Modified Newtonian gravity and field theory

Gilles Esposito-Farèse

 $\mathcal{GR} \in \mathbb{CO}$, Institut d'Astrophysique de Paris

Based on Phys. Rev. D 76 (2007) 124012 in collaboration with J.-P. Bruneton,

on my study of scalar-tensor theories & binary-pulsar tests with T. Damour since 1991,

on a work in progress with C. Deffayet & R. Woodard about nonlocal models,

and discussions with many colleagues, notably L. Blanchet, B. Fort,

G. Mamon, Y. Mellier, M. Milgrom, J. Moffat, R. Sanders, J.-P. Uzan, etc.

This PDF file is a summary of my lectures at

IESC, Cargèse, November 2008

Milgrom's MOND proposal [1983]

Kinetic terms

Difficulties

New routes

Conclusions

Model building

Introduction

- Moffat [2004] proposes a consistent field theory (nonsymmetric $g_{\mu\nu}$) but predicts $a = kM^2/r$ instead of \sqrt{M}/r , and assumes then $k = M^{-3/2}$!
- In 2005, he introduced a potential in his model to derive $k = M^{-3/2}$, but the potential depends on *M*

Modified Newtonian gravity and field theory • IESC, Cargèse, November 2008				Gilles Esposito-Far	èse, $\mathcal{G}\mathbb{R}\varepsilon\mathbb{C}\mathcal{O}/\mathrm{IAP}$
Introduction	Model building	Kinetic terms	Difficulties	New routes	Conclusions
00	000	000000	00000000	0000000	0
Consistent field theories					

Quadratic gravity

Model building

Introduction

• 't Hooft & Veltman [1974]: Divergence of ာက္ရွိ က eeds

Difficulties

New routes

Kinetic terms

$$\Delta \mathcal{L} = \frac{\sqrt{-g}}{8\pi^2(d-4)} \left[\frac{53}{90} R_{\mu\nu\rho\sigma}^2 - \frac{361}{180} R_{\mu\nu}^2 + \frac{43}{72} R^2 \right]$$
$$= \frac{\sqrt{-g}}{8\pi^2(d-4)} \left[\frac{7}{40} C_{\mu\nu\rho\sigma}^2 + \frac{1}{8} R^2 + \frac{149}{360} \text{GB} \right]$$

 $C_{\mu\nu\rho\sigma}$: Weyl tensor (fully traceless) GB $\equiv R^2_{\mu\nu\rho\sigma} - 4R^2_{\mu\nu} + R^2$: Gauss-Bonnet topological invariant

• Stelle's thesis [1977]: If $\alpha \neq 0$ and $\beta \neq 0$,

Quadratic gravity is renormalizable

$$S_{\text{gravity}} = \int d^4x \sqrt{-g} \Big[R + \alpha C_{\mu\nu\rho\sigma}^2 + \beta R^2 + \gamma \text{GB} \Big]$$

Modified Newtonian gravity and field theory • IESC, Cargèse, November 2008

Gilles Esposito-Farèse, $\mathcal{GR} \in \mathbb{CO}/IAP$

Conclusions

Propagator
$$p^2 + \alpha p^4 = p^2 \frac{1}{p^2 + \frac{1}{\alpha}}$$

N.B.: $\frac{1}{\alpha} = m^2$ of extra d° of freedom \Rightarrow negative α gives a tachyon, but anyway a ghost

[Stelle 1977; Hindawi, Ovrut, Waldram 1996; Tomboulis 1996]:

• $R + f(R_{\mu\nu}, R_{\mu\nu\rho\sigma}) \Rightarrow$ extra massive spin-2 ghost \Rightarrow unstable vacuum • $R + f(R) \Rightarrow$ extra massive spin-0 scalar with $E_{kin} > 0$

N.B.: Strings predict $C^2_{\mu\nu\rho\sigma}$, but also any higher derivative (nonlocal)

0000

N.B.: If potential = 0, solar system $\Rightarrow \omega_{BD} > 40000$

- Similarly $f(R, \Box R, \ldots, \Box^n R) \Rightarrow$ Einstein plus n + 1 scalar fields [Gottlöber, Schmidt, Starobinsky 1990; Wands 1994]
- Such scalar fields give generically Yukawa potentials $\propto \frac{e^{-mr}}{r}$ \Rightarrow not MOND (potential $\propto \ln r$)

Modified Newtonian gravity and field theory • IESC, Cargèse, November 2008Gilles Esposito-Farèse,
$$\mathcal{G}\mathbb{R}\in\mathbb{C}\mathcal{O}/IAP$$

We saw that f(R) theories are equivalent to

$$S = \int d^4x \sqrt{-g} \left\{ f'(\Phi)R - 0 \left(\partial_{\mu}\Phi\right)^2 - \left[\Phi f'(\Phi) - f(\Phi)\right] \right\} + S_{\text{matter}}[\text{matter}, g_{\mu\nu}]$$

Let
$$g^*_{\mu\nu} \equiv f'(\Phi)g_{\mu\nu}, \ \varphi \equiv \sqrt{3} \ln f'(\Phi), \ V(\varphi) \equiv \frac{\Phi f'(\Phi) - f(\Phi)}{f'^2(\Phi)}$$

$$\Rightarrow \qquad Standard scalar-tensor theory S = \int d^4x \sqrt{-g^*} \left\{ R^* - \frac{1}{2} g_*^{\mu\nu} \partial_\mu \varphi \partial_\nu \varphi - V(\varphi) \right\} \qquad graviton + S_{matter}[matter, g_{\mu\nu} = e^{\varphi/\sqrt{3}} g_{\mu\nu}^*] \qquad scalar$$

Modified Newtonian gravity and field theory • IESC, Cargèse, November 2008

Introduction Model building Conclusions Kinetic terms Difficulties New routes Consistency conditions on $f(\partial_{\mu}\varphi \partial^{\mu}\varphi)$

Hyperbolicity of the field equations + Hamiltonian bounded by below

• $\forall x, f'(x) > 0$

but still causally

• $\forall x, \quad 2xf''(x) + f'(x) > 0$

N.B.: If f''(x) > 0, the scalar field propagates faster than gravitons,

 \Rightarrow no need to impose $f''(x) \leq 0$

scalar causal cone graviton causal cone

These conditions become much more complicated *within matter*

Action	and	reaction	principle	
	ana	reaction	principic	

Model building

Introduction

• Replace gravitational field $g_{\mu\nu}$ by its value imposed by material sources \Rightarrow Fokker Lagrangian

Kinetic terms

$$\mathcal{L} = -\sum_{A} m_{A}c^{2}\sqrt{1 - \frac{\mathbf{v}_{A}^{2}}{c^{2}}} + \frac{1}{2}\sum_{A \neq B} \underbrace{V(m_{A}, m_{B}, r_{AB}, \mathbf{v}_{A}, \mathbf{v}_{B})}_{\frac{Gm_{A}m_{B}}{r_{AB}} - 2m_{A}\sqrt{Gm_{B}a_{0}} \ln r_{AB}} + \frac{1}{2}\sum_{A \neq B \neq C} \dots$$

$$\Rightarrow m_{A}a_{A} = \frac{Gm_{A}m_{B}}{r_{AB}^{2}} + \frac{m_{A}\sqrt{Gm_{B}a_{0}}}{r_{AB}} + \frac{m_{B}\sqrt{Gm_{A}a_{0}}}{r_{AB}}$$

$$\Rightarrow a_{A} = \frac{Gm_{B}}{r_{AB}^{2}} + \frac{\sqrt{Gm_{B}a_{0}}}{r_{AB}} + \frac{m_{B}\sqrt{Ga_{0}/m_{A}}}{r_{AB}}$$
Divergent acceleration for test masses $m_{A} \rightarrow 0$!

Difficulties

•00000000

New routes

Conclusions

• But if self-field effects are treated consistently [Milgrom 1994–97], RAQUAL models actually predict in the MOND regime ($a < a_0$)

$$m_{A}a_{A} = \frac{2}{3} \frac{\sqrt{Ga_{0}}}{r_{AB}} \left[(m_{A} + m_{B})^{3/2} - m_{A}^{3/2} - m_{B}^{3/2} \right]$$

$$\Rightarrow a_{A} = \frac{\sqrt{Gm_{B}a_{0}}}{r_{AB}} + \mathcal{O}(\sqrt{m_{A}})$$

Modified Newtonian gravity and field theory • IESC, Cargèse, November 2008

interpreted as smaller than G.R. because $G_{\text{eff}} > G_{\text{bare}}$

[N.B.: ∃ an erroneous theorem (overstatement) by Bekenstein & Sanders about this]

-

Stratified theories
[Ni, Sanders, Bekenstein (TeVeS)]

$$S = \frac{c^3}{16\pi G} \int d^4x \sqrt{-g^*} \Big\{ R^* - 2f(g^{\mu\nu}_*\partial_{\mu}\varphi\partial_{\nu}\varphi) \Big\} + S_{\text{matter}} \Big[\text{matter} ; g_{\mu\nu} \equiv A^2(\varphi, U)g^*_{\mu\nu} + B(\varphi, U)U_{\mu}U_{\nu} \Big]$$

- U_{μ} is either a new vector field, or $\partial_{\mu}\varphi$ itself
- $A^2 > 0$ and $A^2 + Bg_*^{\mu\nu}U_{\mu}U_{\mu} > 0$ necessary for hyperbolicity (in addition to the previous conditions on *f*).

Earth

Stratified theories

Introduction

Introduction

Trick to increase light deflection (as dark matter does)

Kinetic terms

• Since Schwarzschild is such that $-g_{00} = g_{rr}^{-1} = (1 - \frac{2GM}{rc^2})$, let us couple φ inversely to g_{00}^* and g_{ii}^* , say

$$g_{00} \equiv e^{2\varphi} g_{00}^*$$
 and $g_{ij} \equiv e^{-2\varphi} g_{ij}^*$

Difficulties

000000000

New routes

• Covariant rewriting:

Model building

Let a vector $U_{\mu} = (1, 0, 0, 0)$ in this preferred frame.

 \Rightarrow Define the physical metric (minimally coupled to matter) as

$$g_{\mu\nu} = e^{-2\varphi} \left(g^*_{\mu\nu} + U_{\mu}U_{\nu} \right) - e^{2\varphi}U_{\mu}U_{\nu}$$
$$= e^{-2\varphi}g^*_{\mu\nu} - 2 U_{\mu}U_{\nu}\sinh(2\varphi)$$

- N.B.1: Other factors depending on φ would give a different light deflection \Rightarrow this is *ad hoc*!
- N.B.2: Preferred-frame effects strongly constrained in solar system

Kinetic terms

Modified Newtonian gravity and field theory • IESC, Cargèse, November 2008	Gilles Esposito-Farèse, $\mathcal{GR} \in \mathbb{CO}/\mathrm{IAP}$

Difficulties

000000000

Bekenstein's TeVeS model [2004–05]

Model building

- Many years of work \Rightarrow complicated $S_{\text{scalar}} = -\frac{1}{2} \int d^4x \sqrt{-g^*} \left[\sigma^2 (g_*^{\alpha\beta} - U^{\alpha} U^{\beta}) \partial_{\alpha} \varphi \partial_{\beta} \varphi + \frac{1}{2} G \ell^{-2} \sigma^4 F(kG\sigma^2) \right]$
- Potential *F* discontinuous $F(\mu) = \frac{3}{8} \frac{\mu(4 + 2\mu 4\mu^2 + \mu^3) + 2\ln[(1 \mu)^2]}{\mu^2}$

 Sanders defines smoother functions, and promotes σ to a 2nd dynamical scalar field, but this is a tachyon

New routes

Conclusions

Conclusions

- [Lue & Starkman 2004]
- Skordis *et al.* [2006] need $\Omega_{\nu} = 0.17$ for CMB (not far from $\Omega_{DM} = 0.24$) $\Rightarrow \exists$ dark matter!

Modified Newtonian gravity and field theory	 IESC, Cargèse, November 2008
---	--

Gilles Esposito-Farèse, $\mathcal{GR} \in \mathbb{CO}/IAP$

Introduction	Model building	Kinetic terms	Difficulties	New routes	Conclusion O
Difficult	ies of RAOI	JAL models	S		

- Action/reaction, light deflection & CMB: ∃ solutions
- Complicated Lagrangians (unnatural)
- Fine tuning (≈ fit rather than predictive models): Possible to predict different lensing and rotation curves
- Discontinuities: can be cured
- In TeVeS [Bekenstein], gravitons & scalar are slower than photons
 ⇒ gravi-Cerenkov radiation suppresses high-energy cosmic rays
 [Moore *et al.* 2001–05]
 Solution: Accept slower photons than gravitons
- \exists preferred frame (ether) where vector $U_{\mu} = (1, 0, 0, 0)$ Maybe not too problematic if U_{μ} is dynamical
- Vector contribution to Hamiltonian unbounded by below
 [Clayton 2001] ⇒ unstable model
- Post-Newtonian tests very constraining

Modified Newtonian gravity and field theory • IESC, Cargèse, November 2008

Gilles Esposito-Farèse, $\mathcal{GR} \in \mathbb{CO}/IAP$

Introduction	Model building	Kinetic terms	Difficulties ○○○○○○●	New routes	Conclusions O
Post-Newt	conian constr	aints			

- Solar-system tests \Rightarrow matter *a priori* weakly coupled to φ
- TeVeS *tuned* to pass them even for strong matter-scalar coupling
- Binary-pulsar tests \Rightarrow matter must be weakly coupled to φ

Post-Newtonian constraints

- Solar-system tests \Rightarrow matter *a priori* weakly coupled to φ
- TeVeS *tuned* to pass them even for strong matter-scalar coupling
- Binary-pulsar tests \Rightarrow matter must be weakly coupled to φ

Post-Newtonian constraints

Model building

Introduction

• Solar-system tests \Rightarrow matter *a priori* weakly coupled to φ

Kinetic terms

• TeVeS *tuned* to pass them even for strong matter-scalar coupling

Difficulties

00000000

New routes

Conclusions

• Binary-pulsar tests \Rightarrow matter must be weakly coupled to φ

Introduction	Model building	Kinetic terms	Difficulties ○○○○○○●	New routes	Conclusions O
Post-Nev	vtonian con	straints			

- Solar-system tests \Rightarrow matter *a priori* weakly coupled to φ
- TeVeS tuned to pass them even for strong matter-scalar coupling
- Binary-pulsar tests \Rightarrow matter must be weakly coupled to φ

Quite unnatural! (and not far from being experimentally ruled out)

Non-minimal metric coupling: problems

But exhibits all generic problems \Rightarrow quite useful toy model to locate hidden assumptions in the literature!

- Near a spherical body, *R*^{*}_{μνρσ} and its covariant derivatives give access to *M* and *r* independently
 ⇒ One can reproduce the MOND phenomenology, but also any other potential and any light deflection: not predictive!
- MOST IMPORTANTLY, although this model does not involve any tachyon nor ghost, it is anyway unstable: Hamiltonian unbounded by below

luction	Model	bu
	000	

Intro

Difficulties

(00)

Generic instability of higher-derivative theories

• Consider a "non-degenerate" $\mathcal{L}(q, \dot{q}, \ddot{q})$:

$$p_2 \equiv \frac{\partial \mathcal{L}}{\partial \ddot{q}}$$
 invertible $\Rightarrow \ddot{q} = f(q, \dot{q}, p_2)$

• Ostrogradski [1850] defines

$$q_{1} \equiv q \qquad p_{1} \equiv \frac{\partial \mathcal{L}}{\partial \dot{q}} - \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \ddot{q}} \right)$$
$$q_{2} \equiv \dot{q} \qquad p_{2} \equiv \frac{\partial \mathcal{L}}{\partial \ddot{q}}$$

• Then $\mathcal{H} = p_1 \dot{q}_1 + p_2 \dot{q}_2 - \mathcal{L}(q, \dot{q}, \ddot{q})$ = $p_1 q_2 + p_2 f(q_1, q_2, p_2) - \mathcal{L}(q_1, q_2, f(q_1, q_2, p_2))$

is such that $\dot{q}_i = \partial \mathcal{H} / \partial p_i$ and $\dot{p}_i = -\partial \mathcal{H} / \partial q_i$ reproduce the Euler-Lagrange equations derived from \mathcal{L} .

odified Newtonian gravity and field theory • IESC, Cargèse, November 2008Gilles Esposito-Farèse, $\mathcal{GReCO/IA}$					
ntroduction	Model building	Kinetic terms	Difficulties	New routes	Conclusions O
Nonmini	mal scalar-t	ensor mode	-1		
			-		
	Nonminimal n	netric coupling	(unstable with	hin matter)	
S	$= \frac{c^3}{16\pi G} \int d^4$	$4x\sqrt{-g^*}R^*$	pure G.R. ir	ı vacuum	
	$+S_{matter}$ [m	atter ; $g_{\mu\nu} \equiv j$	$f(g^*_{\mu u}, R^{\lambda}_{*\mu u ho})$	$ abla^*_{\sigma} R^{\lambda}_{*\mu u ho},\ldots$)]
	Nor	minimal scala	-tensor mode	l	
S =	$= \frac{c^3}{16\pi G} \int d^4$	$x\sqrt{-g^*}\Big\{R^*-$	$2g_*^{\mu u}\partial_\muarphi\partial_ uarphi$	Brans-Dio in vacuum	cke n
	$+S_{\text{matter}}$ [ma	atter ; $g_{\mu\nu} \equiv A$	$A^2 g^*_{\mu\nu} + B \partial_\mu \varphi$	$\varphi \partial_{ u} \varphi \Big]$	
Avoids	Ostrogradskian	instability			
• be	ecause $g_{\mu\nu}$ depe	nds only on φ :	and $\partial \varphi$		

• and because S_{matter} only involves ∂g linearly

Nonminimal scalar-tensor model (continued)

Kinetic terms

Model building

Introduction

Nonminimal scalar-tensor model

$$S = \frac{c^3}{16\pi G} \int d^4x \sqrt{-g^*} \left\{ R^* - 2s \right\} \text{ Brans-Dicke in vacuum} \\ + S_{\text{matter}} \left[\text{matter} ; g_{\mu\nu} \equiv A^2 g^*_{\mu\nu} + B \partial_{\mu} \varphi \partial_{\nu} \varphi \right]$$

Difficulties

New routes

0000000

Conclusions

$$s \equiv g_*^{\mu\nu} \partial_\mu \varphi \partial_\nu \varphi \qquad A(\varphi, \partial \varphi) \equiv e^{\alpha \varphi} - \frac{\varphi X}{\alpha} \ln X$$
$$X \equiv \frac{\sqrt{\alpha a_0}}{c} s^{-1/4} \qquad B(\varphi, \partial \varphi) \equiv -4 \frac{\varphi X}{\alpha} \frac{1}{s}$$

Reproduces MOND while avoiding Ostrogradskian instability

but field equations not always hyperbolic within outer dilute gas!

					rèse, $\mathcal{GR} \in \mathbb{CO}/\mathrm{IAP}$
roduction	Model building 000 10 & 11 ano	Kinetic terms 000000 maly	Difficulties	New routes ○○○○●○	Conclusions O
• F t • S c v i • =	Extra acceleration owards the Sun b Simpler problem curves ($M_{dark} \propto A$ we do not know h s related to M_{\odot} \Rightarrow several stable	$n \sim 8.5 \times 10^{-1}$ between 30 and than galaxy rot $\sqrt{M_{\text{baryon}}}$, bec now this acceled & well-posed s	¹⁰ m.s ⁻² 70 AU tation ause ration		
	Nor	nminimal scala	r-tensor model		
S	$= \frac{c^3}{16\pi G} \int d^4 d^4 + S_{\text{matter}} \Big[m \Big]$	$fx\sqrt{-g^*}\Big\{R^* -$ atter ; $g_{\mu\nu} \equiv g$	$\frac{2}{2} g_*^{\mu u} \partial_\mu \varphi \partial_ u \varphi}{g_*^{2lpha \varphi} g_{\mu u}^*} - \lambda - \frac{\partial}{\partial \theta}$	$\left. \begin{array}{c} \left. \begin{array}{c} \mathbf{Brans-Die}\\ \mathbf{in \ vacuum}\\ \\ \hline \\ \rho \\ \varphi \\ \varphi \\ \varphi \\ \varphi \\ \hline \end{array} \right. \right\}$	cke n
• ($\alpha^2 < 10^{-5}$ to pass $\alpha \approx \alpha^3 (10^{-4} \text{m})^2$ to	solar-system & o <i>fit</i> Pioneer ano	binary-pulsar te maly	sts	

Modified Newtonian gravity and field theory • IESC, Cargèse, November 2008

New routes ○○○○○●

New routes

Conclusions

Other recent ideas

- Einstein-æther gravity [T. Jacobson, arXiv:0801.1547 (gr-qc)]
 - $S = \int d^4x \sqrt{-g} \Big\{ R + c_1 (\nabla_\mu U_\nu)^2 + c_2 (\nabla_\mu U^\mu)^2 + c_3 \nabla_\mu U_\nu \nabla^\nu U^\mu + c_4 (U^\mu \nabla_\mu U_\nu)^2 + \lambda (U_\mu U^\mu + 1) \Big\} + S_{\text{matter}} [\text{matter}; g_{\mu\nu}]$ Nonstandard kinetic term for vector U_μ but constant norm.

Metric coupling of matter, but $\exists T_{\mu\nu}(U) \neq 0$.

H.S. Zhao generalizes this framework to nonconstant coefficients $c_i(x)$ to reproduce MOND, but predictions & stability still quite unclear.

- Special kind of dark matter reproducing MOND predictions? For instance, fluid of gravitational dipoles [L. Blanchet 2006–08].
 ∃ nice relativistic version, although a few difficulties remain.
- Nonlocal models? [C. Deffayet, GEF, R. Woodard 2008] Actions involving $\frac{1}{\Box}R$, or more generally $f_1(R^{\lambda}_{\mu\nu\rho})\Box^{\text{power}}f_2(R^{\lambda}_{\mu\nu\rho})$. \exists too naive reasoning showing that this should involve a ghost, but this is not always the case.

Modified Newtonian gravity and field theory • IESC, Cargèse, November 2008	Gilles Esposito-Farèse, $\mathcal{GR} \in \mathbb{CO}/\mathrm{IAP}$

Difficulties

Kinetic terms

Conclusions

Model building

Introduction

A consistent field theory should satisfy different kinds of constraints:

- Mathematical: stability, well-posedness of the Cauchy problem, no discontinuous nor adynamical field
- Experimental: solar-system & binary-pulsar tests, galaxy rotation curves, gravitational lensing by "dark matter" haloes, CMB
- Esthetical: natural model, rather than fine-tuned *fit* of data

Best present candidate: TeVeS [Bekenstein–Sanders], but it has still some mathematical and experimental difficulties

 \exists simpler models, useful to exhibit the generic difficulties of all MOND-like field theories

By-product of our study: a consistent class of models for the Pioneer anomaly (but *not* natural!)

 \exists new ideas (æther, nonlocal, ...), but stability still needs to be proven