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Introduction

Outline

m Find a consistent way to perform the quantization of coupled
multiple components.

m Multifield inflation.

m Multiple fluids in the contracting branch of a bouncing model.

m Obtain the Hamiltonian for multiple-fluid perturbations plus metric
perturbations.

m The only interaction considered between fluids is through gravity.

m Solving the Hamiltonian and momentum constrains leads naturally

to gauge invariant variables.

General quantization in a non-canonical form.

Different field representations leads to (non)unitary evolution.

Trivial field representation.

Two fluids example.
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Multiple Fluids Hamiltonian

Metric perturbation

Given the background metric g, and the perturbed metric g, we define
the perturbation tensor
fuu = gul/ - gMV’

and the difference connection tensor

(V. — VA, = Fub Ag,
1 ,— _ _
Fapy = D) (Vagﬂw + V&ya — vvgaﬁ) :

m The use of the above variables greatly simplifies the calculations.
m The above variables are true tensors.

m Bar variables represent background quantities, all definitions are
valid for both background and perturbed variables.
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Multiple Fluids Hamiltonian

Second Order Lagrangian

Using the introduced variables we obtain the following second order
Lagrangian,

(M;i) =9 []:uw]: (wv) — faufbu] J

2K
/— g v o a2 2
552? - Tﬁg (Guv + L ) &a <f - g2€> )

where we have discarded the surface terms and x = 87G/c*.

Background Foliation

To introduce a time direction we define a background foliation by the
vector geodetic field v#. The same foliation is used to split the perturbed
metric, however, the field must be normalized with respect to g, giving
v, We define the time derivative by

T =7[£:T).
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Multiple Fluids Hamiltonian Two Fluids System Multiple Fluids Quantizati

The hypersurfaces given by v* introduce:
m the projector v, = guu + v,v,, and operator ¥ [A,] = 7,7 A,,
m the extrinsic curvature Vv, = K,
m the Expansion factor © = K,** and shear 0, = K, — %’yw,
m the unique covariant derivative D, compatible with 7,,,
m the spatial curvature R ,.o" A = [D, D, — D, D, A,.

Background Projection

With the background foliation we write the tensor &, as
5/1,11 — 2¢’DH’DV + 2B(#@y) + 20’“/7 BM'DH = CHV@H = 0
And the scalar vector tensor (SVT) decomposition
B, = DuB + By,
Clr = Wy = DHDVE s D(uF,,) + W,
CMV = wt’Y/LV - D(MDV>8 + D(,LLFV) + W/un
where D,B* = D,F* = D,W," = W,* = 0.
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Multiple Fluids Hamiltonian

Kinematic Perturbations

The advantage of the kinematic variables is that they are directly related
to the tensors F,,,7 and §,,,,. For example,

v [6’Cul/] = (NC;UJ + v []:;U/ U’Y]

Substituting in the Lagrangian one obtains

5Ll = LQ_Q {6/@/’5/@“ — 007 — C,VoR, ! + (g - ¢> R
K

+4C" 55" Blujy) + 2 (Cuw |y = CljpYn) 7 B

+4C, )\CB (0’ Oxa — 7""@76%)

+[ (80 + B7), —50) O — (6K, + B — 5K, ) €| 5,
+ Gy (BuB" — ¢* — 2¢C) + Gy, (4AB,C** — 2CB*)

+ Gl (20MC,Y — CHC) }
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Multiple Fluids Hamiltonian

Action Principle for a Thermodynamic Fluid

In the action principle for a thermodynamic fluid,! we write the specific

enthalpy as the norm of a field, i.e., ¥ = \/—V,9¥,g*". The field is
defined by the following potentials and specific entropy

Yy = Va1 +0aV,ps + ¢4V s, The action for the fluid is

S = /d4x£m, with L =V—gp(¥, ).

It is useful to express the matter field perturbations in terms of the
velocity potential,

59 5 508 )
UH:’7|:19M:| =V, V wﬁwépﬁm °

and the gauge invariant variable
Iy = —V=3 (6p —©(p +P)V).

1B. Schutz, Phys. Rev. D 2.12 (1970), 2762.
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Multiple Fluids Hamiltonian

Thermodynamic Fluid Lagrangian

Each fluid contributes with a Lagrangian in the form:
oL _ 1T, n (pi + pi)
V=3 2y=5'(pi+ ) 2

+ (i +p)o0Vs — £ (B, B - 62 —209) - I (20,707 - ¢*).

K IO
— (i + ) (p+ D)V}

_ 3
ViD2.V; — .

Combining with the grawtatlonal part and discarding the terms
proportional to the background equations of motion we obtain:

5L(29) B 3D*W D2V Z (pi + i) =2

V=9  kO? 3k(p+p) "
&2 112, i+ D
2v=g (pi + i) 20?
where
B 0. B e} - _ 36(p + p) 36R
U = géa, ulfw+3v“ =, =00 5 V+4@
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Multiple Fluids Hamiltonian

Constraints Reduction

A close inspection shows that the scalar Lagrangian:
m does not depend on time derivatives of the variables (¢, B),
m depends quadratically on the time derivatives of (v, &£, U;).

Using the Faddeev-Jackiv? we perform a Legendre transformation in the
time derivatives variables

5£(2,s) = D%Hgfﬂng + Hd,t’l?[;t + Z D%Huﬂ/ﬂ - 67‘[&273),

The constrained Hamiltonian 57{22’3):

3D2U D2

(2,8) _ P2 2 it 2 Ry
SH®*) = DA 11e £,DE + Myt +ZDKHuluZ V=3 =

2 92 D2 HUi)2 (pz +pz) 2 (pl +pl)
— = 7UD U;
-2 Tty VT T VT G D

L. Faddeev and R. Jackiw, Physical Review Letters 60 (1988), 1692-1694.
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Multiple Fluids Hamiltonian

Constraints Reduction

The variables in blue are the time derivatives written

in terms of the
momenta:

_ _ D? D2V
£5|D*€) = D*B — 3D 3

,@ e
_nlptp),, ©, DB Diy E
V= 2 v d) 3 2] +37
. O ’2®2D2HZ 3k(p+p D2y =
U= gl + Z ~o Py D + 5
9v=g(pi + pi) 20 e) 3

where we introduced effective fluid variables

(p+p)U = Z(ﬁi +p)Ui, (p+P)E= Z(m + P

Therefore, the constrains are simply:

D3 1lg =0, My = 0.



Multiple Fluids Hamiltonian

Constraints Reduction

Using the expressions for the momenta:

dsL> 3y,

D2 11, — g y
K=o, 0
_ osL®?) 2./~ 5 - My
D21Is = ="V _ID2y — :
K28 = or,D2] ~ kO K Z 3
asL > _E
Iy = ol V=g - ;Hw,

then

K — KO
D21, U=_—""1II Iy = Iy
2\/jgzl: KU, 6\/j§ U u ; Ui

the equations above also imply

—
fu




Multiple Fluids Hamiltonian

Adiabatic and Entropy Perturbations

The calculation above shows that:
m The constraints naturally lead to effective fluids variable.
m The physical degrees of freedom are (U;, I;).

We incorporate both notions writing the Lagrangian in terms of the
effective fluid (curvature perturbation) variable:

Kel
(=U~- fu,,
3v=9(p+p)
and the gauge invariant energy density contrast
OD%3Iy;  dp;

Syi = 8Us — KM 0P
v 3vV=9(pi +Di)  pi+pi

+ 39.
Naturally we define

(P+P)0y =Y (i +Pi)0uir  Oui = Oyi — Oy, Uy =U; — U.

7
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Multiple Fluids Hamiltonian

Multiple Fluids Hamiltonian

Splitting the Lagrangian between adiabatic and entropy modes
SLE) = 5L 5L,
we have
SLPY =11 — oHEY,
5L = Z 3v/=3(p: + pi)U, s — OH Y

i o
SHE) — 53?82\1/1%7&175314 ~ \/_79(5 (:;p) ¢DC,
=362 (pi + Pi)03,;
5Hg2,s) _ z; ”CSZ(PQ +Di)d;,
V=3 (pl+pl)aD U ~ Ol 2i(pi 4 Di)oyi | -

3(p+p)

where we defined the momentum conjugated to ¢ as Il = D%(Hu.
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Two Fluids System

Two Fluids Lagrangian

For two fluids the perturbations 51/”- and L~{Z can be written in terms of
3/ —gw
Mo =642 — 0p1, and, Q= Tg(u1 —Uy),
where the “reduced variable” is @w = (p1 + p1)(p2 + p2)/(p + p). The
Lagrangian/Hamiltonian then reads
10 " mev¢C? | msriQ?
ch Qms 2 2

SL*%) =T ¢' + Q' —

2 HCHQ

3

Egé?n mqmsNHAK ’

where we changed the time derivative introducing the lapse function NV,

oo @(p+D) 2 N'eD?
T NEAgH? «= PP
S
1 N272 ﬁ2
ms = —s—5— V%E—C+.

322 o’
Na’ci,w a
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Multiple Fluids Quantization

Symplectic structure

To perform the quantization we need the following structure:
m The phase space vector X, = (@1, .-, ¥n, Hp1, ..., Hyp).

m The Hamiltonian .
_ XaHa Xb

H(x) 5

with 1 being symmetric.
m The symplectic forms

. 0 1n><n ab - 0 1n><n
Sab - < _1n><n 0 > ’ S - < _1n><n 0 > ’

m The solutions thus satisfy i.£5Xa = SapH  xe.
m The product of two solutions x and @,

S(X,w):/zd?’xxawbSab,

is conserved, i.e., i£; (x,w) = 0.
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Multiple Fluids Quantization

Complex Phase Space

We complexify the phase space and define the product

(x;@) =S (X", @).

To probe the phase space we introduce the Laplacian eigenfunctions
DY, = XY [ ¥y V=80 - )
b

We write the vector in the phase space for each mode as,

Uq,a = Tayqv
To = (‘Pq,l’ R L LI R T aHsoq,n)a

where the functions T, depend only on time D#Ta =0 and gq.
The product of two solution will be given by

(UQ1 ) qu) = TZ(Q1)Wb(q2)Sab63(QI - Q2)7

where V, =W, Y,.
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Multiple Fluids Quantization

Finite Dimensional Phase Space

Now our problem is reduced to the product
T W =T;S"W,,

defined in a finite 2n-dimensional phase space for each mode q.
If for a given vector T, its norm is positive

T-T=T:T,S? >0,
the vector T will have the norm
T T =T,T;S*=-T-T<0.

Thus we build normalized n-dimensional basis such that e* - ¢/ = §%,
consequently

e el = —0", e el = e ,S%el) = 0.
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Multiple Fluids Quantization

Canonical Quantization

The Poisson bracket structure of our problem is given by

oFy s 0Fy
ab 5Xb(x),

where F} and F5 are two field functionals. Using the definitions above is
easy to see that

{xXa(@), 0(")} = —iSud®(@ — '),
where we have, for example, {1, II,1} = 6*(x — 2’), as expected.

By the canonical quantization rules we promote the fields to Hermitian
operators. The fields operators then satisfy the commutation relations,

[)A(a(x% )A(b(x/)] = Sabég(x - :C/).
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Multiple Fluids Quantization

Creation and Annihilation Operators

First of all, we extend the product to the operators (and classical fields)
(e@) =S (X, @).
Having the following properties:
= [(@,X), (0, %)] = @,@),
s (@0, 0.0 = @),
s (@0 @01 = @)

Given a orthonormal basis Ufm, the annihilation operators associated
with this basis is

a; = (UL, %)
It follows directly from the definition and the properties above that

|:aé, af;} = 61]53(q — ql), [az, af},:| =0= [af;, a(];} .
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Multiple Fluids Quantization

Representation Choice

m Each choice of basis Ufm produces a different representation.

m The representation choice reduces to find a basis in the finite
dimensional space of T*.

Defining a vacuum at the instant ¢1, Tia(tl) = t?,, at a time t» we have
Tla(t) = o' j(t2)t o + 85 (t2)V 5,
where the functions
ofj(t) = Ta(t)t ™, B5() = Tty

satisfy a';(t1) = d%; and B%;(t1) = 0.
Then, the annihilation and creation operators at ¢ can be written in
terms of the same operators at ¢; as

aj(t2) = o' (t2)al (tr) — B (t2)al  (t),
ail(ty) = o' j(ta)all (t1) — B (t2)al (t1).
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Multiple Fluids Quantization

Representation Choice

= The number operator Nj(t) = aif(t)a(t) applied at |0;,) measures

(0u|Ny(0]01) = 5°(0) [ @43 |80

where the §3(0) is volume of the spatial section.
m If the integral converges we have defined a unitary evolution.
m The time evolution of each matrix are
id'; = M'pa; — N7,
i5'; = M'.8%; — N'ga,
where we defined the following matrices
My =T H T N =T H T,
m Note that the matrix N,* control the mixing between a'; and 37,
for instance, if it is null then there is no particle creation.
m However, in general H,” will depend on time, thus, even if N;* is
null initially at ¢; nothing guarantees that it will remain null.
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Multiple Fluids Quantization

Hamiltonian Eigenvectors

m The matrix Hy? = S M works as an operator in the space of the
solutions.

m This operator is Hermitian, given the product of the two vectors V,
and HabUb,

V- (HU) = VIS®™(H,U,) = (H*V,)*S“Uy = (HV) - U.

m Finally, if we assume that t?, are the eigenvectors of Hab(tl), the
condition of the time independent vacuum is simply

NU(t)) = tZS“beCtjc]tl = ujktiasabtkb]tl =0,

where #,°t", = v%;tJ and v, is a diagonal real matrix containing
the eigenvalues.
m This gives zero particle creation in first order expansion of N (t).

m This choice does not guarantee that higher order terms will be zero
or provides a convergent §3°;.
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Multiple Fluids Quantization

Diagonal H

For a diagonal Hamiltonian

H = diag(myv?, ..., mar2, 1 mg, ..., 1/my).

The eigenvectors are given by

Vi oz 1 .My
= —iq/ .
¢ \/Qmiui’ 2

m The canonical transformation in each field in the form

/
o ma o () M
qi M, qi, Di 4 M, qi m; Di-

m It changes the masses arbitrarily m; — M.

m The frequency, however, change as

2_(\/7771:)/1—’—(\/]71.)11

z/i2 —>Wi2 =V
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Multiple Fluids Quantization

Diagonal H

In the new representation the eigenvectors are simply

Vi, = , —i .
N, W; 2

Then we can make two main choices for

M;W; = \/Mfyf — M2 <( m)" WM)N).

i L

m Constant M?v?, defines algebraically M; for each field and it is
possible to show that leads to a unitary evolution with particle
creation.

m Constant M;W;, leads to a differential equation definition of W, i.e.,

W2 i 1wl 3w > (ymi)"
e - - =y, - —.
‘ 2 VVz 4 Wiz ! A/
In this representation the eigenvectors are constant, and is possible
to show that it leads to unitary evolution with zero particle creation.
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Multiple Fluids Quantization

Adiabatic Vacuum

m The last option leads naturally to the adiabatic vacuum, the
differential equation can be approximated by a asymptotic series

starting with
)
W2 ~v? — (71)
VM
m This is exactly what one would obtain from the WKB approximation

of the field, for any field representation.

m This can be extended to non-diagonal Hamiltonians, and is there is a
limit where the Hamiltonian is diagonal, we can show that there is
also a representation with zero particles production.
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Two Fluids Quantization

To perform the quantization we the last steps and make the canonical
transformation:

Y
m m m
A= CC? PA: AH(+mA CC)
ma V me \/ ma
/
m m m
B=,/—2Q, Pp=,/—"Hg+mp|—>Q,
mpg mg mp

With the new frequencies satisfying
o Lvi 3vd (V)

The Hamiltonian in these variables is
VAP_,% Z/Bpé

§L£3%) = pyA + PgB — .
4 Y 2, | 2

n S\qVAA2 n ;\qZ/BB2

5 5 T y(Pa — LaA)(Pp — LpB)|.



Two Fluids Quantization

Integral Solution

Writing the fields in terms of

~ P
RE =\ A Axi—2
\ Ag
The equations for these variables can be readily integrated, resulting in a
set of integral equations,

. - L .

RE =¥/ dma i pE + /dTy VAgti—= | (Pg — LpB)e*/dmal
VA

RE =¥/ drvs R;;O /dTy Ay 2122 | (Pa - Lad)yesifarve

_ Va I
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Two Fluids Quantization

Adiabatic Approximation

If v4 and vp are large enough, we can approximate the integral solutions
by

: 1 [~ . L
Rﬁ :e:FIdeVARioi@y )\q:tlii (Pg — LpB),
q

VA

. 1 =L
RE — ¥l drvspE o oy VA £i—2= | (Pa—LaA).
/\q

NeS

m This approximation assumes only that v4 and vp are large.
m Therefore, it can be applied even when the coupling y is large.

m The equations above provide a linear system in terms of Ri and Rﬁ.
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Conclusions

Conclusions

m We obtained the second order Hamiltonian for a multiple fluids
system.

m This Hamiltonian was obtained without assuming a dynamics for the
background.

m We suggested a well defined procedure to find a vacuum for a
multiple components system.

m This in turn leads to a WKB approximation which can be easily
applied to a multiple components system.
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