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INTRODUCTION

The observed universe is well represented by a Friedmann-Lemâıtre spacetime
the scale factor of which started to accelerate recently
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Origin of this acceleration

• An artefact of the averaging process ?

Gij(<gkl>) = κ <Tij > instead of <Gij(gkl)>= κ <Tij >
<gkl>6= gkl (See Rasanen)

• Exotic matter ? (ρΛ + pΛ ≈ 0)

– Chaplygin gas : pρ = −A, (See Moschella)
– Quintessence : R.G. plus ϕ with V ∝ 1/ϕn (See Martin)

• “Modified” gravity ?

– Λ : (See Bernardeau)
– MOND (See Combes, Esposito-Farese)
– “Branes” : (See Deffayet)
– f(R) lagrangian, instead of Hilbert’s R (simpler than f(Ri

jkl) !)
C.D.T.T. (2003), Capozziello et al. (2003)
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Outline of the Lecture

1. f(R) theories as scalar-tensor theories of gravity

– gravity is described by a “graviton” (gij) and a “scalaron” (s ∼ R)
– coupling of s to matter : minimal vs “detuned” coupling
– Jordan vs Einstein frames or : choosing a “physical” spacetime

2. f(R) cosmological models of dark energy
– late time accelerating phase (CDTT, 2003 et seq.)
– “s-MDE” era problem (Amendola et al. 2006, et seq.)
– Viable cosmological models of f(R) DE

3. f(R) gravity and local tests
– Equivalent to ω = 0 Brans-Dicke theory ? (Chiba, 2003, et seq.)
– Giving the scalaron a mass : “Chameleon” effect (Khoury et al. 2003)

4. Can “detuning” help ?
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1. f(R) theories are scalar-tensor theories of gravity

• d.o.f. : gravity is described by a “graviton” and a “scalaron”

S̄[gij] = 1
2κ

∫
d4x
√
−g f(R) + Sm(Ψ ; gij) (κ = 8πG∗)

(Weyl 1918, Pauli 1919, Eddington, 1924)

Metric variation yields a 4th order diff eqn for gij :

f ′(R) Gij + 1
2(Rf ′ − f)gij + gijD

2f ′ −Dijf
′ = κTij (⇒ DjT

ij = 0)

The trace :
3D2f ′ + (Rf ′ − 2f) = κT

is a (2nd order) eom for R (or f ′(R)), the “scalaron”(Starobinski, 1980)

Remark : “Palatini” variations yield different eom (Vollick, 2003 et seq.)
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• Isolating the scalaron and coupling it to matter

Introduce a “Helmholtz” lagrangian :

S̄[gij, s] = 1
2κ

∫
d4x
√
−g [f ′(s)R− (sf ′(s)− f(s)] + Sm(Ψ ; g̃ij = e2C(s)gij)

hence TWO second order differential equations of motion :

f ′(s)Gij + 1
2gij(sf ′(s)− f(s)) + gijD

2f ′(s)−Dijf
′(s) = κTij

s = R− 2κC ′(s)T/f ′′(s) (⇒ DjT
j
i = TC ′(s)∂is)

C(s) = 0 : standard f(R) gravity ; s = R, same eom as before.

C(s) 6= 0 : “detuned” f(R) gravity (ND, Sasaki, Sendouda, 2007)
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• Jordan vs Einstein frame description of f(R) gravity

The “Jordan frame” is the spacetime, M̃, with metric g̃ij = e2Cgij to
which matter is minimally coupled (that is : D̃jT̃

ij = 0, e.g. ρ̃ ∝ 1/ã3).

In this frame the action is a Brans-Dicke type action (up to a divergence)

S̃[g̃ij,Φ] = 1
2κ

∫
d4x
√
−g̃

[
ΦR̃− ω(Φ)

Φ (∂̃2Φ)− 2U(Φ)
]

+ Sm[Ψ; g̃ij]

where Φ(s) = f ′(s)e−2C(s) , U(s) = 1
2(sf

′(s)− f(s))e−2C(s)

and ω(s) = −3K(s)(K(s)−2)
2(K(s)−1)2

with K(s) = d C

d ln
√

f ′
.

For standard f(R) gravity, C(s) = 0 ; the Jordan frame is the original one.
And ω = 0 ; if U ≈ 0, f(R) gravity is ruled out since ω > 40000 (Cassini)
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The “Einstein frame” is the spacetime, M∗, the metric of which,
g∗ij = e−2kg̃ij, makes the action for f(R) gravity look like Einstein’s :

S∗[g∗ij, ϕ] = 2
κ

∫
d4x
√
−g∗

[
R∗

4 −
1
2(∂

∗ϕ)2 − V (ϕ)
]

+ Sm[Ψ; g̃ij = e2k(ϕ)g∗ij]

where ϕ(s) =
√

3 ln
√

f ′(s) , V (s) = sf ′(s)−f(s)
4f ′2(s) , e2k(s) = e2C(s)

f ′(s)

M̃ 6=M∗ unless g̃ij = g∗ij, that is, C(s) = ln
√

f ′(s),
(Magnano-Sokolewski, 1993, 2007)

f(R) gravity and coupled quintessence

Ellis et al. (1989), Damour-Nordvedt-Polyakov (1993), Wetterich (1995),
Amendola (1999), Copeland et al. (2006),...
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• Jordan vs Einstein frames : choosing does matter

Mathematically the actions for (gij, s), (g̃ij,Φ) or (g∗ij, ϕ) are equivalent.

If we decide thatM∗ with line element ds2
∗ = −dt2+a2

∗(t)d~x2 represents
physical spacetime, then t is cosmic time
but if we decide that it is M̃ with line element ds̃2 = e2k(ϕ)ds2

∗ then
cosmic time is t̃ such that dt̃ = ek(ϕ)dt.

In all frames test particles fall the same way (WEP), but only in the
Jordan frame do they follow geodesics
Only in the Jordan frame can the EEP be enforced : D̃jT̃

j
i = 0 ⇒

∂jT̃
j
i ≈ 0 in local inertial frame (

√
−g̃T̃ij = −2δSm/δg̃ij)

the example of Nordström’s theory, 1913 : dui

dτ = − 1
1+φ(∂iφ + uiuj∂jφ)

reformulated by Einstein-Fokker, 1914 : D̃ui

dτ = 0 with g̃ij = (1 + φ)2ηij
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2. f(R) cosmological models of Dark Energy

• The Carroll-Duvvuri-Trodden-Turner
and Capozziello-Carloni-Troisi proposal (2003)

f(R) = R− µ2(1+n)

Rn (n > 0) ; µ2 ∼ 10−33eV or µ2 = 1
`2

with ` ∼ H−1
0

Late time Einstein frame Friedmann equations when matter has become
negligible (ϕ large > 2, say) :

3H2
∗ − ϕ̇2 − 2V (ϕ) ≈ 0, ϕ̈ + 3H2

∗ϕ̇ + dV
dϕ ≈ 0 with V (ϕ) ∝ e

− (n+2)ϕ

2
√

3(n+1)

Solution : a∗(t) ∝ tq (q → 3 , w∗
DE → −0.77 for large n), ϕ ∼

√
3 p ln t

Jordan frame scale factor : ds̃2 = t−2pds2
∗ = −dt̃2 + ã2(t̃)dx2

hence : ã(t̃) ∝ t̃
2

3(1+w̃DE)

with w̃DE = −1 + 2(n+2)
3(n+1)(2n+1) → −1 for large n (2,3,4 is enough)
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• A first flaw
Amendola, Polarski, Tsujikawa et al., 2003-2007

Friedmann equations when matter dominates over DE (ρ∗ = e−4ϕ/
√

3ρ̃) :

3H2
∗ − ϕ̇2 ≈ κρ∗ , ϕ̈ + 3H2

∗ϕ̇ ≈
κρ∗
2
√

3
, ρ̇∗ + H∗ρ∗ = − ϕ̇√

3
ρ∗

Hence : ã(t̃) ∝ t̃1/2 instead of t̃2/3 (for ϕ ≈ 0, V is negligible, not ϕ̇)

the CDTT model is ruled out

• Conditions for a standard matter era followed by late acceleration

Introduce the dynamical variables : x1 = − ḟ ′

Hf ′ , x2 = − f
6Hf ′ , x3 = − R

6H2

Define r(R) = −Rf ′

f and m(R) = Rf ′′

f ′ (Copeland et al. 1997, 2006)

Write the Friedmann equations as ẋ3
H = −x1x3

m − 2x3(x3 − 2) etc ;
Find the fixed points such that ẋi = 0 : P = (x1(m), x2(m), x3(m))
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The“phase space trajectory” m = m(r) can connect a (saddle) matter
point

PM = (r ≈ −1,m ≈ 0+) with dm/dr|−1 > −1

to a stable fixed point corresponding to

– either exponential acceleration, PS ∈ r = −2, if 0 < m(−2) ≤ 1

– or ã ∝ t̃r, r > 1, PA ∈ m = −(1 + r), if dm
dr < −1 and

√
3−1
2 < m < 1

Example :

f(R) = R± µ4+n

Rn with −1 < n < 0

Developments (Capoziello-Tsujikawa, 2007) :

– wDE < −1 for z < zb “crossing of the phantom boundary”

– wDE diverges at z = zc, zb and zc →∞ for n→ −1
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3. f(R) gravity and local tests

• An ninety year old mistake

CDTT, 2003 : “Many solar system tests of gravity theory depend on the
Schwarzschild solution, which Birkhoff’s theorem ensures is the unique,
static, spherically symmetric solution (...) It is clear that astrophysical
tests of gravity will be unaffected by the modification we have made.”

Weyl (1918), Pauli (1919) and Eddington (1924) had said the same...

Buchdahl (1961), Whitt (1984), Mignemi-Wiltshire (1992) :
Schwarzschild metric is the black hole solution of R +

∑
anRn theories.

Pechlaner-Sexl (1966), Havas (1977) : f(R) field equations are fourth
order differential equations ; they possess extra-runaway solutions : there is
no Birkhoff theorem ; the solution outside an extended source is not the
Schwarzschild metric and depends on its equation of state.
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• One-scale f(R) models of DE are ω = 0 Brans-Dicke theory

Chiba (2003), Olmo (2005), Erickcek et al (2006), Navarro-Acoleyen (2006),...

The short answer :

Recall that f(R)-gravity is of Brans-Dicke type with ω = 0 and a potential

U = 1
2(Rf ′(R)− f(R))

Teyssandier-Tourrenc, 1983

Can U be neglected when studying gravity in the solar system ? Yes

Indeed f(R) = R−H4
0/R, yields U = O(H2

0) = O(1/`2) with `� LSS.

Therefore, see e.g Will or Damour-Esposito Farese, ω must be large to
comply with solar system observations : ω > 40000 (Cassini).

Hence, all one-scale f(R) models of dark energy are ruled out.
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The details :

The equations of motion are :

D2
∗ϕ−dV

dϕ = 4πG∗√
3

T ∗ , G∗
ij−2∂iϕ∂jϕ+g∗ij

[
(∂∗ϕ)2 + 2V (ϕ)

]
= 8πG∗ T ∗

ij

with g∗ij = f ′g̃ij , ρ∗ = ρ̃/f ′2 , f ′ = e2ϕ/
√

3

Linearize : ϕ = ϕc + ϕ1, g∗ij = f ′c(ηij + hij) with Vc = O(κρc) = O(1/`2).

scalaron : 4ϕ1−m2ϕ1 ≈ −4πGeff√
3

ρ̃� (4∗ = 4/f ′c , Geff = G∗/f ′c)

m2 = f ′cd
2V

dϕ2 |c = O(1/`2) whereas 4 = O(1/L2
SS) hence ϕ1 ≈ GeffM̃�√

3r

metric : ds2
∗/f ′c ≈ (1− 2GeffM̃/r)dt2 + (1 + 2GeffM̃/r)d~x2

ds̃2 = −
(
1− 2G̃M̃

r

)
dt2 +

(
1 + 2γG̃M̃

r

)
d~x2 , G̃ = 4Geff

3 , γ = 1/2
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A scalar curvature “locked” at its cosmological, small, value :

Equation of motion for the scalar curvature (or scalaron, that is, ϕ) :

3D2f ′ + (Rf ′ − 2f) = κT (not R = κT as in GR !)

Linearize : R = Rc + R1 so that D2R1 −m2R1 = κT
3f ′′c

, m2 = (f ′−Rf ′′)|c
3f ′′c

Solve with source being, say, a constant density star—or numerically,
Multamaki-Vilja, Kanulainen et al, (2007)

and find that, if mr� � 1, then R ≈ Rc outside and inside the star.

**

On the other hand, if mr� � 1, find Schwarzschild (hence γ = 1) :

ds̃2 ≈ −
(
1− 2GM�(1−ε)

r

)
dt2 +

(
1 + 2GM�(1+ε)

r

)
d~x2 , ε = e−m(r−r�)

2m2r2
�
≈ 0

but... R ≈ −κT � Rc inside the star : linear approximation breaks down ?
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• Summary

– the original CDTT model f(R) = H2
0(RH−2

0 − 1/(RH−2
0 )n) failed :

final acceleration but no matter era

– various one-scale cosmologically viable models had been proposed, e.g. :
f(R) = H2

0(RH−2
0 + (RH−2

0 )n) with 0 < n < 1

– all badly failed to comply with local gravity constraints because the scalar
curvature is locked at its cosmological value R = O(H2

0) = O(κρcosmo)
everywhere, even inside the Sun where, instead, GR gives R = O(κρ�)

– however, if the scalaron could be given a heavy mass, the linear
approximation (violated in that limit) indicates that the gravity field of the
Sun would be the same as in GR

– hence : look for two-scale f(R) models and solve the full non-linear
scalaron eom
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• Conventional wisdom...
e.g. Starobinski, 2007

is based on the linearised scalaron eom on the background dV
dϕ |SS ∝ κρ� :

4ϕ1 −m2ϕ1 ≈ 0 with m2 = f ′−Rf ′′

3f ′′

If, for R� 1/`2, e.g. R ∼ κρ� : f ′ → 1 and m2
SS ≈ 1

3f ′′|SS
is positive and

large ((mL)SS � 1) then deviations from Einstein’s GR are small.

CDTT model : m2
SS is large and negative (Dolgov-Kawasaki, 2003)

• ...and the “Chameleon” effect
Khoury-Weltman (2003)

Navarro-Acoleyen (2006), Capozziello-Tsujikawa (2007)

or : how can the scalar curvature become equal to the local matter density
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Chameleon details

Once again, look at scalaron eom : D2
∗ϕ− dV

dϕ = κ
2
√

3
T∗

In ≈ flat background : 4∗ϕ = dVeff
dϕ with dVeff

dϕ = dV
dϕ −

κρ∗
2
√

3

Contrarily to V , Veff may have minima for ϕ = ϕ� inside the Sun and for
ϕ = ϕe outside. One looks for ϕ|e,� = ϕ(Re,�) such that Re,� ≈ κρe,�.

Solution outside : ϕ = ϕe + C r�
r when mer� � 1 with m2

e = d2V
dϕ2 |e

Solution inside : ϕ ≈ ϕ� up to r = r1, then interpolation to ϕ outside.

if r1 ≈ r�, then C = 3βClin with β = ϕe−ϕ�
GM�/r�

≈ ϕe
GM�/r�

One needs β < 10−5 to have γ − 1 < 10−5 (Cassini)
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• A new family of f(R) models of dark energy

Hu-Sawicki (2007), Starobinski (2007), Odintsov et al (2008), ...

f(R) = R + λRc

[
1

(1+R2/R2
c)

n − 1
]
, etc

dV
dϕ −

κρe

2
√

3
= 0 gives ϕe = O (ρc/ρe)

2n+1

Now, β ≈ ϕe
GM�/r�

≈ 106ϕe < 10−5 ; hence ϕe < 10−11

For ρe = ρgalaxy = 105ρc then ϕe = O(10−5(2n+1)) and hence the models
evade Local Gravity Constraints as soon as n > 1/2

In a nutshell : the Chameleon effect conforts conventional wisdom (heavy
”local” scalaron mass to evade LGC) : it relies on (1)“locking” ϕ, that is,
the scalar curvature, on its Einstein value inside the Sun, and (2) on a
local environment much denser than the asymptotic, cosmological, value.
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• An uncontrolable scalaron instability ?

The new family of models yield cosmological scale factors which are
undistinguishable from Λ-CDM until after the end of the matter era and
tend to a de Sitter regime a ∝ eHt̃.

... However, because the mass of the scalaron is chosen to be high in high
matter density environment (in order to comply with Local gravity
Constraints), the cosmological perturbations of the scalaron diverge in the
early matter era unless their amplitude is tuned to a very small value.

Starobinski (2007), Tsujikawa (2007)
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4. “Detuned” f(R) gravity and Dark Energy

• Coupling matter to the scalaron

Recall the Jordan-frame action of f(R) gravity whose scalaron is coupled
to matter :

S̃[g̃ij,Φ] = 1
2κ

∫
d4x
√
−g̃

[
ΦR̃− ω(Φ)

Φ (∂̃2Φ)− 2U(Φ)
]

+ Sm[Ψ; g̃ij]

where Φ(s) = f ′(s)e−2C(s) , U(s) = 1
2(sf

′(s)− f(s))e−2C(s)

and ω(s) = −3K(s)(K(s)−2)
2(K(s)−1)2

with K(s) = d C

d ln
√

f ′
.

“detuning” allows for a non-vanishing Brans-Dicke function ω.

Hence the programme : play with the coupling function K and try to
salvage one-scale f(R) models of dark energy.
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• Equations of motion

The Einstein frame (g∗ij = fe−2C g̃ij) equations of motion are :

G∗
ij − 2∂iϕ∂jϕ + g∗ij

[
(∂∗ϕ)2 + 2V (ϕ)

]
= κ T ∗

ij

where ϕ(s) =
√

3 ln
√

f ′(s) , V (s) = sf ′(s)−f(s)
4f ′2(s)

and D2
∗ϕ− dV

dϕ = κ(1−K)

2
√

3
T ∗ with K(s) = d C

d ln
√

f ′

Bianchi identity : D∗
jT

∗j
i = −(1−K)√

3
T ∗∂iϕ

If K = 1, the Einstein and Jordan frame coalesce, matter decouples from
the scalaron, and the theory reduces to Einstein GR minimally coupled to
matter and a “quintessence” scalar field with a potentiel V (ϕ).

Important remark : R̃ = e−2Cs− 6D̃2C + 6(∂̃C)2 + Ke2C

f ′ κT̃ 6= s
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• Conclusion

– 2003-2007 : five years of trial and errors to conciliate f(R) gravity with
cosmology and local gravity constraints

– MANY failed attempts (which reduce to Brans-Dicke with Ω = 0 ; or are
unstable)

– Chameleon mechanism and “detuning” : two means to try and save the
models


