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The cosmological concordance model
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Multipole moment, ¢

From Planck collaboration

» Temperature fluctuations in the cosmic microwave background,
» Accelerated expansion of the universe,

» Formation and growth of large scale structure,
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The mass discrepancy - acceleration relation [Famaey &

McGaugh, 2012]

v/7)?

10% 108!

v/v)?

o
107! 10710 107°
a(ms™?)

/v,

-y

10712 1071 10710 107°
gy (m s7%)

Laura BERNARD 04/06/2014 IAP



Milgrom’s law (1983)

Modification of the Newtonian gravitational acceleration
n(lgl/a0) g =gn .

> ap~ 1.2 x 1071% ms~2 is the MOND acceleration constant,

» 1 is the MOND interpolating function:

w(x) i1 In the newtonian regime g > ag,
() s=t @ in the MOND regime g < ay .
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Milgrom’s law (1983)

Modification of the Newtonian gravitational acceleration
n(lgl/a0) g =gn .
> ap~ 1.2 x 1071% ms~2 is the MOND acceleration constant,
» 1 is the MOND interpolating function:

w(x) i1 In the newtonian regime g > ag,
() s=t @ in the MOND regime g < ay .

In the low acceleration limit we have

V2 GMCL()

7:‘9:
T 72

= V!=GMay.
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Baryonic mass vs rotation velocity cGaugh, 2014)
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The MOND equation (Bekenstein & Milgrom, 1984)

Modified Poisson equation for the gravitational field
g=VU

» Field theoretic version of MOND:

V. <u (%) g> = —4nGpy ,
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The MOND equation (Bekenstein & Milgrom, 1984)

Modified Poisson equation for the gravitational field

g=VU
» Field theoretic version of MOND:

V. <u (i) g> = —AnGpy ,

» Writing 4 = 1 + x where x is the gravitational susceptibility, the
analogy with a dielectric medium is apparent,

AU = —47G (py + ppol) )

X
where ppo1 = =V -P and P = e g.
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Some Relativistic MOND theories
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Some Relativistic MOND theories

Modified gravity theories

» Tensor-Vector-Scalar theory (TeVeS) [Bekenstein 2004, Sanders 2005]

» Non canonical Einstein-aether theories [Zlosnik et al. 2007, Halle et
al. 2008]

» A bimetric theory of gravity (BIMOND) [Milgrom 2009

» Non local theories [Deffayet et al. 2011]

Modified dark matter theories

» Dipolar Dark Matter [Blanchet & Le Tiec 2008;2009]
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TeVeS [Bekenstein 2004, Sanders 2005]

» Einstein metric g,,, scalar field ¢, dynamical unit time-like
vector field U*,

C4 ~ e v v
Su = 71671'G/d4x\/jg [K Bu Ua U] — A (§" U#UVJrl)] 7
S = —geng d'ay/=g f (K (3" = UMU") 66,0 )
2k212G wP )

Kaﬁ/,ul — clgaugﬂu + c2§aﬁguu +c3§augﬁu +C4U(1U[JI§BV'

> ag =

-1
ﬁanduz(l+ﬁﬂ) .
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Non-canonical Einstein-aether theories [ziosnik et ai. 2007, Halle

et al. 2008]

» Tensor-vector theory in the physical frame,
» Violates Lorentz invariance as it selected a preferred frame at
each point in space-time
4

A T e TE]

/ d*ev/=g s [ (z KU U, V])

AT+ ).

> u=f4+01-f)/1-C/2)and = % to recover MOND.
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Dipolar Dark Matter [Bianchet & Le Tiec 2008;2009]

» Dark matter fluid endowed with a dipole moment vector £*.
SppMm = /d49€\/ -9 [—[H— JHE, — W(PJ_)} ,

with P, = p&, the polarization field.

A 1672
W(PL) = o + 27 PP + 3;; P34+ O(PY).

» Recovers the first order cosmological perturbations.

» But requires a weak clustering hypothesis of DDM to recover
MOND.
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Modified Dark Matter and bimetric gravity
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A new kind of modified Dark Matter and bimetric
gravity

The model

» Two metrics g, and 9, interacting with each other through f,,
defined by the implicit relation

f;w - fpagpugug = fpggpvgug 5
» Two kinds of dark matter p and p, with mass currents J* = pu*
and J* = pu, and respectively coupled to g,,, and 9
» Ordinary baryonic matter py living in the sector g,

> A vector field K, living in the interacting sector f,, and with a
non-canonical kinetic term.
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The action

S:/d%{‘/__g(R?,_sz_pb_p) +\/__2<E3_273A_£)

R —2A a H"H
_ T Oy (-
T | Bt - 2+ g w- g |}
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The action

oo [ (M ) a2

R—2A G — af . H"H,,
Ve {1671'5 (" = 3K+ g W = )|

2a§

» The function W is determined phenomenologically to recover
» MOND in the weak field limit,

W(X) = X — §X3/2 +O(X?), when X -0,
» and GR for strong fields

W(X) = A+%+O(X N, a>0.
» There is the same cosmological constant in all sectors in order to
be in agreement with A-CDM.

» ¢ measures the strength of the interaction between the two
sectors, will be assume very small in the (post-)Newtonian limit.
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Equation of motion

Einstein field equations

V(@ ag) + YA (0 Ap) = 16 [VEg (1 4 )
+\/—fA’,ngW} ,

vEa @ ag) + YL ag (o agm) = 1on | g+ VT A

€

Equations of motion

ay = 0,
a* = u Hp, D, (W' H*) = 4x (j* — j*) .
Q# = _QU Huu-
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Linear order

Hypothesis: plasma-like solutions
The two fluid of DM particles slightly differ from an equilibrium
configuration by small displacement vectors y* and y*,

" = i+ Dy oyt — i) + 0 (vP)
=y (Jy - ) + 0 ()

» We work at linear order around f,,:

I = Juw + hypw + O<h2) )
9, = Juw = huw + o(h?),

mz

» All perturbation variables are of the same order of magnitude

Vy~Vy~h.
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Linearised matter and gravitational fields

» Defining the relative displacement ¥ = y* — y*,
J* = 3" =Dy (jg€ — 6€1)

» We insert it in the equation of motion for the vector field
D, (W' H") = 4r (j* — j*) and integrate it

WH = o (j5et — et
= 7 = O(h?) for weak fields.
» Taking the difference of the gravitational field equations we get

™ = O(h).

Linearised equations of motion

a' = —dmpog!]
Ampogl .

QU«
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Cosmological perturbations

We expand the two metrics around the FLRW background metric

o

ds® = a*(n) (—d772 + v da’ dxj) ,
Background equations

3(H2+K) = ——pa + Ad?,
K+e

H2+2H + K = Ad?.

» No baryons in the background,
» The two kinds of dark matter overlap in the backround,
» We recover the standard term for the cosmological constant.
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First order cosmological perturbations

Method

» We write the first order cosmological perturbations for the two
metrics and the matter variables:

> in the g-sector : {¥, &, &', EY} {§¥, V, V'} and {ps, u}'},
> in the g-sector : {¥, &, @', EY} and {67, V, V'},
> in the f-sector : &§ = (0, D'z + 2*).

» Then we compare the ordinary sector g,,, on which ordinary
matter moves with A-CDM scenario — identify the observed
dark matter variables in the sector g, .
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First order cosmological perturbations

We introduce new effective dark matter variables:

o 2&‘ [e] 1
=— Ey=0——(Az—(A-A
Ppm 1+€P7 DM 25( z—( 4)) ,
1 ;1 i i 1 1t 1 i i
— — L B-B M=Vit — S(B'—=B'
Vou=V+ - (+3(B-B)), Vou=V'+ (z +5( )>,

and recover the standard continuity and Euler equations for the
effective dark matter,

5IEM + AVpm =0,
V]SM+HVDM+\I/=0,
"oum + HViy =0,

and p; + 3Hpp = 0 for the baryons.
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First order cosmological perturbations

Gravitational perturbation equations
AT — 3H2X = 47 a? (pB+ZDM 55M) :
U-d=0,
U+ HP = —471a® (ZDM VDM) s
HX + (H2 +2H)X =0,
(A + 2K)®' = —167 a2 (ZDM V5M> ,
"+ 2HP =0,
E"7 4+ 2HE'"Y + (2K — A)EY =0,

and similar equations in the g-sector.

» This system of equations is well defined and each variable can be
determined.
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Non-relativistic limit when ¢ < 1
2U

goo = —1+ = +0(c™), goi = O(c™?),
2U _ _
gOO:—1+C—;+O(c 4, gy, = O(c™?),
o i
=G, g ).

Poisson equation

AU = 47 (py + p* = p*) .

Non-relativistic equations of motion

dvy dv

dt dt

Laura BERNARD

VU, S =V(U+e), =

gij = 8ij + O(c™?),

9,5 = 0ij + O(c™?),

~V(U +¢).
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Non-relativistic limit in the case ¢ < 1

» Plasma-like solutions p* = p§ — %V P and p* = pj + %V -P,
where P is the gravitational polarization field,
W/

P=p;A=—VU.
Po A

» From the Poisson equation we recover the MOND formula
v {M (@) VU} — —4nGpy.,

ao
VU

ao

withpy=1-W'= in the weak field regime.

» We recover a dipolar dark matter medium which oscillates at the

-
plasma frequency w = \/ 552,

d2X
=" WA =2VU.
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Solar system tests

Strong field regime

» To recover GR in the strong field regime (X — 00), we impose

W(X):A+%+O(ﬁ), a<0.

» and expand both metrics to 2" order in h:
Guv = fuv + Py + %huphpu and 9y = S — hyw + %huphpw

Post-Newtonian limit

» We obtain the same parametrized post-Newtonian parameters as
in GR, 8 =1, v =1, all others are zero.
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Conclusion

Results

» It correctly reproduces the phenomenology of MOND in the
non-relativistic limit provided that € < 1,

» It passes solar system tests (same ppN parameters as GR),

» The model agrees with the standard A-CDM paradigm at
cosmological scales, provided that the baryons are treated
perturbatively.

Laura BERNARD 04/06/2014

IAP



Conclusion

Results

» It correctly reproduces the phenomenology of MOND in the
non-relativistic limit provided that € < 1,

» It passes solar system tests (same ppN parameters as GR),

» The model agrees with the standard A-CDM paradigm at
cosmological scales, provided that the baryons are treated
perturbatively.

Remarks and perspectives

» Investigate the case where we expand the metrics around two
different FLRW background,

» The arbitrary function W should be derived from a more
fundamental theory.
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