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Outline

1. Affine quantization
(coherent states, affine group, phase space representation,
lower symbols, .. .)

2. Quantized cosmological models
(repulsive term, FRW, Bianchi I, ...)

3. Time Problem

(canonical vs coordinate transformation, spectra, semiclassical
trajectories, .. .)



Basic quantization scheme

The minimal setting:

(X, du) - a measurable space, H - Hilbert space,
X3x— 1 €H. Let

/ ) (Wil = 1,
X

Then define
) s Ar = [ £ (sl

(in a weak sense). Overcomplete basis.



Affine group

’X:(q, p) € Ry xR, w:dp/\dq‘

X = (q, p) is viewed as the affine group Aff;(R) of the real line:
Po
(g,p) - (g0, P0) = <qqo, v + p) , Ry, peR,

e=(1,0), (¢,p) 1=(q7%,—qp)

q - dilation, p - translation.

w is left-invariant wrt Aff; (R)



Affine quantization
UIR of Aff(R) in H = L3(R*, dx)

U(q, p)i(x) = e z1(x/a)

Given a normalized vector ¥g € H, a continuous family of unit
vectors are defined as

lg,p) = U(q, p)lto), (xlg,p) = ei"x\jawo(X/q)-

The resolution of unity guaranteed via Schur's Lemma

d
/ ad Pla.p)g.pl=cq-1

2map

Quantization:

f s Ar = [y 3222 £(q,p) |9, P) (3, |




Results of quantization

The quantization of coordinate functions reads:

_ <o(to)
9 A= c-1(%o)

where Q and P are position and momentum operators (on R%).

Q, p—A=P,

The quantization of the kinetic term reads:

K(y
PP P+ 8/20) +—5—(PQ71+Q7'P),
for K > 3/4 the above is self-adjoint. We fix
v () )
YPo(x) = éeﬁ(gw)xﬂ?@)x)

V2x Ko(v)



Phase space representation

For |¢) one has the phase space representation:

|9) = ®(q,p) = (q,pl¢)/\/2mc1

with associated probability distribution:

|9) = po(q, p) =

(g, plo)[?

27TC,1

Having found the (energy) eigenstates of a quantum Hamiltonian
H, one computes the time evolution

1 »
po(a:p:t) = 5-—I(a.ple Ht1p))2

for any state ¢.



Semiclassical description

A lower symbol of an observable f(q, p):

. dp'dq’
F(a.p) = (@ plArla.p) = [ 2 \iaupla's ) PA( )
n TC.

+ —

provides a semiclassical description of Ay.

For example:



Singularity model: FRW

Gravity+perfect fluid:

S:=5,+5 = /R\/Tg d4x+/\/§p(u,5)d4x
with u = p(é, o, 8,0, S). Follow ADM decomposition:
ds? = —N2dt* + g;(dx’ + N'dt)(dx’ + N dt)
+ hamiltonian analysis 4+ symmetry imposition:

~2 " T
H:—Hg+Hf—/\/< P 6ka+ 2 )zo

243 33w
where p = wp,
aa

v
NO

k=V2Pk, 3:=aVy, p,i= 12

(57 f)a) € R+ X R?(Tva) € R x R+



Reduced phase space

Fix N so that:

=2 T ~2
P 7~ P T, Pax3w-1 7 =3w+1
N[ — — 6k =— -2 6k
( e a+§3w> P +24a + bka

Solve the constraint for pr:

_P

ht =
T g

3wl L e6kzat (5,p,T)
Perform a canonical transformation:

(3,p) — (a,p)

to obtain B
ht = a(w)p® + 6kg"™), g >0



_ _ 1
k—l,W—§

A harmonic oscillator on the half-line.
1 ~
ht = —p® + 6kq?

24

Quantum hamiltonian

Ay = % P? + 5585 1 6kM(1) Q2

Semiclassical point of view: a displacement of the equilibrium
point of the potential g% = lel AF;((';)) . The singularity @ =0 is

‘shielded’ by the infinite potential.




Ground state ¢

Probability distribution:
[$0) > P (q; P) = (q. p|¢o)|?

27TC71




Dynamics

Figure: Phase space distributions p, q) at different times equally spaced
g ! Pl 40,po,7) .

(from top left to bottom right). Increasing values of the function are encoded by the
colors from blue to red.



Averaged distribution

Momentum p

15 20 25

05 10
Position q

Figure: Time average phase space distribution evolving following the Hamiltonian.
Increasing values of the function are encoded by the colors from blue to red.



Semiclassical constraint

Lower symbol — Modified Friedmann equation:

v 1 kc>  8nG
Hi+ Cab(l-w) g ve + 7 = 32 ”
x repulsive potential is of quantum geometrical origin
* singularity resolution confirmed: % ~ a~% grows faster than
pr~ a3t for 3 -0
x meaningful for compact universes only
* departure from EFE: |VO| < %ap(l — w)\ /v



Anisotropic singularity
The constraint:

1 _
H := Hy + Hp, = Ng" <24 (—a2p2 +q 2(p3r +p3)) + p7-> ~0

is solved for pr
2
o 1
h— 2 2 2y —2
24P 24(p++p_)q

(g.p) eR} xR (BF,ps) € R

Note:
h>0

Quantization:

2 K 1c_
2 & (P2 4 P2)Q2

O[Z 2
A= p AN
W= oy TP 02 T e,



Positivity constraint

We quantize 6(h)h:

Aghyh = An — Ap(=h)h

and find the non-local part:
(x| Ag(—mnlx") =

2 kRe[Ko(27)] €Im[vK1(27)]
TKo(V)em1 \ Vo (x = x')2 Vool (x — X' P3E(E + L)

with v = %\/(% + L) x+x = i%%(x —x'))
We go for semiclassical description:

(q, plAa(rnla, p)



Result

1
Pomnlap ~ 5 (P4 +AW) = BUIK +2,(K) - bu(K, p))

where
v 2
1+ )\1(1/)[(2

by (K, p*q®) =
u( P q ) 1+)\1(l/)k2 +)\2(V)p2q2

Solution reads:

1 Oé2 ~ k2 k2 k2 .
CI(T) = \/7124 <4h2T2 +A(l/) — B(V)E + ay (;) - b, (914/727-2))

and hence



Big Bounce

g 1 B 3 0 g 00 05 1o is 20

Figu re: On the left: classical trajectories diverging in the vicinity of the singularity.
On the right: semiclassical trajectories (lower symbol of physical hamiltonian)
exhibiting smooth transition from collapsing to expanding branch.



Summary

Affine quantization offers a singularity resolution and:
1. "extra” quantum terms

adjustable

CCR

self-adjointness

small volume/high curvature quantum effects

semiclassical description with the repulsive potential

No oA wDd

quantize functions and distributions



Can we trust quantum cosmological models?

imposing symmetry + quantizating # quantizating 4+ imposing
symmetry

hamiltonian constraint system:

Dirac vs RPS

Hilbert space problem vs multiple choice problem (for a given ST
foliation)



Solving the constraint
Hamiltonian constraint:
H=P+h(Q,q, ps)~0
E.om.:
¢ ={p" H} ={q",h(Q,q", ps)},

p* = {p°, H} = {p°, h(Q,q", ps)},

Q=1

Reduced framework:
h(Q,q", ps) = true hamiltonian

Q = clock variable

(¢", ps) = physical phase space



Solving the constraint
Hamiltonian constraint:
H=P+h(Q,q, ps)~0
E.om.:
¢ ={p" H} ={q",h(Q,q", ps)},

p* = {p°, H} = {p°, h(Q,q", ps)},

Q=1

Reduced framework:
h(Q,q", ps) = true hamiltonian

Q = clock variable

(¢", ps) = physical phase space

Canonical transformation:

(P,Q,ps,q") = (P,Q,ps,d")

2

and new constraint function

H=P+hQps,d)~H

Another reduced framework:

h((:)7 g, ps) = true hamiltonian

= clock variable

Q
(§", ps) = physical phase space



Solving the constraint
Hamiltonian constraint:
H=P+h(Q,q, ps)~0
E.om.:
¢ ={p" H} ={q",h(Q,q", ps)},

p* = {p°, H} = {p°, h(Q,q", ps)},

Q=1

Reduced framework:
h(Q,q", ps) = true hamiltonian

Q = clock variable

(¢", ps) = physical phase space

Canonical transformation:

(P,Q,ps,q") = (P,Q,ps,d")

2

and new constraint function

H=P+hQps,d)~H

Another reduced framework:

h((:)7 g, ps) = true hamiltonian

= clock variable

Q
(§", ps) = physical phase space

Basic fact: Reduced frameworks are not canonically equivalent




Constraint surface

w|H=o = E*w - degenrate two-form, vy = {-, H} - hamiltonian vector field, X : C — R
- time function such that vy (X) #0



Active transformations in C

p.g=const.
p.g=const.

\

Let (X, q", ps) and
(Y, 8", ps) be two Y=const.
deparametrizations of a

given hamiltonian constraint

system and h and h be the

respective true hamiltonians.

gauge

orbits gauge

orbits

For a given F : R > R, there exists a unique, invertible mapping Mg : (X, q", ps) — (Y, d", Bs) such that
X +— Y = F(X) and m o Mg = 7, where 7 is the projection generated by the gauge transformation. Moreover,
the mapping satisfies: i) for every value of X, Mg|x : (¢", ps) — (§", ps) is canonical, ii)

dh = dM}(h) — ix M}(d3"dpr)



Quantum discrepancy

Quantize Mg:

M: Hx — Hy, O(X)— O(Y)=mOX)Mm'

b oy = (v (2 g i D
— = —_— + i
x av X ay

Physically, R : (X, q", ps) = (Y, d", bs):

Assume Y(X) = X, &) _ o

Identit)
X=const. i

non-trivial M

Y=const.

Identity

—= ==

M(v)) M (Y)

P

a,




Example: semiclassical description

Consider a constraint surface

(9,0, X)€R® {q,p}=1 O=0(X,q,p)

Use the Schrédinger representation

Pick a gaussian state (in the carrier space of the Dirac algebra’s representation)

NP

W) =7 he”

Examine dynamical observable X2.

X%t:X+M‘

M= [T abe e xbyrax = S ayeml M
(X >t_/ e (t )™d: Z( 1)t l!(mfl)!2%(%)! Kl

> =0



. semiclassical description
We have (X2)x = X2,

(2K)!

2k)! .
) t2—%t+% if k even
(X% = 22 (k)
2+ o if k odd.

min({X?)x = 0 for time X,

2
2k)! k!
min(X2); = (2’<k)! — ( ) for k even,

27 ()1

. 2k)!
min{X2); = (2’<k)! for k odd,

One may lift the minimum as much as one wishes by increasing k.




Example: spectrum

P Consider:
R* 3 (q,p,X) = (p1, a1, Y) € B®
and the coordinate transformation R :
(q1,p1,Y) = (X, p, X — q)
P Define M:

(q1,p1,Y) = (q+ X, p, X)

> Apply the Schrédinger representation:
. R 190 . 10
= X, = - s = X1, ==
q b= @ Lo A= o

M: L2(R,dx) 3 ¢(x) — ¢(x1—Y) € L2(R, dxq)

amt

b= —iM—
dy

=P



Example: spectrum

P Consider:

3 3

R* 5 (q,p, X) = (p1, g1, Y) €R
and the coordinate transformation R :
(q1,p1,Y) = (X, p, X — q)

P Define M:

(q1,p1,Y) = (q+ X, p, X)

> Apply the Schrédinger representation:
. R 10 N . 10
= X, = N = X1, = - —
q b= @ Lo A= o
M :

L2(R, dx) 3 ¥(x) = P(xy—Y) € L2(R,dx1)

R _dmf
hy = —iM——
dy

=P

Example:
0= p2 +x2
2 2
R[O] =p1 +q;
Spectra:
sp(0) = (X2, 0)
X=const
sp(0) =2n+1, nel
Y =const



Conclusions

» Affine quantization is an attractive proposal in quantum cosmology. It resolves
the singularity problem in anisotropic models. But. ..

» Time problem makes it difficult to interpret the results. Different choices of
time lead to different quantum scenarios, even if quantization is unique!

»  Whenever one talks about spectra of geometrical operators, critical values of
energy density or volume at the big bounce etc, one must always refer to the
choice of time function

» The problem is independent of the quantization method: Dirac’s, rps . ..

» To apply to cosmology and incorporate the cosmological perturbations, one
makes use of some effective background geometry. The process of particle
production in the early universe is going to be influenced by the choice of time
function there!



