Need for <u>global</u> estimates of $\underline{\mathbf{O}}$ m

Baryon Fraction

What do you do with a cluster?

Method:

Scaling of baryon fractions :

SLM

Cargèse2008.

Roussel et al, 2000

Average baryon fraction :

Roussel et al, 2000

<u>Three correcting factors :</u>

♦ Mass estimator

Clumping of the gas

Outer emission

Sadat & Blanchard, 2001

Baryon Fraction (a) z = 0

 $R_{2000} \& R_{1000}$ in Vikhlinin, Forman, Jones 1999 (~35% & 50% Rv)

Conclusion

A baryon fraction of the order of 10. $h_{50}^{-3/2}$ % or less could be consistent with data...

Baryon Fraction evolution

Baryon Fraction (non)evolution as a test of Ω_{m}

m From X-ray Clusters **Baryon Fraction evolution** in the XMM Ω -project (Sadat et al., 2005)

Baryon Fraction (a) z = 0

 R_{2000} in Vikhlinin, Forman, Jones 1999 (~35-45% Rv)

Baryon Fraction (a) z = 0

R in Vikhlinin, Forman, Jones 1999

Evidencing (non-)scaling relations of X-ray clusters in the local universe

Baryon Fraction @ z = 0.6

0.04

0.02

0.00

0.0

0.2

0.4

0.6

R/R.

0.8

1.0

Baryon Fraction @ z = 0.6

 $\Delta = 1000$

Baryon Fraction (a) z = 0.6

 $\Delta_{_{\mathbf{V}}}$

Likelihood analysis:

(Ferramacho, L. & B.A., 2007)

Abundance evolution

Theory of the mass function

4 A. Jenkins et al.

Matter = random field:

$$\rho(x) = \overline{\rho}(1 + \delta(x))$$

δ mathematically ill-behaved...

1. The field is smoothed = ρ is convolved:

$$\tilde{\delta} = \delta * W_R$$

with a window function:

$$\int W_R(u) du = 1$$

the smoothed field:

$$\tilde{\delta}(x) = \int \delta(x+u) W_R(u) du$$

Variance of the field :

$$\overline{\tilde{\delta}^2(x)} = \sigma^2(R)$$

Ex: top-hat window:

$$W_R(u) = 1/V$$
 for $|u| < R$
 $W_R(u) = 0.$ for $|u| \ge R$

Mass associated:

$$M(R) = \frac{4\pi}{3} R^3 \overline{\rho}$$

2. Nonlinear model

- linear overdensity $\tilde{\delta}(x) \sim 1$

Ex: spherical model $\boldsymbol{\delta}_{NL}(z, \Omega_m, \Omega_{\lambda}...)$

3. Mass function:

- trivially (!): dV will be in an object with mass > M if included in a NL fluctuation of δ_R with radius > R

$$\int_{M}^{+\infty} mn(m)dm = \overline{\rho} \int \mathcal{F}_{\delta}(\delta)s(\delta)d\delta \sim \overline{\rho} \int_{\delta_{NL}}^{+\infty} \mathcal{F}_{\delta}(\delta)d\delta$$

or (sharp threshold):

$$\int_{M}^{+\infty} mn(m)dm = \overline{\rho} \int_{\delta_{NL}}^{+\infty} \mathcal{F}_{\delta}(\delta)d\delta = \overline{\rho} \int_{\nu_{NL}}^{+\infty} \mathcal{F}(\nu)d\nu$$

with:

$$\delta = \nu \sigma(R) = \nu \sigma(M)$$
 and $\nu_{NL} = \frac{\delta_{NL}}{\sigma(M)}$

and just take the derivative...

the mass function:

$$N(M) = -\frac{\overline{\rho}}{M^2 \sigma(M)} \delta_{NL} \frac{d \ln \sigma}{d \ln M} \mathcal{F}(\nu_{NL})$$

normalization condition:

$$\frac{1}{\overline{\rho}}\int_{0}^{+\infty}mn(m)dm = \int_{0}^{+\infty}\mathcal{F}(\nu)d\nu = 1$$

Press and Schechter (1974) used:

$$\mathcal{F}(\nu) = \sqrt{\frac{2}{\pi}} \exp(-\frac{\nu^2}{2})$$

major recent improvements:

$$\mathcal{F}(\nu) = \sqrt{\frac{2A}{\pi}} C \exp(-0.5A\nu^2)(1. + (A\nu)^2)^Q)$$

 $A = 0.707 \ C = 0.3222 \ Q = 0.3$

Sheth, Mo, Tormen 2001 MNRAS, 323 1

Cargèse2008.

with

M A S S <mark>]</mark>[U N C Ţ <u>[</u> O N

ACDM

1018

Checking N(M)

Jenkins et al., 2001 MNRAS, 321, 372

Checking N(M) (2)

Jenkins et al., 2001 MNRAS, 321, 372

Conclusion

Reasonable description of the mass function in numerical simulations...