THE THREE DIMENSIONAL SKELETON A tool for the extraction and analysis of the large scale structures in the universe

Thierry Sousbie

Centre de Recherche Astrophysique de Lyon (CRAL) HORIZON project

S. Colombi, H. Courtois, D. Novikov and C. Pichon

1

- The Three Dimensional Skeleton
 - Introduction
 - Definition
 - Implementation
- 2 Application to Observational Data : SDSS
 - Making Mock Catalogs: MoLUSC
 - Measuring the skeleton in the SDSS
 - Sensitivity to Biases
 - Results : constraints on Ω_m
- Other Applications: Computing Quantities Along the Filaments
 - The velocity field
 - The dark matter pressure
 - Summary and Conclusion

1

- The Three Dimensional Skeleton
 - Introduction
 - Definition
 - Implementation
- 2 Application to Observational Data : SDSS
 - Making Mock Catalogs: MoLUSC
 - Measuring the skeleton in the SDSS
 - Sensitivity to Biases
 - Results : constraints on Ω_m
 - Other Applications: Computing Quantities Along the Filaments
 - The velocity field
 - The dark matter pressure
 - Summary and Conclusion

1

- The Three Dimensional Skeleton
 - Introduction
 - Definition
 - Implementation
- Application to Observational Data : SDSS
 - Making Mock Catalogs: MoLUSC
 - Measuring the skeleton in the SDSS
 - Sensitivity to Biases
 - Results : constraints on Ω_m
- Other Applications: Computing Quantities Along the Filaments
 - The velocity field
 - The dark matter pressure

- The Three Dimensional Skeleton
 - Introduction
 - Definition
 - Implementation
- Application to Observational Data : SDSS
 - Making Mock Catalogs: MoLUSC
 - Measuring the skeleton in the SDSS
 - Sensitivity to Biases
 - Results : constraints on Ω_m
- Other Applications: Computing Quantities Along the Filaments
 - The velocity field
 - The dark matter pressure
 - Summary and Conclusion

Introduction Definition Implementation

Outline

1

- The Three Dimensional Skeleton
 - Introduction
 - Definition
 - Implementation
- 2 Application to Observational Data : SDSS
 - Making Mock Catalogs: MoLUSC
 - Measuring the skeleton in the SDSS
 - Sensitivity to Biases
 - Results : constraints on Ω_m
- 3 Other Applications: Computing Quantities Along the Filaments
 - The velocity field
 - The dark matter pressure
 - Summary and Conclusion

The three dimensional skeleton

Application to SDSS Other application Summary and conclusions

Introduction Definition Implementation

Goal

- Sum-up matter distribution features
- Extract filamentary structure
- Be able to compute quantities along filaments
- Eventually constraint cosmology

Introduction Definition Implementation

Minimal spanning tree

Doroshkevich, A. G. et al. 2001, mnras, 322, 369

Counterparts

- Non local
- No analytic predictions possible
- Definition of a filament ?
- Discreteness

T. Sousbie

The three dimensional skeleton of the universe

Introduction Definition Implementation

Minimal spanning tree

Doroshkevich, A. G. et al. 2001, mnras, 322, 369

Counterparts

- Non local
- No analytic predictions possible
- Definition of a filament ?
- Discreteness

T. Sousbie

The three dimensional skeleton of the universe

ヘロマ ヘロマ ヘビマ・

Introduction Definition Implementation

Minkowski functionals

d-1 Minkowski functionals

- Volume
- Surface
- Mean curvature
- Euler characteristic

Counterparts

- Statistical features only
- No local properties
- They are functions of density threshold

Introduction Definition Implementation

Minkowski functionals

d-1 Minkowski functionals

- Volume
- Surface
- Mean curvature
- Euler characteristic

Counterparts

- Statistical features only
- No local properties
- They are functions of density threshold

Introduction Definition Implementation

Outline

- The Three Dimensional Skeleton

 Introduction
 Definition
 Implementation

 Application to Observational Data : SD3

 Making Mock Catalogs: MoLUSC
 Measuring the skeleton in the SDSS
 - Sensitivity to Biases
 - Results : constraints on Ω_m
- 3 Other Applications: Computing Quantities Along the Filaments
 - The velocity field
 - The dark matter pressure
 - Summary and Conclusion

Introduction Definition Implementation

Method

- From a density field
- Compute extrema
- Start from saddle points and follow gradiant up to the maxima

Nice but ..

- This is not local
- Computation is long and difficult, especially near extrema

Introduction Definition Implementation

Method

- From a density field
- Compute extrema
- Start from saddle points and follow gradiant up to the maxima

Nice but ..

- This is not local
- Computation is long and difficult, especially near extrema

Introduction Definition Implementation

Method

- From a density field
- Compute extrema
- Start from saddle points and follow gradiant up to the maxima

Nice but ..

- This is not local
- Computation is long and difficult, especially near extrema

Introduction Definition Implementation

Method

- From a density field
- Compute extrema
- Start from saddle points and follow gradiant up to the maxima

Nice but ...

- This is not local
- Computation is long and difficult, especially near extrema

Introduction Definition Implementation

The local skeleton

Local approximation

- Second order
- $\mathcal{H}_{ij}, \nabla_i(\rho), \rho$
- Two approaches

Using isocontours r(x(t), y(t))

- Gradiant is extremal along an isocontour
- $\circ: \frac{d}{dt}(||\nabla \rho||) = 0$

Using field curvature

 Gradiant is an eigenvector of Hessian

・ロト ・雪 ト ・ ヨ ト ・ ヨ ト

æ.

Introduction Definition Implementation

The local skeleton

Local approximation

- Second order
- $\mathcal{H}_{ij}, \nabla_i(\rho), \rho$
- Two approaches

Using isocontours r(x(t), y(t))

- Gradiant is extremal along an isocontour
- $\frac{d}{dt}(||\nabla \rho||) = 0$
- Gradiant is minimal
- $\lambda_i > 0$ and $\lambda_j < 0$ for $j \neq i$

Using field curvature

- Gradiant is an eigenvector of Hessian
- $\mathcal{H}\nabla\rho = \lambda_i \nabla\rho$
- $\lambda_i > lambda_j$ for $j \neq i$
- $\lambda_i > 0$ and $\lambda_j < 0$ for $j \neq i$

・ロ ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Э

Introduction Definition Implementation

The local skeleton

Local approximation

- Second order
- $\mathcal{H}_{ij}, \nabla_i(\rho), \rho$
- Two approaches

Using isocontours r(x(t), y(t))

- Gradiant is extremal along an isocontour
- $\frac{d}{dt}(||\nabla \rho||) = 0$
- Gradiant is minimal
- $\lambda_i > 0$ and $\lambda_j < 0$ for $j \neq i$

Using field curvature

- Gradiant is an eigenvector of Hessian
- $\mathcal{H}\nabla\rho = \lambda_i \nabla\rho$
- $\lambda_i > lambda_j$ for $j \neq i$
- $\lambda_i > 0$ and $\lambda_j < 0$ for $j \neq i$

・ロ ・ ・ 雪 ・ ・ 画 ・ ・ 目 ・

Э

Introduction Definition Implementation

The local skeleton

Local approximation

- Second order
- $\mathcal{H}_{ij}, \nabla_i(\rho), \rho$
- Two approaches

Using isocontours r(x(t), y(t))

- Gradiant is extremal along an isocontour
- $\frac{d}{dt}(||\nabla \rho||) = 0$
- Gradiant is minimal
- $\lambda_i > 0$ and $\lambda_j < 0$ for $j \neq i$

Using field curvature

- Gradiant is an eigenvector of Hessian
- $\mathcal{H}\nabla\rho = \lambda_i \nabla\rho$
- $\lambda_i > lambda_j$ for $j \neq i$

• $\lambda_i > 0$ and $\lambda_j < 0$ for $j \neq i$

・ロ ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Introduction Definition Implementation

The local skeleton

Local approximation

- Second order
- $\mathcal{H}_{ij}, \nabla_i(\rho), \rho$
- Two approaches

Using isocontours r(x(t), y(t))

- Gradiant is extremal along an isocontour
- $\frac{d}{dt}(||\nabla \rho||) = 0$
- Gradiant is minimal
- $\lambda_i > 0$ and $\lambda_j < 0$ for $j \neq i$

Using field curvature

- Gradiant is an eigenvector of Hessian
- $\mathcal{H}\nabla\rho = \lambda_i \nabla\rho$
- $\lambda_i > lambda_j$ for $j \neq i$

• $\lambda_i > 0$ and $\lambda_j < 0$ for $j \neq i$

・ロ ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Introduction Definition Implementation

The local skeleton

Local approximation

- Second order
- $\mathcal{H}_{ij}, \nabla_i(\rho), \rho$
- Two approaches

Using isocontours r(x(t), y(t))

- Gradiant is extremal along an isocontour
- $\frac{d}{dt}(||\nabla \rho||) = 0$
- Gradiant is minimal
- $\lambda_i > 0$ and $\lambda_j < 0$ for $j \neq i$

Using field curvature

- Gradiant is an eigenvector of Hessian
- $\mathcal{H}\nabla\rho = \lambda_i \nabla\rho$
- $\lambda_i > lambda_j$ for $j \neq i$
- $\lambda_i > 0$ and $\lambda_j < 0$ for $j \neq i$

ヘロア ヘ動 ア ヘビア ヘビア

Introduction Definition Implementation

The 3D local skeleton

・ロト ・四ト ・ヨト ・ヨト

э

Introduction Definition Implementation

The 3D local skeleton

Introduction Definition Implementation

Isosurface approach

$$\begin{cases} \frac{d}{ds_i}(|\nabla \rho|^2) = 0\\ \frac{d\rho}{ds_i} = \frac{\partial \rho}{\partial r_1}\frac{dr_1}{ds_i} + \frac{\partial \rho}{\partial r_2}\frac{dr_2}{ds_i} + \frac{\partial \rho}{\partial r_3}\frac{dr_3}{ds_i} = 0 \end{cases}$$

Geometric approach

$$\mathcal{H}_{ij}\nabla_j\rho=\lambda_n\nabla_j\rho$$

(日) (圖) (注) (注) (注) [

Result

$$\begin{split} S_{i} &\equiv \frac{\partial^{2} \rho}{\partial r_{j} \partial r_{k}} \left(\frac{\partial \rho}{\partial r_{j}}^{2} - \frac{\partial \rho}{\partial r_{k}}^{2} \right) \\ &+ \frac{\partial \rho}{\partial r_{j}} \frac{\partial \rho}{\partial r_{k}} \left(\frac{\partial^{2} \rho}{\partial r_{k}^{2}} - \frac{\partial^{2} \rho}{\partial r_{j}^{2}} \right) \\ &- \frac{\partial \rho}{\partial r_{i}} \left(\frac{\partial \rho}{\partial r_{k}} \frac{\partial^{2} \rho}{\partial r_{i} \partial r_{j}} - \frac{\partial \rho}{\partial r_{j}} \frac{\partial^{2} \rho}{\partial r_{i} \partial r_{k}} \right) = 0 \end{split}$$

with $i \neq j \neq k \in \{1..3\}$.

Introduction Definition Implementation

Isosurface approach

$$\begin{cases} \frac{d}{ds_i}(|\nabla \rho|^2) = \mathbf{0} \\ \frac{d\rho}{ds_i} = \frac{\partial \rho}{\partial r_1}\frac{dr_1}{ds_i} + \frac{\partial \rho}{\partial r_2}\frac{dr_2}{ds_i} + \frac{\partial \rho}{\partial r_3}\frac{dr_3}{ds_i} = \mathbf{0} \end{cases}$$

Geometric approach

$$\mathcal{H}_{ij}\nabla_j\rho=\lambda_n\nabla_j\rho$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

E

Result

$$\begin{split} \mathcal{S}_{i} &\equiv \frac{\partial^{2} \rho}{\partial r_{j} \partial r_{k}} \left(\frac{\partial \rho}{\partial r_{j}}^{2} - \frac{\partial \rho}{\partial r_{k}}^{2} \right) \\ &+ \frac{\partial \rho}{\partial r_{j}} \frac{\partial \rho}{\partial r_{k}} \left(\frac{\partial^{2} \rho}{\partial r_{k}^{2}} - \frac{\partial^{2} \rho}{\partial r_{j}^{2}} \right) \\ &- \frac{\partial \rho}{\partial r_{i}} \left(\frac{\partial \rho}{\partial r_{k}} \frac{\partial^{2} \rho}{\partial r_{i} \partial r_{j}} - \frac{\partial \rho}{\partial r_{j}} \frac{\partial^{2} \rho}{\partial r_{i} \partial r_{k}} \right) = \mathbf{0} \end{split}$$

with $i \neq j \neq k \in \{1..3\}$.

Introduction Definition Implementation

Outline

1

- The Three Dimensional Skeleton
 - Introduction
 - Definition
 - Implementation
- 2 Application to Observational Data : SDSS
 - Making Mock Catalogs: MoLUSC
 - Measuring the skeleton in the SDSS
 - Sensitivity to Biases
 - Results : constraints on Ω_m
- 3 Other Applications: Computing Quantities Along the Filaments
 - The velocity field
 - The dark matter pressure
 - Summary and Conclusion

Introduction Definition Implementation

Density field

Smoothing

- CIC affectation
- Gaussian smoothing:

$$K(r) = rac{1}{(2\pi L)^{3/2}} e^{-rac{r^2}{2L}}$$

Two important parameters

- σ : Grid cell size
- L : Smoothing length

(日)

臣

Introduction Definition Implementation

Density field

Smoothing

- CIC affectation
- Gaussian smoothing:

$$K(r) = rac{1}{(2\pi L)^{3/2}} e^{-rac{r^2}{2L}}$$

Two important parameters

- σ : Grid cell size
- L : Smoothing length

Introduction Definition Implementation

Drawing isosurfaces, marching cubes algorithm

Field extrema $\begin{cases} \frac{d\rho}{dr_1} = 0\\ \frac{d\rho}{dr_2} = 0\\ \frac{d\rho}{dr_2} = 0 \end{cases}$ Field extrema $\begin{cases} S_i(\rho, \nabla \rho, \mathcal{H}\rho) = 0\\ S_i(\rho, \nabla \rho, \mathcal{H}\rho) = 0 \end{cases}$

[width=6cm]./pictures/mcubes.jpg

Demonstration

Densityfield Gradiant Skeleton

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

э

Introduction Definition Implementation

Drawing isosurfaces, marching cubes algorithm

Field extrema $\left\{\begin{array}{l} \frac{d\rho}{dr_1}=0\\ \frac{d\rho}{dr_2}=0\\ \frac{d\rho}{dr_3}=0\end{array}\right.$ Field extrema

$$\begin{cases} S_i(\rho, \nabla \rho, \mathcal{H} \rho) = \mathbf{0} \\ S_j(\rho, \nabla \rho, \mathcal{H} \rho) = \mathbf{0} \end{cases}$$

Skeleton

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

E

Introduction Definition Implementation

Drawing isosurfaces, marching cubes algorithm

Field extrema $\begin{cases} \frac{d\rho}{dr_1} = 0\\ \frac{d\rho}{dr_2} = 0\\ \frac{d\rho}{dr_2} = 0 \end{cases}$ Field extrema $\begin{cases} S_i(\rho, \nabla \rho, \mathcal{H} \rho) = 0\\ S_j(\rho, \nabla \rho, \mathcal{H} \rho) = 0 \end{cases}$

Introduction Definition Implementation

Final results

Selecting the *total* skeleton Maximizing $d_i = |det(\mathbf{r}_j, \mathbf{r}_k, \nabla \rho)|$, $i \neq j \neq k$

Selecting only the filaments $\lambda_1 > 0$, $\lambda_2 < 0$ and $\lambda_2 < 0$

Post treatement

- Starting from saddle points, reconnect properly aligned and neighbouring segements.
- Recover connectivity

Introduction Definition Implementation

Final results

Selecting the *total* skeleton Maximizing $d_i = |det(\mathbf{r_j}, \mathbf{r_k}, \nabla \rho)|$, $i \neq j \neq k$

Selecting only the filaments

 $\lambda_1 >$ 0, $\lambda_2 <$ 0 and $\lambda_3 <$ 0

Post treatement

- Starting from saddle points, reconnect properly aligned and neighbouring segements.
- Recover connectivity

Introduction Definition Implementation

Final results

Selecting the *total* skeleton Maximizing $d_i = |det(\mathbf{r_j}, \mathbf{r_k}, \nabla \rho)|$, $i \neq j \neq k$

Selecting only the filaments

 $\lambda_1 > 0, \, \lambda_2 < 0 \text{ and } \lambda_3 < 0$

Post treatement

- Starting from saddle points, reconnect properly aligned and neighbouring segements.
- Recover connectivity

・ロ・ ・ 四・ ・ 回・ ・ 日・

MoLUSC Measuring the skeleton in the SDSS Biases Results

Outline

- The Three Dimensional Skeleton
 - Introduction
 - Definition
 - Implementation
- 2 Application to Observational Data : SDSS
 - Making Mock Catalogs: MoLUSC
 - Measuring the skeleton in the SDSS
 - Sensitivity to Biases
 - Results : constraints on Ω_m
- Other Applications: Computing Quantities Along the Filaments
 - The velocity field
 - The dark matter pressure
 - Summary and Conclusion

MoLUSC Measuring the skeleton in the SDS Biases Results

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ つくぐ

Outline

- The Three Dimensional Skeleton
 - Introduction
 - Definition
 - Implementation
- 2 Application to Observational Data : SDSS
 - Making Mock Catalogs: MoLUSC
 - Measuring the skeleton in the SDSS
 - Sensitivity to Biases
 - Results : constraints on Ω_m
- 3 Other Applications: Computing Quantities Along the Filaments
 - The velocity field
 - The dark matter pressure
 - Summary and Conclusion

MoLUSC Measuring the skeleton in the SDSS Biases Results

edge effects

 Survey is embeded in a square box

(日)

 low density random field within voids
 The three dimensional skeleton
 MoLUSC

 Application to SDSS
 Measuring the skeleton in the SDSS

 Other application
 Biases

 Summary and conclusions
 Results

Outline

- The Three Dimensional Skeleton
 - Introduction
 - Definition
 - Implementation
- 2 Application to Observational Data : SDSS
 - Making Mock Catalogs: MoLUSC
 - Measuring the skeleton in the SDSS

Sensitivity to Biases

- Results : constraints on Ω_m
- Other Applications: Computing Quantities Along the Filaments
 - The velocity field
 - The dark matter pressure
 - Summary and Conclusion

MoLUSC Measuring the skeleton in the SDSS Biases Results

 The three dimensional skeleton
 MoLUSC

 Application to SDSS
 Measuring the skeleton in the SDSS

 Other application
 Biases

 Summary and conclusions
 Results

Outline

- The Three Dimensional Skeleton
 - Introduction
 - Definition
 - Implementation
- 2 Application to Observational Data : SDSS
 - Making Mock Catalogs: MoLUSC
 - Measuring the skeleton in the SDSS
 - Sensitivity to Biases
 - Results : constraints on Ω_m
 - Other Applications: Computing Quantities Along the Filaments
 - The velocity field
 - The dark matter pressure
 - Summary and Conclusion

 The three dimensional skeleton
 MoLUSC

 Application to SDSS
 Measuring the skeleton in the

 Other application
 Biases

 Summary and conclusions
 Results

Velocity field Pressure

Outline

- The Three Dimensional Skeleton
 - Introduction
 - Definition
 - Implementation
- 2 Application to Observational Data : SDSS
 - Making Mock Catalogs: MoLUSC
 - Measuring the skeleton in the SDSS
 - Sensitivity to Biases
 - Results : constraints on Ω_m
- Other Applications: Computing Quantities Along the Filaments
 - The velocity field
 - The dark matter pressure
 - Summary and Conclusion

Velocity field Pressure

T. Sousbie The three dimensional skeleton of the universe

Velocity field Pressure

Outline

- The Three Dimensional Skeleton
 - Introduction
 - Definition
 - Implementation
- 2 Application to Observational Data : SDSS
 - Making Mock Catalogs: MoLUSC
 - Measuring the skeleton in the SDSS
 - Sensitivity to Biases
 - Results : constraints on Ω_m
- Other Applications: Computing Quantities Along the Filaments
 - The velocity field
 - The dark matter pressure
 - Summary and Conclusion

Velocity field Pressure

T. Sousbie The three dimensional skeleton of the universe

T. Sousbie The three dimensional skeleton of the universe

(日)

€ 990