2D and 3D Multiscale Geometric Analysis

J.-L. Starck - Dapnia/SEDI-SAP, Service d'Astrophysique.

CEA-Saclay, France.
hutpot starce.free.fr

Part I : New transforms

1 - Introduction: Sparsity
2 - Wavelet: recent results
3 - Multiscale Geometric Analysis (MGA)
New Multiscale Geometric Transforms:

- 2D ridgelet transform
- 2D curvelet transform
- The fast curvelet transform

Part II : Extension to the Sphere and to the third dimension

4 - MGA on the Sphere
5 - 3D Multiscale Geometric Analysis (MGA)

- 3D Ridgelet transform
- 3D Beamlet transform

6 - MGA and the analysis of the spatial distribution of galaxies
Part III - Morphological Component Analysis (MCA)
7 - Component Separation
8 - Multichannel Component Separation
9 - Inpainting
10 - Application to PLANCK

What is a good representation for data?

" Computational harmonic analysis seeks representations of a signal as linear combinations of basis, frame, dictionary, element :

" Fast calculation of the coefficients a_{k}
" Analyze the signal through the statistical properties of the coefficients
" Approximation theory uses the sparsity of the coefficients.

What is sparsity?

In a general framework, a given signal s (n samples) has a unique decomposition α in the orthogonal basis $\Phi(n \times n$ matrix).

$$
s=\alpha \Phi
$$

s is sparse in Φ if most of the entries of α are zeros.
More generally s is sparse in Φ if few entries of α have significant amplitudes.

Seeking sparse and generic representations

Sparsity

Non-linear approximation curve (reconstruction error versus nbr of coeff)

* Why do we need sparsity?
- data compression
- Feature extraction, detection
- Image restoration

Representing Barbara

Direct Space

Curvelet Space

Candidate analyzing functions for piecewise smooth signals

" Windowed fourier transform or Gaborlets :

$$
\psi_{\omega, b}(t)=g(t-b) e^{i \omega t}
$$

" Wavelets :

Original BMP 300x300x24

270056 bytes

JPEG 1:68
3983 bytes
JPEG / JPEG2000

Looking for adapted representations

Local DCT

Wavelet transform

Curvelet transform
Piecewise smooth, edge

2D Multiscale Transforms

Critical Sampling

(bi-) Orthogonal WT
Lifting scheme construction
Wavelet Packets
Mirror Basis

Redundant Transforms

Pyramidal decomposition (Burt and Adelson)
Undecimated Wavelet Transform
Isotropic Undecimated Wavelet Transform
Complex Wavelet Transform
Steerable Wavelet Transform
Dyadic Wavelet Transform
Nonlinear Pyramidal decomposition (Median)

New Multiscale Construction

Contourlet
Bandelet
Finite Ridgelet Transform
Platelet
(W-)Edgelet
Adaptive Wavelet

Ridgelet
Curvelet (Several implementations)
Wave Atoms

The Orthogonal Wavelet Transform (OWT)

$$
s_{l}=\sum_{k} c_{J, k} \phi_{J, l}(k)+\sum_{k} \sum_{j=1}^{J} \psi_{j, l}(k) w_{j, k}
$$

Transformation

NGC2997

The Filter Bank

In order to get an exact reconstruction, two conditions are required for the filters:

- Dealiasing condition: $\hat{h}\left(\nu+\frac{1}{2}\right) \hat{\tilde{h}}(\nu)+\hat{g}\left(\nu+\frac{1}{2}\right) \hat{\tilde{g}}(\nu)=0$
- Exact restoration: $\hat{h}(\nu) \hat{\tilde{h}}(\nu)+\hat{g}(\nu) \hat{\tilde{g}}(\nu)=1$

The Isotropic Undecimated Wavelet Transform

- Filters do not need to verify the dealiasing condition. We need only the exact restoration condition:

$$
\hat{h}(\nu) \hat{\tilde{h}}(\nu)+\hat{g}(\nu) \hat{\tilde{g}}(\nu)=1
$$

- Filters do not need to be (bi) orthogonal.
- Filters must be symmetric.
- In 2D, we want $h(x, y)=h(x) h(y)$ for fast calculation and more important, $h(x, y)$ must nearly isotropic.
h is derived from a B_{3} spline: $h_{1 D}(k)=[1,4,6,4,1] / 16$, and in 2D $h_{2 D}=h_{1 D} h_{1 D}=$

$$
\left(\begin{array}{lllll}
\frac{1}{16} & \frac{1}{4} & \frac{3}{8} & \frac{1}{4} & \frac{1}{16}
\end{array}\right) \otimes\left(\begin{array}{c}
1 / 16 \\
1 / 4 \\
3 / 8 \\
1 / 4 \\
1 / 16
\end{array}\right)=\left(\begin{array}{ccccc}
\frac{1}{256} & \frac{1}{64} & \frac{3}{128} & \frac{1}{64} & \frac{1}{256} \\
\frac{1}{64} & \frac{1}{16} & \frac{3}{32} & \frac{1}{16} & \frac{1}{64} \\
\frac{3}{128} & \frac{3}{32} & \frac{3}{64} & \frac{3}{32} & \frac{3}{128} \\
\frac{1}{64} & \frac{1}{16} & \frac{3}{33} & \frac{1}{16} & \frac{1}{64} \\
\frac{1}{256} & \frac{1}{64} & \frac{13}{128} & \frac{1}{64} & \frac{1}{256}
\end{array}\right)
$$

The Isotropic Wavelet and Scaling Functions

$$
\begin{aligned}
B_{3}(x) & =\frac{1}{12}\left(|x-2|^{3}-4|x-1|^{3}+6|x|^{3}-4|x+1|^{3}+|x+2|^{3}\right) \\
\psi(x, y) & =B_{3}(x) B_{3}(y) \\
\frac{1}{4} \psi\left(\frac{x}{2}, \frac{y}{2}\right) & =\phi(x, y)-\frac{1}{4} \phi\left(\frac{x}{2}, \frac{y}{2}\right)
\end{aligned}
$$

ISOTROPIC UNDECIMATED WAVELET TRANSFORM

Scale 1
Scale 2
Scale 3
Scale 4
Scale 5

Isotropic Undecimated Wavelet Transform

$$
\begin{aligned}
& \varphi=B_{3}-\text { spline, } \frac{1}{2} \psi\left(\frac{\mathrm{x}}{2}\right)=\frac{1}{2} \varphi\left(\frac{\mathrm{x}}{2}\right)-\varphi(x) \quad I(k, l)=c_{J, k, l}+\sum_{j=1}^{J} w_{j, k, l} \\
& h=[1,4,6,4,1] / 16, \quad \mathrm{~g}=\delta-\mathrm{h}, \quad \tilde{\mathrm{~h}}=\tilde{\mathrm{g}}=\delta
\end{aligned}
$$

2D Undecimated Wavelet Transform

The à trous algorithm can be extended to 2 D :

$$
\begin{aligned}
c_{j+1, k, l} & =\left(\bar{h}^{(j)} \bar{h}^{(j)} * c_{j}\right)_{k, l} \\
w_{j+1,1, k, l} & =\left(\bar{g}^{(j)} \bar{h}^{(j)} * c_{j}\right)_{k, l} \\
w_{j+1,2, k, l} & =\left(\bar{h}^{(j)} \bar{g}^{(j)} * c_{j}\right)_{k, l} \\
w_{j+1,3, k, l} & =\left(\bar{g}^{(j)} \bar{g}^{(j)} * c_{j}\right)_{k, l}
\end{aligned}
$$

where $h g * c$ is the convolution of c by the separable filter $h g$ (i.e convolution first along the columns per h and then convolution along the lines per g).

Undecimated bi-orthogonal Wavelet Transform

Non (bi-) Orthogonal Directional Undecimated WT using the "astro"

 filter bank$$
\begin{aligned}
h & =[1,4,6,4,1] / 16 \\
g & =I d-h=[-1,-4,10,-4,-1] / 16 \\
\tilde{h} & =\tilde{g}=I d
\end{aligned}
$$

In two dimensions, the detail signal is contained in three sub-images

$$
\begin{aligned}
& w_{j}^{1}\left(k_{x}, k_{y}\right)=\sum_{l_{x}=-\infty}^{+\infty} \sum_{l_{y}=-\infty}^{+\infty} g\left(l_{x}-2 k_{x}\right) h\left(l_{y}-2 k_{y}\right) c_{j+1}\left(l_{x}, l_{y}\right) \\
& w_{j}^{2}\left(k_{x}, k_{y}\right)= \sum_{l_{x}=-\infty}^{+\infty} \sum_{l_{y}=-\infty}^{+\infty} h\left(l_{x}-2 k_{x}\right) g\left(l_{y}-2 k_{y}\right) c_{j+1}\left(l_{x}, l_{y}\right) \\
& w_{j}^{3}\left(k_{x}, k_{y}\right)=\sum_{l_{x}=-\infty} \sum_{l_{y}=-\infty}^{+\infty} g\left(l_{x}-2 k_{x}\right) g\left(l_{y}-2 k_{y}\right) c_{j+1}\left(l_{x}, l_{y}\right)
\end{aligned}
$$

Undecimated WT: $\mathrm{h}=16[1,4,6,4,1], \mathrm{g}=\mathrm{Id}-\mathrm{h}$

The Surprise

Because the decomposition is redundant, there are many way to reconstruct the original image from its wavelet transform. For a given (h, g) filter bank, any filter bank (\tilde{h}, \tilde{g}) which verifies the equation $\hat{h}(\nu) \hat{\tilde{h}}(\nu)+\hat{g}(\nu) \hat{\tilde{g}}(\nu)=1$ leads to an exact reconstruction. For instance, if we choose $\tilde{h}=h$ (the synthesis scaling function $\tilde{\phi}=\phi$) we obtain a filter \tilde{g} defined by:

$$
\tilde{g}=h+I d
$$

if $h=[1,4,6,4,1] / 16$, then $g=[1,4,22,4,1] / 16 . g$ is positive. This means that g is not related anymore to a wavelet function. The synthesis scaling function related to \tilde{g} is defined by:

$$
\frac{1}{2} \tilde{\phi}\left(\frac{x}{2}\right)=\phi(x)+\frac{1}{2} \phi\left(\frac{x}{2}\right)
$$

Reconstruction Using the Scaling Function

$$
s_{l}=\sum_{k} c_{J, k} \phi_{J, l}(k)+\sum_{k} \sum_{j=1}^{J} \tilde{\phi}_{j, l}(k) w_{j, k}
$$

Another Interesting Filter Bank

Deriving h from a spline scaling function, for instance $B_{2}=[1,2,1] / 2$ or $B_{3}=[1,4,6,4,1] / 16$ (note that $B_{3}=B_{2} * B_{2}$, we define the following the filter bank:

$$
\begin{aligned}
h & =\tilde{h}=B_{l} \\
g & =I d-h * h \\
\tilde{g} & =I d
\end{aligned}
$$

which leads to an analysis/synthesis with the following functions:

$$
\begin{aligned}
\phi(x) & =\tilde{\phi}(x)=B_{l}(x) \\
\hat{\psi}(\nu) & =\frac{\hat{\phi}^{2}(\nu)-\hat{\phi}^{2}(2 \nu)}{\hat{\phi}(\nu)} \\
\frac{1}{2} \tilde{\psi}\left(\frac{x}{2}\right) & =\phi(x)
\end{aligned}
$$

$$
\begin{aligned}
& 0.0 \\
& \hat{\psi}(x)=\frac{\tilde{\phi}(x)=B_{3}(x)}{} \\
& \frac{\hat{\phi}^{2}(\nu)-\hat{\phi}^{2}(2 \nu)}{\hat{\phi}(\nu)} \\
& \frac{1}{2} \tilde{\psi}\left(\frac{x}{2}\right)=\phi(x) \\
& h=\tilde{h}=[1,4,6,4,1] / 16 \\
& g=I d-h * h=[1,8,28,56,70,56,28,8,1] / 256 \\
& \tilde{g}=I d
\end{aligned}
$$

MODIFIED ISOTROPIC UNDECIMATED WT

$$
\mathrm{h}=\mathrm{h}_{\mathrm{ld}} \# \mathrm{~h}_{\mathrm{ld}}, \mathrm{~g}=\mathrm{Id}-\mathrm{h} * \mathrm{~h}
$$

RECONSTRUCTION

Problems related to the WT

1) Edges representation:
if the WT performs better than the FFT to represent edges in an image, it is still not optimal.
2) There is only a fixed number of directional elements independent of scales.
3) Limitation of existing scale concepts: there is no highly anisotropic elements.
A

Undecimated Wavelet Filtering (3 sigma)

Ridgelet Filtering (5sigma)

The Curvelet Transform

Wavelet

Curvelet

Continuous Ridgelet Transform

Ridgelet Transform (Candes, 1998): $\quad R_{f}(a, b, \theta)=\int \psi_{a, b, \theta}(x) f(x) d x$
Ridgelet function: $\quad \psi_{a, b, \theta}(x)=a^{\frac{1}{2}} \psi\left(\frac{x_{1} \cos (\theta)+x_{2} \sin (\theta)-b}{a}\right)$
The function is constant along lines. Transverse to these ridges, it is a wavelet.

Ridgelet Denoising

Ridgelet transform: Radon + 1D Wavelet

1. Rad. Tr.
2. For each line, apply the same denoising scheme as before
3. Rad. Tr. ${ }^{-1}$

LINOGRAM CUR01

The ridgelet coefficients of an object f are given by analysis
of the Radon transform via: $\quad R_{f}(a, b, \theta)=\int R f(\theta, t) \psi\left(\frac{t-b}{a}\right) d t$

Local Ridgelet Transform

The ridgelet transform is optimal to find only lines of the size of the image. To detect line segments, a partitioning must be introduced. The image is decomposed into blocks, and the ridgelet transform is applied on each block.

IIIII

Line detection by the ridgelet transform

Preliminary Results - Line-Like Sources Restoration (MS-VST + Ridgelet)

underlying intensity image simulated image of counts restored image from the left image of counts

> Max Intensity
> background $=0.01$
> vertical bar $=0.03$ inclined bar $=0.04$

The Curvelet Transform

The curvelet transform opens us the possibility to analyse an image with different block sizes, but with a single transform.

The idea is to first decompose the image into a set of wavelet bands, and to analyze each band by a ridgelet transform. The block size can be changed at each scale level.

- à trous wavelet transform

Partitionning
ridgelet transform
. Radon Transform
. 1D Wavelet transform

PARTITIONING

J.-L. Starck, E. Candes, D.L. Donoho The Curvelet Transform for Image Denoising, IEEE Transaction on Image Processing, 11, 6, 2002.

CONTRAST ENHANCEMENT

Gray and Color Image Contrast Enhancement by the Curvelet Transform, IEEE Transaction on Image Processing, 12, 6, pp 706--717, 2003.

Contrast Enhancement

The Fast Curvelet Transform, Candes et al, 2005

CUR03 - Fast Curvelet Transform using the USFFT CUR04 - Fast Curvelet Transform using the Wrapping and 2DFFT

Detection of non-Gaussian Cosmological Signatures

Multiscale Analysis of the CMB

We have applied the following multiscale transforms

- Isotropic wavelet transform
- Bi-orthogonal wavelet transform
- Ridgelets (block size of 16 pixels)
- Ridgelets (block size of 32 pixels)
- Curvelets

On

1) $100 \mathbf{C M B}+\mathbf{K S Z}+100$ Gaussian realizations with the same power spectrum.

$$
K_{\text {CMB }-\Sigma \Sigma}[i, j] \Rightarrow \bar{K}_{\text {CMB }-\Sigma \Sigma}[j]=\frac{\operatorname{mean}\left(K_{\text {CMB }-82}[1: 100, j]\right)-\operatorname{mean}\left(K_{\text {cưB }}[1: 100, j]\right)}{\operatorname{sigma}\left(K_{\text {CuB }}[1: 100, j]\right)}
$$

2) $100 \mathbf{C M B}+\mathbf{C S}+100$ Gaussian realizations with the same power spectrum
3) $100 \mathbf{C M B}+\mathbf{K S Z}+\mathbf{C S}+100$ Gaussian realizations with the same power spectrum We compare the normalized kurtosis for the three data set.

Results

- Curvelets are NOT sensitive to KSZ but are sensitive to cosmic strings

	Bi-orthogonal WT	Ridgelet	Curvelet
$\mathrm{CMB}+\mathrm{KSZ}$	1106.	0.1	10.12
$\mathrm{CMB}+\mathrm{CS}$	1813.	5.7	198.
$\mathrm{CMB}+\mathrm{CS}+\mathrm{KSZ}$	1040.	5.9	165.

Detecting cosmological non-Gaussian signatures by multi-scale methods, Astron. and Astrophys., 416, 9--17, 2004 • Cosmological Non-Gaussian Signatures Detection: Comparison of Statistical Tests, Eurasip Journal on Applied Signal Processing, 15 pp 2470-2485, 2005.

Data on the Sphere

