
results are summarized and discussed in x 8. Together with
the Lyman break technique, the selection techniques presented
here allow the efficient creation of large samples of star-
forming galaxies throughout the redshift range 1 P z P 5.

2. MODEL GALAXY SPECTRA

Our development of selection strategies began with theo-
retical models of galaxy spectra. At redshifts z P 3 a galaxy’s
optical broadband colors are determined by the mixture of
stellar types it contains. This is in turn largely determined by a
galaxy’s star formation history. Galaxies that formed most of
their stars recently have spectra dominated by bright and hot
massive stars, while galaxies that formed most of their stars in
the distant past will have spectra dominated by fainter, cooler,
but longer lived low-mass stars. We considered five model
galaxy spectra that were intended to span the range of possible
star formation histories. Each model spectrum was calculated
with the code of G. Bruzual & S. Charlot (1996, private
communication) and assumed that the galaxy’s star formation
rate as a function of time, S(t), was a decaying exponential:
S(t) / exp(! t=#). The adopted values of # and assumed
time lapse since the onset of star formation for our five models
are listed in Table 1. Bruzual & Charlot (1993) show that star
formation histories with these parameters reproduce the ob-
served spectra of different galaxy types in the local universe.
Because a wide range of star formation histories can result
in nearly identical model spectra, we were not concerned that
some of our adopted model parameters are physically im-
possible at high redshift as a result of the young age of the
universe. Parameter combinations that are more plausible can
produce similar spectra, and in any case our aim was only to
have model spectra that roughly spanned the range of con-
ceivability. Subsequent empirical refinements of our selection
criteria would compensate for any shortcomings in our model
spectra.

4 As readers will notice, the samples created by our techniques will hardly
differ from those that would be created if standard photometric redshift
techniques were applied to the same noisy two-color data; our goal is not to
disparage photometric redshift techniques but to adapt them to a new regime.

Fig. 1.—UnGRiz colors of galaxies at redshifts 0 < z < 3. Shaded curves
show the spectrum of a model star-forming galaxy (type Im from x 2) at
various redshifts. Unshaded curves show the transmission curves of the filters
used in this paper. [See the electronic edition of the Journal for a color version
of this figure.]

TABLE 1

Model SED Parameters

Name

#
(Gyr)

Age

(Gyr)

E ................................................................. 1 13.8

Sb ............................................................... 2 8.0

Sbc.............................................................. 4 10.5

Sc................................................................ 7 12.3

Im ............................................................... 1 1.0

OPTICAL SELECTION OF GALAXIES AT 1< z < 3 227

Clustering at z~3 and z~4: Lyman-break galaxies

• Can select star-forming galaxies 
at z>3 by apply cuts in colour-
colour space 

• Note that in these samples, the 
numbers of objects is always 
very small; careful stastical 
analysis is required!

• Advent of 10m telescopes meant 
that this selection criteria could 
be spectroscopically verified for 
the first time

• Lyman-break galaxies have a high 
clustering amplitude; they are 
biased tracers of the underlying 
dark matter 



Fraction of elliptical and spirals as a function of Mabs

The evolution of galaxy clustering revisited

Peackock et al 1996

• In low-omega universes, 
the amount of bias need 
relative to dark matter 
distributions is much 
smaller 

• Actual observed clustering 
evolution with proper 
samples selected by 
absolute magnitude and 
type show very little 
evolution

• The observed changes in 
the full field population can 
simply be understood by a 
change of morphological 
mix as a function of redshift

• Galaxy population is very 
weakly biased (or 
antibiased) 



Cosmic variance errors in the CFHTLS

• Cosmic variance errors are non-negligible 
even in fields the size of the CFHTLS

• CFHTLS-d2 field at low redshifts has a 
correlation amplitude much larger than the 
other four survey fields 
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Frenk etal

redshift slice from ! CDM sim.

COSMOS

• Need wide fields to probe a 
significant range of density 
contrasts and beat the effects of 
cosmic variance

• Large structures observed at low 
redshifts in the COSMOS field are 
found in the same redshift ranges 
ranges where we observe the 
excess in the CFHTLS fields– 31 –

Fig. 4.— The galaxy overdensities derived from the adaptive smoothing results, integrated

in z from z = 0.25 to 1.05. The contour units are 5.1 × 103 galaxies deg−2 and the contours
are at 1,2,3,4,5,6,7,8,10,12,14,16,18,20,22 and 24 units.

Scoville et al 2006 in press



a “wall” at z=0.97 in VVDS-Deep



Concluding remarks

• Catalogues are now available at z~1 containing almost as many galaxies as 
lower redshift samples

•


