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Outline

Motivation

Find a consistent way to perform the quantization of coupled
multiple components.

Multifield inflation.

Multiple fluids in the contracting branch of a bouncing model.

Obtain the Hamiltonian for multiple-fluid perturbations plus metric
perturbations.

The only interaction considered between fluids is through gravity.

Solving the Hamiltonian and momentum constrains leads naturally
to gauge invariant variables.

General quantization in a non-canonical form.

Different field representations leads to (non)unitary evolution.

Trivial field representation.

Two fluids example.
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Metric perturbation

Given the background metric ḡµν and the perturbed metric gµν we define
the perturbation tensor

ξµν ≡ gµν − ḡµν ,

and the difference connection tensor

(∇µ − s∇µ)Aν = FµνβAβ ,

Fαβγ = −1

2

(
s∇αξβγ + s∇βξγα − s∇γξαβ

)
.

The use of the above variables greatly simplifies the calculations.

The above variables are true tensors.

Bar variables represent background quantities, all definitions are
valid for both background and perturbed variables.
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Second Order Lagrangian

Using the introduced variables we obtain the following second order
Lagrangian,

δL(2)
gk =

√
−ḡ

2κ

[
FµνγFγ(µν) −FaµFbµ

]
,

δL(2)
gp =

√
−ḡ

2κ

(
sGµν +

ḡµν
4

sR

)
ξµα

(
ξαν − ḡανξ

2

)
,

where we have discarded the surface terms and κ = 8πG/c4.

Background Foliation

To introduce a time direction we define a background foliation by the
vector geodetic field v̄µ. The same foliation is used to split the perturbed
metric, however, the field must be normalized with respect to gµν giving
vµ. We define the time derivative by

Ṫ = γ̄ [£v̄T ] .
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The hypersurfaces given by vµ introduce:

the projector γµν = gµν + vµvν , and operator γ̄ [Aµ] = γ̄µ
νAν ,

the extrinsic curvature ∇µvν = Kµν ,

the Expansion factor Θ = Kµµ and shear σµν ≡ Kµν − Θ
3 γµν ,

the unique covariant derivative Dµ compatible with γµν ,

the spatial curvature RµναβAβ ≡ [DµDν −DνDµ]Aα.

Background Projection

With the background foliation we write the tensor ξµν as

ξµν = 2φv̄µv̄ν + 2B(µv̄ν) + 2Cµν , Bµv̄
µ = Cµν v̄

µ = 0.

And the scalar vector tensor (SVT) decomposition

Bµ = sDµB + Bµ,

Cµν = ψγµν − sDµ
sDνE + sD(µFν) +Wµν ,

Cµν = ψtγµν − sD〈µ sDν〉E + sD(µFν) +Wµν ,

where sDµB
µ = sDµF

µ = sDνWµ
ν = Wµ

µ = 0.

6 / 30



Introduction Multiple Fluids Hamiltonian Two Fluids System Multiple Fluids Quantization Two Fluids Quantization Conclusions

Kinematic Perturbations

The advantage of the kinematic variables is that they are directly related
to the tensors Fµνγ and ξµν . For example,

γ̄ [δKµν ] = −φsKµν + γ̄ [Fµνγ v̄γ ] .

Substituting in the Lagrangian one obtains

δL(2)
g =

√
−ḡ

2κ

{
δKµνδKνµ − δΘ2 − CµνδRνµ +

(
C

2
− φ

)
δR

+ 4Cµσsσσ
γB[µ‖γ] + 2

(
Cµν‖γ − C‖µγ̄νγ

)
sσµνBγ

+ 4Cσ
λCβ

α
(
sσσβsσλα − γ̄σβsσλ

γ
sσγα
)

+
[(

sΘφ+Bγ‖γ − δΘ
)
Cµ

ν −
(
φsKνµ +Bµ

‖ν − δKµν
)
C
]

sσν
µ

+ sGv̄v̄
(
BµB

µ − φ2 − 2φC
)

+ sGv̄µ (4BαC
αµ − 2CBµ)

+ sGµν (2CµαCα
ν − CµνC)

}
.
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Action Principle for a Thermodynamic Fluid

In the action principle for a thermodynamic fluid,1 we write the specific
enthalpy as the norm of a field, i.e., ϑ ≡

√
−ϑµϑνgµν . The field is

defined by the following potentials and specific entropy
ϑµ = ∇µϕ1 + ϕ2∇µϕ3 + ϕ4∇µs. The action for the fluid is

Sm =

∫
d4xLm, with Lm =

√
−gp(ϑ, s).

It is useful to express the matter field perturbations in terms of the
velocity potential,

uµ = γ̄

[
δϑµ
ϑ̄

]
= V‖µ, V ≡ δϕ1 + ϕ̄2δϕ3 + ϕ̄4δs

ϑ̄
,

and the gauge invariant variable

ΠV = −
√
−ḡ
(
δρ− sΘ(ρ̄+ p̄)V

)
.

1B. Schutz, Phys. Rev. D 2.12 (1970), 2762.
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Thermodynamic Fluid Lagrangian

Each fluid contributes with a Lagrangian in the form:

δL(2)
mi√
−ḡ

=
c̄2siΠ

2
Vi

2
√
−ḡ2

(ρ̄i + p̄i)
+

(ρ̄i + p̄i)

2
Vi sD2

KVi −
3κ

4
(ρ̄i + p̄i)(ρ̄+ p̄)V2

i

+ (ρ̄i + p̄i)δΘVi −
ρ̄i
2

(
BγB

γ − φ2 − 2Cφ
)
− p̄i

2

(
2Cγ

νCν
γ − C2

)
.

Combining with the gravitational part and discarding the terms
proportional to the background equations of motion we obtain:

δL(2,s)

√
−ḡ

=
3 sD2Ψ sD2

KΨ

κsΘ2
−
∑
i

(ρ̄i + p̄i)

3κ(ρ̄+ p̄)
Ξ2
i

+
∑
i

[
c̄2siΠ

2
Vi

2
√
−ḡ2

(ρ̄i + p̄i)
+

9(ρ̄i + p̄i)

2sΘ2
Ui sD2

KUi

]
,

where

Ψ ≡ ψ−
sΘ

3
δσs, Ui ≡ ψ+

sΘ

3
Vi, Ξi ≡ δΘ−

3κ(ρ̄+ p̄)

2
Vi +

3δR
4sΘ

.
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Constraints Reduction

A close inspection shows that the scalar Lagrangian:

does not depend on time derivatives of the variables (φ, B),

depends quadratically on the time derivatives of (ψ, E , Ui).

Using the Faddeev-Jackiv2 we perform a Legendre transformation in the
time derivatives variables

δL(2,s) = sD2
KΠE£v̄ sD2E + Πψt ψ̇t +

∑
i

sD2
KΠUiU̇i − δH(2,s)

c ,

The constrained Hamiltonian δH(2,s)
c :

δH(2,s)
c = sD2

KΠE£v̄ sD2E + Πψt ψ̇t +
∑
i

sD2
KΠUiU̇i −

√
−ḡ 3 sD2Ψ sD2

KΨ

κsΘ2

−
∑
i

[
c̄2si

sΘ2( sD2
KΠUi)

2

18
√
−ḡ(ρ̄i + p̄i)

−
√
−ḡ (ρ̄i + p̄i)

3κ(ρ̄+ p̄)
Ξ2
i +
√
−ḡ 9(ρ̄i + p̄i)

2sΘ2
Ui sD2

KUi
]
.

2L. Faddeev and R. Jackiw, Physical Review Letters 60 (1988), 1692–1694.
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Constraints Reduction

The variables in blue are the time derivatives written in terms of the
momenta:

£v̄[ sD2E ] = sD2B − 3 sD2ψ
sΘ

+
3 sD2Ψ

sΘ
,

ψ̇t =
κ(ρ̄+ p̄)

2
V −

sΘ

3
φ−

sD2B
3

+
sD2
Kψ
sΘ

+
Ξ

3
,

U̇i =
ṡΘ
sΘ
Ui +

c̄2si
sΘ2

sD2
KΠUi

9
√
−ḡ(ρ̄i + p̄i)

+
3κ(ρ̄+ p̄)

2sΘ
U +

sD2Ψ
sΘ

+
Ξ

3
,

where we introduced effective fluid variables

(ρ̄+ p̄)U =
∑
i

(ρ̄i + p̄i)Ui, (ρ̄+ p̄)Ξ =
∑
i

(ρ̄i + p̄i)Ξi.

Therefore, the constrains are simply:

sD2
KΠE = 0, Πψt = 0.
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Constraints Reduction

Using the expressions for the momenta:

sD2
KΠUi ≡

∂δL(2,s)

∂U̇i
=

3ΠVi
sΘ

,

sD2
KΠE ≡

∂δL(2,s)

∂£v̄[ sD2E ]
=

2
√
−ḡ

κsΘ
sD2
KΨ−

∑
i

ΠUi
3
,

Πψt ≡ ∂δL(2,s)

∂ψ̇t
= −2

√
−ḡΞ

κ
−
∑
i

ΠUi,

then

Ξ = − κ

2
√
−ḡ
∑
i

sD2
KΠUi, Ψ =

κΘ

6
√
−ḡ

ΠU , ΠU ≡
∑
i

ΠUi,

the equations above also imply

sD2
KΨ = −

sΘΞ

3
.
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Adiabatic and Entropy Perturbations

The calculation above shows that:

The constraints naturally lead to effective fluids variable.

The physical degrees of freedom are (Ui, ΠUi).

We incorporate both notions writing the Lagrangian in terms of the
effective fluid (curvature perturbation) variable:

ζ ≡ U −
ĎK sΘΠU

3
√
−ḡ(ρ̄+ p̄)

,

and the gauge invariant energy density contrast

δψi = 3Ui −
sΘ sD2

KΠUi
3
√
−ḡ(ρ̄i + p̄i)

=
δρi

ρ̄i + p̄i
+ 3ψ.

Naturally we define

(ρ̄+ p̄)δψ =
∑
i

(ρ̄i + p̄i)δψi, δ̃ψi = δ̃ψi − δψ, Ũi ≡ Ui − U .
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Multiple Fluids Hamiltonian

Splitting the Lagrangian between adiabatic and entropy modes

δL(2,s) = δL(2,s)
a + δL(2,s)

s .

we have

δL(2,s)
a = Πζ ζ̇ − δH(2,s)

a ,

δL(2,s)
s =

∑
i

3
√
−ḡ(ρ̄i + p̄i)Ũi

sΘ
˙̃
δψi − δH(2,s)

s ,

δH(2,s)
a =

c̄2s
sΘ2Πζ

sD2
sD−2
K Πζ

18
√
−ḡ(ρ̄+ p̄)

−
√
−ḡ 9(ρ̄+ p̄)

2sΘ2
ζ sD2

Kζ,

δH(2,s)
s =

∑
i

[√
−ḡc̄2si(ρ̄i + p̄i)δ̃

2
ψi

2

−
√
−ḡ 9(ρ̄i + p̄i)

2sΘ2
Ũi sD2Ũi −

sΘΠζ

3(ρ̄+ p̄)
c̄2si(ρ̄i + p̄i)δ̃ψi

]
.

where we defined the momentum conjugated to ζ as Πζ ≡ sD2
KΠU .
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Two Fluids Lagrangian

For two fluids the perturbations δ̃ψi and Ũi can be written in terms of

ΠQ ≡ δψ2 − δψ1, and, Q =
3
√
−ḡ$
sΘ

(U1 − U2),

where the “reduced variable” is $ ≡ (ρ̄1 + p̄1)(ρ̄2 + p̄2)/(ρ̄+ p̄). The
Lagrangian/Hamiltonian then reads

δL(2,s) = Πζζ
′ + ΠQQ

′ −

[
Π2
ζ

2mζ
+

Π2
Q

2mS
+
mζν

2
ζ ζ

2

2
+
mSν

2
SQ

2

2

+
c̄2n
c̄2s c̄

2
m

ΠζΠQ

mζmSNH∆K

]
,

where we changed the time derivative introducing the lapse function N ,

mζ ≡
a3(ρ̄+ p̄)

Nc̄2s∆KH2
, ν2

ζ ≡ −
N2c̄2sD̂

2

a2
,

mS ≡
1

Na3c̄2m$
, ν2

S ≡ −
N2c̄2mD̂

2

a2
.
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Symplectic structure

To perform the quantization we need the following structure:

The phase space vector χa = (ϕ1, . . . , ϕn,Πϕ1, . . . ,Πϕn).

The Hamiltonian

H(χ) =
χaHabχb

2
,

with Hab being symmetric.

The symplectic forms

Sab
.
= i

(
0 1n×n

−1n×n 0

)
, Sab .= i

(
0 1n×n

−1n×n 0

)
,

The solutions thus satisfy i£v̄χa = SabHbcχc.
The product of two solutions χ and $,

S (χ,$) =

∫
Σ

d3xχa$bSab,

is conserved, i.e., i£v̄ (χ,$) = 0.
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Complex Phase Space

We complexify the phase space and define the product

(χ,$) ≡ S (χ∗, $) .

To probe the phase space we introduce the Laplacian eigenfunctions

sD2Yq = −λ2
qYq,

∫
Σ

d3xYq1Yq2 = δ3(q1 − q2).

We write the vector in the phase space for each mode as,

Uq,a ≡ TaYq,
Ta = (ϕq,1, . . . , ϕq,n,Πϕq,1, . . . ,Πϕq,n),

where the functions Ta depend only on time sDµTa = 0 and q.
The product of two solution will be given by

(Uq1 ,Vq2) = T∗a(q1)Wb(q2)Sabδ3(q1 − q2),

where Vq = WaYq.
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Finite Dimensional Phase Space

Now our problem is reduced to the product

T ·W = T∗aSabWb,

defined in a finite 2n-dimensional phase space for each mode q.
If for a given vector Ta its norm is positive

T · T = T∗aTbSab > 0,

the vector T∗a will have the norm

T∗ · T∗ = TaT∗bSab = −T · T < 0.

Thus we build normalized n-dimensional basis such that ei · ej = δij ,
consequently

ei∗ · ej∗ = −δij , ei∗ · ej = eiaSabejb = 0.
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Canonical Quantization

The Poisson bracket structure of our problem is given by

{F1, F2} = −i

∫
Σ

d3x
δF1

δχa(x)
Sab

δF2

δχb(x)
,

where F1 and F2 are two field functionals. Using the definitions above is
easy to see that

{χa(x), χb(x
′)} = −iSabδ3(x− x′),

where we have, for example, {ϕ1, Πϕ1} = δ3(x− x′), as expected.
By the canonical quantization rules we promote the fields to Hermitian
operators. The fields operators then satisfy the commutation relations,

[χ̂a(x), χ̂b(x
′)] = Sabδ3(x− x′).

19 / 30



Introduction Multiple Fluids Hamiltonian Two Fluids System Multiple Fluids Quantization Two Fluids Quantization Conclusions

Creation and Annihilation Operators

First of all, we extend the product to the operators (and classical fields)

(χ,$) = S
(
χ†, $

)
.

Having the following properties:

[($, χ̂) , (ϑ, χ̂)] = (ϑ,$∗),[
($, χ̂) , (ϑ, χ̂)

†
]

= ($,ϑ),[
($, χ̂)

†
, (ϑ, χ̂)

†
]

= (ϑ∗, $).

Given a orthonormal basis Uiq,a, the annihilation operators associated
with this basis is

aiq ≡
(
Uiq, χ̂

)
.

It follows directly from the definition and the properties above that[
aiq, aj†q′

]
= δijδ3(q − q′),

[
aiq, ajq′

]
= 0 =

[
ai†q , aj†q′

]
.
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Representation Choice

Each choice of basis Uiq,a produces a different representation.

The representation choice reduces to find a basis in the finite
dimensional space of Ti.

Defining a vacuum at the instant t1, Tia(t1) = tia, at a time t2 we have

Tia(t2) = αij(t2)tja + βij(t2)tj∗a,

where the functions

αij(t) ≡ Tia(t)tj
a∗, βij(t) ≡ Tia(t)tj

a,

satisfy αij(t1) = δij and βij(t1) = 0.
Then, the annihilation and creation operators at t2 can be written in
terms of the same operators at t1 as

aiq(t2) = αi∗j (t2)ajq(t1)− βi∗j (t2)aj†q (t1),

ai†q (t2) = αij(t2)aj†q (t1)− βij(t2)ajq(t1).
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Representation Choice

The number operator N i
q(t) ≡ ai†q (t)aiq(t) applied at |0t1〉 measures〈

0t1
∣∣N i

q(t)
∣∣0t1〉 = δ3(0)

∫
d3q

∑
j

∣∣βij(t)∣∣2 ,
where the δ3(0) is volume of the spatial section.
If the integral converges we have defined a unitary evolution.
The time evolution of each matrix are

iα̇ij = M i
kα

k
j −N i

kβ
k∗
j ,

iβ̇ij = M i
kβ

k
j −N i

kα
k∗
j ,

where we defined the following matrices

M i
k ≡ TiaHabT∗kb, N i

k ≡ TiaHabTkb.
Note that the matrix Nj

k control the mixing between αij and βij ,
for instance, if it is null then there is no particle creation.
However, in general Hab will depend on time, thus, even if Nj

k is
null initially at t1 nothing guarantees that it will remain null.
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Hamiltonian Eigenvectors

The matrix Hab ≡ SacHcb works as an operator in the space of the
solutions.

This operator is Hermitian, given the product of the two vectors Va
and HabUb,

V · (HU) = V ∗a Sab(HbcUc) = (HcaVa)∗ScdUd = (HV ) · U.

Finally, if we assume that tia are the eigenvectors of Hab(t1), the
condition of the time independent vacuum is simply

N ij(t1) = tiaSabHbctjc
∣∣
t1

= νjktiaSabtkb
∣∣
t1

= 0,

where Habtib = νijt
j
a and νij is a diagonal real matrix containing

the eigenvalues.

This gives zero particle creation in first order expansion of N i
k(t).

This choice does not guarantee that higher order terms will be zero
or provides a convergent βij .
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Diagonal Hab

For a diagonal Hamiltonian

Hab .= diag(m1ν
2
1 , . . . ,mnν

2
n, 1/mi, . . . , 1/mn).

The eigenvectors are given by

V ia
.
=

(
1√

2miνi
, −i

√
miνi

2

)
.

The canonical transformation in each field in the form

qi →
√
mi

Mi
qi, pi →Mi

(√
mi

Mi

)′
qi +

√
Mi

mi
pi.

It changes the masses arbitrarily mi →Mi.

The frequency, however, change as

ν2
i →W 2

i = ν2
i −

(
√
mi)

′′
√
mi

+
(
√
Mi)

′′
√
Mi

.
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Diagonal Hab

In the new representation the eigenvectors are simply

V ia
.
=

(
1√

2MiWi

, −i

√
MiWi

2

)
.

Then we can make two main choices for

MiWi =

√
M2
i ν

2
i −M2

i

(
(
√
mi)′′√
mi

− (
√
Mi)′′√
Mi

)
.

Constant M2
i ν

2
i , defines algebraically Mi for each field and it is

possible to show that leads to a unitary evolution with particle
creation.
Constant MiWi, leads to a differential equation definition of Wi, i.e.,

W 2
i +

1

2

W ′′i
Wi
− 3

4

W ′2i
W 2
i

= ν2
i −

(
√
mi)

′′
√
mi

.

In this representation the eigenvectors are constant, and is possible
to show that it leads to unitary evolution with zero particle creation.
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Adiabatic Vacuum

The last option leads naturally to the adiabatic vacuum, the
differential equation can be approximated by a asymptotic series
starting with

W 2
i ≈ ν2

i −
(
√
mi)

′′
√
mi

.

This is exactly what one would obtain from the WKB approximation
of the field, for any field representation.

This can be extended to non-diagonal Hamiltonians, and is there is a
limit where the Hamiltonian is diagonal, we can show that there is
also a representation with zero particles production.
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To perform the quantization we the last steps and make the canonical
transformation:

A =

√
mζ

mA
ζ, PA =

√
mA

mζ
Πζ +mA

√
mζ

mA

′

ζ,

B =

√
mS

mB
Q, PB =

√
mB

mS
ΠQ +mB

√
mS

mB

′

Q,

With the new frequencies satisfying

ν2
A +

1

2

ν′′A
νA
− 3

4

ν′2A
ν2
A

= ν2
ζ −

(
√
mζ)

′′

√
mζ

,

ν2
B +

1

2

ν′′B
νB
− 3

4

ν′2B
ν2
B

= ν2
S −

(
√
mS)′′
√
mS

.

The Hamiltonian in these variables is

δL(2,s) = PAA
′ + PBB

′ −

[
νAP

2
A

2λ̃q
+
νBP

2
B

2λ̃q

+
λ̃qνAA

2

2
+
λ̃qνBB

2

2
+ y(PA − LAA)(PB − LBB)

]
.
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Integral Solution

Writing the fields in terms of

R±A =

√
λ̃qA± i

PA√
λ̃q

and R±B =

√
λ̃qB ± i

PB√
λ̃q

.

The equations for these variables can be readily integrated, resulting in a
set of integral equations,

R±A = e∓i
∫

dτνA

R±A0 +

∫
dτy

√λ̃q ± i
LA√
λ̃q

 (PB − LBB) e±i
∫

dτνA

 ,
R±B = e∓i

∫
dτνB

R±B0 +

∫
dτy

√λ̃q ± i
LB√
λ̃q

 (PA − LAA) e±i
∫

dτνB

 .
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Adiabatic Approximation

If νA and νB are large enough, we can approximate the integral solutions
by

R±A = e∓i
∫

dτνAR±A0 ±
1

iνA
y

√λ̃q ± i
LA√
λ̃q

 (PB − LBB) ,

R±B = e∓i
∫

dτνBR±B0 ±
1

iνB
y

√λ̃q ± i
LB√
λ̃q

 (PA − LAA) .

This approximation assumes only that νA and νB are large.

Therefore, it can be applied even when the coupling y is large.

The equations above provide a linear system in terms of R±A and R±B .
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Conclusions

We obtained the second order Hamiltonian for a multiple fluids
system.

This Hamiltonian was obtained without assuming a dynamics for the
background.

We suggested a well defined procedure to find a vacuum for a
multiple components system.

This in turn leads to a WKB approximation which can be easily
applied to a multiple components system.
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