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Dark matter and galaxy rotation curves

ΩΛ ≈ 0.7 (SNIa) and ΩΛ + Ωm ≈ 1 (CMB)⇒ Ωm ≈ 0.3,
at least 10× greater than estimates of baryonic matter.
Rotation curves
of galaxies
and clusters:
almost rigid
bodies

v

∃ many theoretical candidates for dark matter (e.g. from SUSY)
Numerical simulations of structure formation are successful
while incorporating (noninteracting, pressureless) dark matter
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Milgrom’s MOND proposal [1983]

MOdified Newtonian Dynamics
for small accelerations (i.e., at large distances)

a = aN =
GM
r2 if a > a0 ≈ 1.2× 10−10 m.s−2

a =
√

a0aN =

√
GMa0

r
if a < a0

Automatically recovers the Tully-Fisher law [1977]
v4
∞ ∝ Mbaryonic

v
!

Mb

Superbly accounts for galaxy rotation curves
(but clusters still require some dark matter)
[Sanders & McGaugh, Ann. Rev. Astron. Astrophys. 40 (2002) 263]
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Modified gravity or modified inertia?

General Relativity

S =
c3

16πG

∫
d4x
√−g R︸ ︷︷ ︸

Einstein-Hilbert

+ Smatter[matter, gµν ]︸ ︷︷ ︸
Metric coupling

Einstein-Hilbert⇒ pure spin 2
Metric coupling⇒ equivalence principle
Example: Spoint particle = − R

mc
p−gµν(x) vµvν dt

freely falling

elevator

Modified inertia [Milgrom 1994, 1999]:
Keep SEinstein-Hilbert[gµν ], but look for Spoint particle(x, v, a, ȧ, . . . ).
Galileo invariance⇒ nonlocal! (⇒ causality?)

Modified gravity:
Keep metric coupling, but Sgravity '= Einstein-Hilbert (⇒ extra fields)

Other possibilities: Both modifications, or none?
Modified Newtonian gravity and field theory • IESC, Cargèse, November 2008 Gilles Esposito-Farèse, GRεCO/IAP
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Mass-dependent models?

A priori easy to predict a force ∝ 1/r :
If V(ϕ) = −2a2e−bϕ, unbounded by below
then ∆ϕ = V ′(ϕ)⇒ ϕ = (2/b) ln(abr). M

Constant coefficient 2/b instead of
√

M.

Some papers write actions which depend on the galaxy mass M
⇒ They are actually using a different theory for each galaxy!

Moffat [2004] proposes a consistent field theory (nonsymmetric gµν)
but predicts a = kM2/r instead of

√
M/r,

and assumes then k = M−3/2 !

In 2005, he introduced a potential in his model
to derive k = M−3/2, but the potential depends on M
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Consistent field theories

Field theories
All predictions deriving from a single action
∃ proposed models in which 2 field equations are inconsistent with each other

⇒ violation of conservation laws

Stability
Full Hamiltonian should be bounded by below:
no tachyon (m2 ≥ 0), no ghost (Ekinetic ≥ 0)

Well-posed Cauchy problem
Hyperbolic field equations Cauchy surface

Causal cone
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Quadratic gravity
’t Hooft & Veltman [1974]: Divergence of needs

Counterterm

∆L =

√−g
8π2(d − 4)

[
53
90

R2
µνρσ −

361
180

R2
µν +

43
72

R2
]

=

√−g
8π2(d − 4)

[
7
40

C2
µνρσ +

1
8

R2 +
149
360

GB
]

Cµνρσ : Weyl tensor (fully traceless)
GB ≡ R2

µνρσ − 4R2
µν + R2 : Gauss-Bonnet topological invariant

Stelle’s thesis [1977]: If α '= 0 and β '= 0,
Quadratic gravity is renormalizable

Sgravity =

∫
d4x
√−g

[
R + αC2

µνρσ + βR2 + γGB
]
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f (curvature) and ghosts

But quadratic gravity is unstable!

Sgravity =

∫
d4x
√−g

[
R + αC2

µνρσ + βR2 + γGB
]

Intuitive argument:

Propagator
1

p2 + α p4 =
1
p2 −

ghost!

1
p2 + 1

α
N.B.: 1

α = m2 of extra d◦ of freedom⇒ negative α gives a tachyon, but anyway a ghost

Full calculation
[Stelle 1977; Hindawi, Ovrut, Waldram 1996; Tomboulis 1996]:

R + f (Rµν , Rµνρσ)⇒ extra massive spin-2 ghost ⇒ unstable vacuum
R + f (R)⇒ extra massive spin-0 scalar with Ekin > 0

N.B.: Strings predict C2
µνρσ , but also any higher derivative (nonlocal)
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f (R) as scalar-tensor theories

Introduction of a Lagrange multiplier Φ [Teyssandier & Tourrenc 1983]

Sgravity =

∫
d4x
√−g f (R)

⇔
∫

d4x
√−g

{
f (Φ) + (R− Φ) f ′(Φ)

}
=

∫
d4x
√−g

{
f ′(Φ)R− 0 (∂µΦ)2︸ ︷︷ ︸

ωBD=0

− [
Φf ′(Φ)− f (Φ)

]︸ ︷︷ ︸
potential

}
N.B.: If potential = 0, solar system⇒ ωBD > 40000

Similarly f (R,!R, . . . ,!nR)⇒ Einstein plus n + 1 scalar fields
[Gottlöber, Schmidt, Starobinsky 1990; Wands 1994]

Such scalar fields give generically Yukawa potentials ∝ e−mr

r⇒ not MOND (potential ∝ ln r)
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f (R) as scalar-tensor theories (continued)

We saw that f (R) theories are equivalent to

S =

∫
d4x
√−g

{
f ′(Φ)R− 0 (∂µΦ)2 − [

Φf ′(Φ)− f (Φ)
]}

+ Smatter[matter, gµν ]

Let g∗µν ≡ f ′(Φ)gµν , ϕ ≡ √3 ln f ′(Φ), V(ϕ) ≡ Φf ′(Φ)− f (Φ)

f ′2(Φ)

⇒ Standard scalar-tensor theory

S =

∫
d4x

√−g∗
{

R∗−1
2

gµν
∗ ∂µϕ∂νϕ−V(ϕ)

}
+ Smatter[matter, gµν = eϕ/

√
3g∗µν ]

scalar

graviton
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Relativistic aquadratic Lagrangians

“RAQUAL” models

S =

∫
d4x

√−g∗
{

R∗− f (gµν
∗ ∂µϕ∂νϕ)︸ ︷︷ ︸
“k-essence”

−V(ϕ)
}

+ Smatter[matter, gµν ≡ A2(ϕ)g∗µν ]

The nonlinearity of f (∂µϕ∂µϕ) now allows us to reproduce
a MOND-like potential ∼ √GMa0 ln r [Bekenstein & Sanders]:

1
r2 ∂r

(
r2f ′

[
(∂rϕ)2] ∂rϕ

) ∝ T (matter source)

f ′(x)→ constant for large x : Newtonian limit

f ′(x) ∝ √x for small x : MOND regime

1 2 3 4

0.2

0.4

0.6

0.8

1

f’(x)

x
0

x

Modified Newtonian gravity and field theory • IESC, Cargèse, November 2008 Gilles Esposito-Farèse, GRεCO/IAP
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Consistency conditions on f (∂µϕ∂µϕ)

Hyperbolicity of the field equations + Hamiltonian bounded by below

∀x, f ′(x) > 0
∀x, 2 x f ′′(x) + f ′(x) > 0

N.B.: If f ′′(x) > 0, the scalar field
propagates faster than gravitons,
but still causally
⇒ no need to impose f ′′(x) ≤ 0

Cauchy surface

scalar causal cone graviton causal cone

These conditions become much more complicated within matter
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Action and reaction principle
Replace gravitational field gµν by its value
imposed by material sources⇒ Fokker Lagrangian
L = −

∑
A

mAc2
√

1− v2
A

c2 + 1
2

∑
A!=B

V(mA, mB, rAB, vA, vB)︸ ︷︷ ︸
GmAmB

rAB
−2mA

√
GmBa0 ln rAB

+ 1
2

∑
A!=B!=C

. . .

⇒ mAaA =
GmAmB

r2
AB

+
mA
√

GmBa0

rAB
+

mB
√

GmAa0

rAB

⇒ aA =
GmB

r2
AB

+

√
GmBa0

rAB
+

mB
√

Ga0/mA

rAB
Divergent acceleration for test masses mA → 0 ! m

A

m
B

But if self-field effects are treated consistently [Milgrom 1994–97],
RAQUAL models actually predict in the MOND regime (a < a0)

mAaA =
2
3

√
Ga0

rAB

[
(mA + mB)3/2 − m3/2

A − m3/2
B

]
⇒ aA =

√
GmBa0

rAB
+O(

√
mA)
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Light deflection
RAQUAL models

S =
c3

16πG

∫
d4x

√−g∗
{

R∗−f (gµν
∗ ∂µϕ∂νϕ)−V(ϕ)

}
+ Smatter[matter, gµν︸︷︷︸

physical metric

≡ A2(ϕ)︸ ︷︷ ︸
matter-scalar coupling

× g∗µν︸︷︷︸
spin-2 metric

]

Matter-scalar coupling function

ln A(!) = "
0
 (!–!

0
) + 

1
 #

0
 (!–!

0
)
2
 + …

2

!

matter

!
!

!

!

!

..
.

ln A(!)

!

"0 

#0

curvature

slope

!0

Effective gravitational constant

G
eff

  =  G  ( 1  + !
0

2 
)

!
0

!
0

scalargraviton Scalar field⇒ extra attractive force
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Light deflection (continued)

Conformally related metrics gµν ≡ A2(ϕ)g∗µν

⇒ Light rays do not feel the scalar field:
ds2 = gµνdxµdxν = 0 ⇔ g∗µνdxµdxν = 0

hµ! exists, butphoton " = 0photon

Light deflection angle

∆θ =
4GM
bc2 same as G.R.

=
4GeffM

bc2(1 + α2
0)

<
4GeffM

bc2︸ ︷︷ ︸
interpreted as smaller than G.R. because Geff > Gbare

apparent position

Sun

Earth

star

[N.B.: ∃ an erroneous theorem (overstatement) by Bekenstein & Sanders about this]
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“Disformal” coupling

Stratified theories
[Ni, Sanders, Bekenstein (TeVeS)]

S =
c3

16πG

∫
d4x

√−g∗
{

R∗ − 2 f (gµν
∗ ∂µϕ∂νϕ)

}
+Smatter

[
matter ; gµν ≡ A2(ϕ, U)g∗µν + B(ϕ, U)UµUν

]

Uµ is either a new vector field, or ∂µϕ itself
A2 > 0 and A2 + Bgµν∗ UµUµ > 0 necessary for hyperbolicity
(in addition to the previous conditions on f ).
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Stratified theories

Trick to increase light deflection (as dark matter does)
Since Schwarzschild is such that −g00 = g−1

rr =
(
1− 2GM

rc2

)
,

let us couple ϕ inversely to g∗00 and g∗ij, say

g00 ≡ e2ϕg∗00 and gij ≡ e−2ϕg∗ij
Covariant rewriting:
Let a vector Uµ = (1, 0, 0, 0) in this preferred frame.

Then −UµUν =

 −1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

!
behaves as g∗00, and

`
g∗µν + UµUν

´
as g∗ij

⇒ Define the physical metric (minimally coupled to matter) as

gµν = e−2ϕ
(
g∗µν + UµUν

)− e2ϕUµUν

= e−2ϕg∗µν − 2 UµUνsinh(2ϕ)

N.B.1: Other factors depending on ϕ would give a different light deflection
⇒ this is ad hoc!

N.B.2: Preferred-frame effects strongly constrained in solar system
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Bekenstein’s TeVeS model [2004–05]

Many years of work⇒ complicated
Sscalar = − 1

2

R
d4x
√−g∗

h
σ2(gαβ

∗ − UαUβ)∂αϕ∂βϕ + 1
2 G$−2σ4F(kGσ2)

i
Potential F discontinuous
F(µ) =

3
8

µ(4 + 2µ− 4µ2 + µ3) + 2 ln[(1− µ)2]
µ2

1 2 3 4

–8

–6

–4

–2

F
local

effects
cosmology

µ Sanders defines smoother functions,
and promotes σ to a 2nd dynamical
scalar field, but this is a tachyon
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MOND cosmology?

No MOND regime in dense Universe at high redshifts
⇒ Too small Ωbaryon to account for structure formation
[Lue & Starkman 2004]

Skordis et al. [2006] need Ων = 0.17 for CMB
(not far from ΩDM = 0.24)⇒ ∃ dark matter!

Bekenstein

+ large !"

Bekenstein

without !"

Standard

#CDM
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Difficulties of RAQUAL models
Action/reaction, light deflection & CMB: ∃ solutions

Complicated Lagrangians (unnatural)
Fine tuning (≈ fit rather than predictive models):
Possible to predict different lensing and rotation curves

Discontinuities: can be cured

In TeVeS [Bekenstein], gravitons & scalar are slower than photons
⇒ gravi-Cerenkov radiation suppresses high-energy cosmic rays
[Moore et al. 2001–05]

Solution: Accept slower photons than gravitons

∃ preferred frame (ether) where vector Uµ = (1, 0, 0, 0)
Maybe not too problematic if Uµ is dynamical
Vector contribution to Hamiltonian unbounded by below
[Clayton 2001] ⇒ unstable model

Post-Newtonian tests very constraining
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Post-Newtonian constraints

Solar-system tests⇒ matter a priori weakly coupled to ϕ
TeVeS tuned to pass them even for strong matter-scalar coupling
Binary-pulsar tests⇒ matter must be weakly coupled to ϕ

general relativity

(!0 = "0 = 0)

#6 #4 #2 0 2 4 6
"0 $

matter
$

|!0| $

matter

Cassini

LLR

100

10#3

10#4

10#1

10#2

ln A($)

$

!0

"0 < 0

"0 > 0

!0

matter-scalar

coupling function

ALLOWED

THEORIES

Mercury
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Post-Newtonian constraints

Solar-system tests⇒ matter a priori weakly coupled to ϕ
TeVeS tuned to pass them even for strong matter-scalar coupling
Binary-pulsar tests⇒ matter must be weakly coupled to ϕ

general relativity

(!0 = "0 = 0)

#6 #4 #2 0 2 4 6
"0 $

matter
$

|!0| $

matter

Cassini

LLR

100

10#3

10#4

10#1

10#2

ln A($)

$

!0

"0 < 0

"0 > 0

!0

matter-scalar

coupling function

ALLOWED

THEORIES
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Post-Newtonian constraints

Solar-system tests⇒ matter a priori weakly coupled to ϕ
TeVeS tuned to pass them even for strong matter-scalar coupling
Binary-pulsar tests⇒ matter must be weakly coupled to ϕ

B1913+16

!6 !4 !2 0 2 4 6
"0 #

matter
#

|$0| #

matter

B1534+12

J0737–3039

SEP

Cassini

LLR

J1141–6545

100

10!3

10!4

10!1

10!2

general relativity

($0 = "0 = 0)

ln A(#)

#

$0

"0 < 0

"0 > 0

$0

matter-scalar

coupling function

ALLOWED

THEORIES

Mercury
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Post-Newtonian constraints

Solar-system tests⇒ matter a priori weakly coupled to ϕ
TeVeS tuned to pass them even for strong matter-scalar coupling
Binary-pulsar tests⇒ matter must be weakly coupled to ϕ

r

a

a
0

0 7000AU1 2 3 4

0.2

0.4

0.6

0.8

1

f’(x)

x
0

GMa
0

r

GM

r2
Too large!

x
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Post-Newtonian constraints

Solar-system tests⇒ matter a priori weakly coupled to ϕ
TeVeS tuned to pass them even for strong matter-scalar coupling
Binary-pulsar tests⇒ matter must be weakly coupled to ϕ

r

a

01 2 3 4

0.2

0.4

0.6

0.8

1

f’(x)

x
0

GMa
0

r

small enough

but MOND

effects at too

small distances!

x

!2GM

r2

0.1AU

a
0

!2
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Post-Newtonian constraints

Solar-system tests⇒ matter a priori weakly coupled to ϕ
TeVeS tuned to pass them even for strong matter-scalar coupling
Binary-pulsar tests⇒ matter must be weakly coupled to ϕ

f’(x)

x

1

10–100

x
r

a

a
0

0 30AU 7000AU

!2GM

r2

GMa
0

r

10–5

Quite unnatural! (and not far from being experimentally ruled out)
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Non-minimal metric coupling

Neither “modified gravity” nor “modified inertia”

S =
c3

16πG

∫
d4x

√−g∗ R∗︸ ︷︷ ︸
Einstein-Hilbert

+Smatter[matter, gµν ≡ g∗µν + f (R∗µνρσ, . . .)]︸ ︷︷ ︸
Metric coupling

Strictly same spectrum as G.R. in vacuum ⇒ standard Schwarzschild solution

(no extra field, no tachyon nor ghost)

Equivalence principle satisfied

∃ vertices coupling matter fields to curvature
⇒ extra degrees of freedom confined within matter
(no free propagator)

!

!

matter extra
d.o.f.

  2g

  2g

Same structure as finite-size effects in G.R.
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Non-minimal metric coupling: problems

But exhibits all generic problems
⇒ quite useful toy model to locate hidden assumptions in the literature!

Near a spherical body, R∗µνρσ and its covariant derivatives
give access to M and r independently
⇒ One can reproduce the MOND phenomenology,
but also any other potential and any light deflection: not predictive!

MOST IMPORTANTLY, although this model does not involve any tachyon
nor ghost, it is anyway unstable: Hamiltonian unbounded by below
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Generic instability of higher-derivative theories

Consider a “non-degenerate” L(q, q̇, q̈):

p2 ≡ ∂L
∂q̈

invertible ⇒ q̈ = f (q, q̇, p2)

Ostrogradski [1850] defines

q1 ≡ q p1 ≡ ∂L
∂q̇
− d

dt

(
∂L
∂q̈

)
q2 ≡ q̇ p2 ≡ ∂L

∂q̈

Then H = p1q̇1 + p2q̇2 − L(q, q̇, q̈)

= p1q2 + p2 f (q1, q2, p2)− L (q1, q2, f (q1, q2, p2))

is such that q̇i = ∂H/∂pi and ṗi = −∂H/∂qi reproduce the
Euler-Lagrange equations derived from L.
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Nonminimal scalar-tensor model

Nonminimal metric coupling (unstable within matter)

S =
c3

16πG

∫
d4x

√−g∗ R∗ pure G.R. in vacuum

+ Smatter

[
matter ; gµν ≡ f (g∗µν , Rλ

∗µνρ,∇∗σRλ
∗µνρ, . . . )

]
Nonminimal scalar-tensor model

S =
c3

16πG

∫
d4x

√−g∗
{

R∗ − 2 gµν
∗ ∂µϕ∂νϕ

} Brans-Dicke
in vacuum

+ Smatter

[
matter ; gµν ≡ A2g∗µν + B ∂µϕ∂νϕ

]
Avoids Ostrogradskian instability

because gµν depends only on ϕ and ∂ϕ
and because Smatter only involves ∂g linearly
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Nonminimal scalar-tensor model (continued)

Nonminimal scalar-tensor model

S =
c3

16πG

∫
d4x

√−g∗
{

R∗ − 2 s
}

Brans-Dicke in vacuum

+ Smatter

[
matter ; gµν ≡ A2g∗µν + B ∂µϕ∂νϕ

]
s ≡ gµν∗ ∂µϕ∂νϕ A(ϕ, ∂ϕ) ≡ eαϕ − ϕX

α ln X

X ≡
√

αa0
c s−1/4 B(ϕ, ∂ϕ) ≡ −4 ϕX

α
1
s

Reproduces MOND while avoiding Ostrogradskian instability

but field equations not always hyperbolic within outer dilute gas!
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Pioneer 10 & 11 anomaly

Extra acceleration ∼ 8.5× 10−10 m.s−2

towards the Sun between 30 and 70 AU
Simpler problem than galaxy rotation
curves (Mdark ∝

√
Mbaryon), because

we do not know how this acceleration
is related to M(
⇒ several stable & well-posed solutions

Nonminimal scalar-tensor model

S =
c3

16πG

∫
d4x

√−g∗
{

R∗ − 2 gµν
∗ ∂µϕ∂νϕ

} Brans-Dicke
in vacuum

+ Smatter

[
matter ; gµν ≡ e2αϕg∗µν − λ

∂µϕ∂νϕ

ϕ5

]
α2 < 10−5 to pass solar-system & binary-pulsar tests
λ ≈ α3(10−4m)2 to fit Pioneer anomaly
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Other recent ideas

Einstein-æther gravity [T. Jacobson, arXiv:0801.1547 (gr-qc)]

S =

∫
d4x
√−g

{
R + c1(∇µUν)

2 + c2(∇µUµ)2 + c3∇µUν∇νUµ

+c4(Uµ∇µUν)
2 + λ(UµUµ + 1)

}
+ Smatter

[
matter ; gµν

]
Nonstandard kinetic term for vector Uµ but constant norm.
Metric coupling of matter, but ∃Tµν(U) '= 0.
H.S. Zhao generalizes this framework to nonconstant coefficients ci(x)
to reproduce MOND, but predictions & stability still quite unclear.

Special kind of dark matter reproducing MOND predictions?
For instance, fluid of gravitational dipoles [L. Blanchet 2006–08].
∃ nice relativistic version, although a few difficulties remain.

Nonlocal models? [C. Deffayet, GEF, R. Woodard 2008]
Actions involving 1

!R, or more generally f1(Rλ
µνρ)!powerf2(Rλ

µνρ).
∃ too naive reasoning showing that this should involve a ghost,
but this is not always the case.
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Conclusions

A consistent field theory should satisfy different kinds of constraints:
Mathematical: stability, well-posedness of the Cauchy problem,
no discontinuous nor adynamical field
Experimental: solar-system & binary-pulsar tests, galaxy rotation
curves, gravitational lensing by “dark matter” haloes, CMB
Esthetical: natural model, rather than fine-tuned fit of data

Best present candidate: TeVeS [Bekenstein–Sanders], but it
has still some mathematical and experimental difficulties

∃ simpler models, useful to exhibit the generic difficulties
of all MOND-like field theories

By-product of our study: a consistent class of models
for the Pioneer anomaly (but not natural!)

∃ new ideas (æther, nonlocal, . . . ), but stability still needs to be proven
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