Quantum Cosmological Perturbations of Multiple Fluids

S. Dias Pinto Vitenti (IAP)
P. Peter (IAP), N. Pinto-Neto (CBPF)
Workshop Fundamental Issues of the Standard Cosmological Model

25 September 2014

Index

1 Introduction

2 Multiple Fluids Hamiltonian

3 Two Fluids System

4 Multiple Fluids Quantization

5 Two Fluids Quantization

6 Conclusions

Outline

Motivation

■ Find a consistent way to perform the quantization of coupled multiple components.

- Multifield inflation.
- Multiple fluids in the contracting branch of a bouncing model.

■ Obtain the Hamiltonian for multiple-fluid perturbations plus metric perturbations.

- The only interaction considered between fluids is through gravity.

■ Solving the Hamiltonian and momentum constrains leads naturally to gauge invariant variables.

- General quantization in a non-canonical form.

■ Different field representations leads to (non)unitary evolution.

- Trivial field representation.

■ Two fluids example.

Metric perturbation

Given the background metric $\bar{g}_{\mu \nu}$ and the perturbed metric $g_{\mu \nu}$ we define the perturbation tensor

$$
\xi_{\mu \nu} \equiv g_{\mu \nu}-\bar{g}_{\mu \nu},
$$

and the difference connection tensor

$$
\begin{aligned}
& \left(\nabla_{\mu}-\bar{\nabla}_{\mu}\right) A_{\nu}=\mathcal{F}_{\mu \nu}{ }^{\beta} A_{\beta}, \\
& \mathcal{F}_{\alpha \beta \gamma}=-\frac{1}{2}\left(\bar{\nabla}_{\alpha} \xi_{\beta \gamma}+\bar{\nabla}_{\beta} \xi_{\gamma \alpha}-\bar{\nabla}_{\gamma} \xi_{\alpha \beta}\right) .
\end{aligned}
$$

- The use of the above variables greatly simplifies the calculations.
- The above variables are true tensors.
- Bar variables represent background quantities, all definitions are valid for both background and perturbed variables.

Second Order Lagrangian

Using the introduced variables we obtain the following second order Lagrangian,

$$
\begin{aligned}
& \delta \mathcal{L}_{g \mathrm{k}}^{(2)}=\frac{\sqrt{-\bar{g}}}{2 \kappa}\left[\mathcal{F}^{\mu \nu \gamma} \mathcal{F}_{\gamma(\mu \nu)}-\mathcal{F}_{a \mu} \mathcal{F}_{b}{ }^{\mu}\right] \\
& \delta \mathcal{L}_{g \mathrm{p}}^{(2)}=\frac{\sqrt{-\bar{g}}}{2 \kappa}\left(\bar{G}_{\mu \nu}+\frac{\bar{g}_{\mu \nu}}{4} \bar{R}\right) \xi^{\mu}{ }_{\alpha}\left(\xi^{\alpha \nu}-\frac{\bar{g}^{\alpha \nu} \xi}{2}\right),
\end{aligned}
$$

where we have discarded the surface terms and $\kappa=8 \pi G / c^{4}$.

Background Foliation

To introduce a time direction we define a background foliation by the vector geodetic field \bar{v}^{μ}. The same foliation is used to split the perturbed metric, however, the field must be normalized with respect to $g_{\mu \nu}$ giving v^{μ}. We define the time derivative by

$$
\dot{T}=\bar{\gamma}\left[£_{\bar{v}} T\right] .
$$

The hypersurfaces given by v^{μ} introduce:
■ the projector $\gamma_{\mu \nu}=g_{\mu \nu}+v_{\mu} v_{\nu}$, and operator $\bar{\gamma}\left[A_{\mu}\right]=\bar{\gamma}_{\mu}{ }^{\nu} A_{\nu}$,
■ the extrinsic curvature $\nabla_{\mu} v_{\nu}=\mathcal{K}_{\mu \nu}$,
■ the Expansion factor $\Theta=\mathcal{K}_{\mu}{ }^{\mu}$ and shear $\sigma_{\mu \nu} \equiv \mathcal{K}_{\mu \nu}-\frac{\Theta}{3} \gamma_{\mu \nu}$,
■ the unique covariant derivative D_{μ} compatible with $\gamma_{\mu \nu}$,
■ the spatial curvature $\mathcal{R}_{\mu \nu \alpha}{ }^{\beta} A_{\beta} \equiv\left[D_{\mu} D_{\nu}-D_{\nu} D_{\mu}\right] A_{\alpha}$.

Background Projection

With the background foliation we write the tensor $\xi_{\mu \nu}$ as

$$
\xi_{\mu \nu}=2 \phi \bar{v}_{\mu} \bar{v}_{\nu}+2 B_{(\mu} \bar{v}_{\nu)}+2 C_{\mu \nu}, \quad B_{\mu} \bar{v}^{\mu}=C_{\mu \nu} \bar{v}^{\mu}=0
$$

And the scalar vector tensor (SVT) decomposition

$$
\begin{aligned}
B_{\mu} & =\bar{D}_{\mu} \mathcal{B}+\mathrm{B}_{\mu}, \\
C_{\mu \nu} & =\psi \gamma_{\mu \nu}-\bar{D}_{\mu} \bar{D}_{\nu} \mathcal{E}+\bar{D}_{(\mu} \mathrm{F}_{\nu)}+W_{\mu \nu}, \\
C_{\mu \nu} & =\psi^{\mathrm{t}} \gamma_{\mu \nu}-\bar{D}_{\langle\mu} \bar{D}_{\nu\rangle} \mathcal{E}+\bar{D}_{(\mu} \mathrm{F}_{\nu)}+W_{\mu \nu},
\end{aligned}
$$

where $\bar{D}_{\mu} \mathrm{B}^{\mu}=\bar{D}_{\mu} \mathrm{F}^{\mu}=\bar{D}_{\nu} W_{\mu}{ }^{\nu}=W_{\mu}{ }^{\mu}=0$.

Kinematic Perturbations

The advantage of the kinematic variables is that they are directly related to the tensors $\mathcal{F}_{\mu \nu}^{\gamma}$ and $\xi_{\mu \nu}$. For example,

$$
\bar{\gamma}\left[\delta \mathcal{K}_{\mu \nu}\right]=-\phi \overline{\mathcal{K}}_{\mu \nu}+\bar{\gamma}\left[\mathcal{F}_{\mu \nu}{ }^{\gamma} \bar{v}_{\gamma}\right] .
$$

Substituting in the Lagrangian one obtains

$$
\begin{aligned}
& \delta \mathcal{L}_{g}^{(2)}=\frac{\sqrt{-\bar{g}}}{2 \kappa}\left\{\delta \mathcal{K}_{\mu}{ }^{\nu} \delta \mathcal{K}_{\nu}{ }^{\mu}-\delta \Theta^{2}-C_{\mu}{ }^{\nu} \delta \mathcal{R}_{\nu}{ }^{\mu}+\left(\frac{C}{2}-\phi\right) \delta \mathcal{R}\right. \\
& +4 C^{\mu \sigma} \bar{\sigma}_{\sigma}{ }^{\gamma} B_{[\mu \| \gamma]}+2\left(C_{\mu \nu \| \gamma}-C_{\| \mu} \bar{\gamma}_{\nu \gamma}\right) \bar{\sigma}^{\mu \nu} B^{\gamma} \\
& +4 C_{\sigma}{ }^{\lambda} C_{\beta}^{\alpha}\left(\bar{\sigma}^{\sigma \beta} \bar{\sigma}_{\lambda \alpha}-\bar{\gamma}^{\sigma \beta} \bar{\sigma}_{\lambda} \bar{\sigma}_{\gamma \alpha}\right) \\
& +\left[\left(\bar{\Theta} \phi+B^{\gamma} \| \gamma-\delta \Theta\right) C_{\mu}{ }^{\nu}-\left(\phi \overline{\mathcal{K}}_{\nu}{ }^{\mu}+B_{\mu}{ }^{\| \nu}-\delta \mathcal{K}_{\mu}{ }^{\nu}\right) C\right] \bar{\sigma}_{\nu}{ }^{\mu} \\
& +\bar{G}_{\bar{v} \bar{v}}\left(B_{\mu} B^{\mu}-\phi^{2}-2 \phi C\right)+\bar{G}_{\bar{v} \mu}\left(4 B_{\alpha} C^{\alpha \mu}-2 C B^{\mu}\right) \\
& \left.+\bar{G}_{\mu \nu}\left(2 C^{\mu \alpha} C_{\alpha}{ }^{\nu}-C^{\mu \nu} C\right)\right\} .
\end{aligned}
$$

Action Principle for a Thermodynamic Fluid

In the action principle for a thermodynamic fluid, ${ }^{1}$ we write the specific enthalpy as the norm of a field, i.e., $\vartheta \equiv \sqrt{-\vartheta_{\mu} \vartheta_{\nu} g^{\mu \nu}}$. The field is defined by the following potentials and specific entropy $\vartheta_{\mu}=\nabla_{\mu} \varphi_{1}+\varphi_{2} \nabla_{\mu} \varphi_{3}+\varphi_{4} \nabla_{\mu} s$. The action for the fluid is

$$
S_{m}=\int \mathrm{d}^{4} x \mathcal{L}_{m}, \quad \text { with } \quad \mathcal{L}_{m}=\sqrt{-g} p(\vartheta, s) .
$$

It is useful to express the matter field perturbations in terms of the velocity potential,

$$
u_{\mu}=\bar{\gamma}\left[\frac{\delta \vartheta_{\mu}}{\bar{\vartheta}}\right]=\mathcal{V}_{\| \mu}, \quad \mathcal{V} \equiv \frac{\delta \varphi_{1}+\bar{\varphi}_{2} \delta \varphi_{3}+\bar{\varphi}_{4} \delta s}{\bar{\vartheta}},
$$

and the gauge invariant variable

$$
\Pi_{\mathcal{V}}=-\sqrt{-\bar{g}}(\delta \rho-\bar{\Theta}(\bar{\rho}+\bar{p}) \mathcal{V}) .
$$

Thermodynamic Fluid Lagrangian

Each fluid contributes with a Lagrangian in the form:

$$
\begin{aligned}
\frac{\delta \mathcal{L}_{\mathrm{m} i}^{(2)}}{\sqrt{-\bar{g}}} & =\frac{\bar{c}_{s i}^{2} \Pi_{\mathcal{V} i}^{2}}{2 \sqrt{-\bar{g}^{2}}\left(\bar{\rho}_{i}+\bar{p}_{i}\right)}+\frac{\left(\bar{\rho}_{i}+\bar{p}_{i}\right)}{2} \mathcal{V}_{i} \bar{D}_{K}^{2} \mathcal{V}_{i}-\frac{3 \kappa}{4}\left(\bar{\rho}_{i}+\bar{p}_{i}\right)(\bar{\rho}+\bar{p}) \mathcal{V}_{i}^{2} \\
& +\left(\bar{\rho}_{i}+\bar{p}_{i}\right) \delta \Theta \mathcal{V}_{i}-\frac{\bar{\rho}_{i}}{2}\left(B_{\gamma} B^{\gamma}-\phi^{2}-2 C \phi\right)-\frac{\bar{p}_{i}}{2}\left(2 C_{\gamma}{ }^{\nu} C_{\nu}^{\gamma}-C^{2}\right) .
\end{aligned}
$$

Combining with the gravitational part and discarding the terms proportional to the background equations of motion we obtain:

$$
\begin{aligned}
\frac{\delta \mathcal{L}^{(2, s)}}{\sqrt{-\bar{g}}} & =\frac{3 \bar{D}^{2} \Psi \bar{D}_{K}^{2} \Psi}{\kappa \bar{\Theta}^{2}}-\sum_{i} \frac{\left(\bar{\rho}_{i}+\bar{p}_{i}\right)}{3 \kappa(\bar{\rho}+\bar{p})} \Xi_{i}^{2} \\
& +\sum_{i}\left[\frac{\bar{c}_{s i}^{2} \Pi_{\mathcal{V} i}^{2}}{2 \sqrt{-\bar{g}}^{2}\left(\bar{\rho}_{i}+\bar{p}_{i}\right)}+\frac{9\left(\bar{\rho}_{i}+\bar{p}_{i}\right)}{2 \bar{\Theta}^{2}} \mathcal{U}_{i} \bar{D}_{K}^{2} \mathcal{U}_{i}\right],
\end{aligned}
$$

where

$$
\Psi \equiv \psi-\frac{\bar{\Theta}}{3} \delta \sigma^{\mathrm{s}}, \quad \mathcal{U}_{i} \equiv \psi+\frac{\bar{\Theta}}{3} \mathcal{V}_{i}, \quad \Xi_{i} \equiv \delta \Theta-\frac{3 \kappa(\bar{\rho}+\bar{p})}{2} \mathcal{V}_{i}+\frac{3 \delta \mathcal{R}}{4 \bar{\Theta}} .
$$

Constraints Reduction

A close inspection shows that the scalar Lagrangian:
\square does not depend on time derivatives of the variables (ϕ, \mathcal{B}),
$■$ depends quadratically on the time derivatives of $\left(\psi, \mathcal{E}, \mathcal{U}_{i}\right)$.
Using the Faddeev-Jackiv ${ }^{2}$ we perform a Legendre transformation in the time derivatives variables

$$
\delta \mathcal{L}^{(2, s)}=\bar{D}_{K}^{2} \Pi_{\mathcal{E}} £_{\bar{v}} \bar{D}^{2} \mathcal{E}+\Pi_{\psi^{\mathrm{t}}} \dot{\psi}^{\mathrm{t}}+\sum_{i} \bar{D}_{K}^{2} \Pi_{\mathcal{U} i} \dot{\mathcal{H}}_{i}-\delta \mathcal{H}_{c}^{(2, s)}
$$

The constrained Hamiltonian $\delta \mathcal{H}_{c}^{(2, s)}$:

$$
\begin{aligned}
& \delta \mathcal{H}_{c}^{(2, s)}=\bar{D}_{K}^{2} \Pi_{\mathcal{E}} £_{\bar{v}} \bar{D}^{2} \mathcal{E}+\Pi_{\psi^{\mathrm{t}}} \dot{\psi}^{\mathrm{t}}+\sum_{i} \bar{D}_{K}^{2} \Pi_{\mathcal{U} i} \dot{\mathcal{U}}_{i}-\sqrt{-\bar{g}} \frac{3 \bar{D}^{2} \Psi \bar{D}_{K}^{2} \Psi}{\kappa \bar{\Theta}^{2}} \\
& -\sum_{i}\left[\frac{\bar{c}_{s i}^{2} \bar{\Theta}^{2}\left(\bar{D}_{K}^{2} \Pi_{\mathcal{U} i}\right)^{2}}{18 \sqrt{-\bar{g}}\left(\bar{\rho}_{i}+\bar{p}_{i}\right)}-\sqrt{-\bar{g}} \frac{\left(\bar{\rho}_{i}+\bar{p}_{i}\right)}{3 \kappa(\bar{\rho}+\bar{p})} \Xi_{i}^{2}+\sqrt{-\bar{g}} \frac{9\left(\bar{\rho}_{i}+\bar{p}_{i}\right)}{2 \bar{\Theta}^{2}} \mathcal{U}_{i} \bar{D}_{K}^{2} \mathcal{U}_{i}\right] .
\end{aligned}
$$

[^0]
Constraints Reduction

The variables in blue are the time derivatives written in terms of the momenta:

$$
\begin{aligned}
& £_{\bar{v}}\left[\bar{D}^{2} \mathcal{E}\right]=\bar{D}^{2} \mathcal{B}-\frac{3 \bar{D}^{2} \psi}{\bar{\Theta}}+\frac{3 \bar{D}^{2} \Psi}{\bar{\Theta}} \\
& \dot{\psi}^{\mathrm{t}}=\frac{\kappa(\bar{\rho}+\bar{p})}{2} \mathcal{V}-\frac{\bar{\Theta}}{3} \phi-\frac{\bar{D}^{2} \mathcal{B}}{3}+\frac{\bar{D}_{K}^{2} \psi}{\bar{\Theta}}+\frac{\Xi}{3}, \\
& \dot{\mathcal{U}}_{i}=\frac{\dot{\bar{\Theta}}_{\bar{\Theta}}^{\bar{\Theta}} \mathcal{U}_{i}+\frac{\bar{c}_{s i}^{2} \bar{\Theta}^{2} \bar{D}_{K}^{2} \Pi_{\mathcal{U} i}}{9 \sqrt{-\bar{g}}\left(\bar{\rho}_{i}+\bar{p}_{i}\right)}+\frac{3 \kappa(\bar{\rho}+\bar{p})}{2 \bar{\Theta}} \mathcal{U}+\frac{\bar{D}^{2} \Psi}{\bar{\Theta}}+\frac{\Xi}{3}}{} .
\end{aligned}
$$

where we introduced effective fluid variables

$$
(\bar{\rho}+\bar{p}) \mathcal{U}=\sum_{i}\left(\bar{\rho}_{i}+\bar{p}_{i}\right) \mathcal{U}_{i}, \quad(\bar{\rho}+\bar{p}) \Xi=\sum_{i}\left(\bar{\rho}_{i}+\bar{p}_{i}\right) \Xi_{i}
$$

Therefore, the constrains are simply:

$$
\bar{D}_{K}^{2} \Pi_{\mathcal{E}}=0, \quad \Pi_{\psi^{t}}=0
$$

Constraints Reduction

Using the expressions for the momenta:

$$
\begin{aligned}
\bar{D}_{K}^{2} \Pi_{\mathcal{U} i} & \equiv \frac{\partial \delta \mathcal{L}^{(2, s)}}{\partial \dot{\mathcal{U}}_{i}}=\frac{3 \Pi_{\mathcal{V}_{i}}}{\bar{\Theta}}, \\
\bar{D}_{K}^{2} \Pi_{\mathcal{E}} & \equiv \frac{\partial \delta \mathcal{L}^{(2, s)}}{\partial £_{\bar{v}}\left[\bar{D}^{2} \mathcal{E}\right]}=\frac{2 \sqrt{-\bar{g}}}{\kappa \bar{\Theta}} \bar{D}_{K}^{2} \Psi-\sum_{i} \frac{\Pi_{\mathcal{U} i}}{3}, \\
\Pi_{\psi^{t}} & \equiv \frac{\partial \delta \mathcal{L}^{(2, s)}}{\partial \dot{\psi}^{\mathrm{t}}}=-2 \sqrt{-\bar{g}} \bar{\Xi}-\sum_{i} \Pi_{\mathcal{U} i},
\end{aligned}
$$

then

$$
\Xi=-\frac{\kappa}{2 \sqrt{-\bar{g}}} \sum_{i} \bar{D}_{K}^{2} \Pi_{\mathcal{U} i}, \quad \Psi=\frac{\kappa \Theta}{6 \sqrt{-\bar{g}}} \Pi_{\mathcal{U}}, \quad \Pi_{\mathcal{U}} \equiv \sum_{i} \Pi_{\mathcal{U} i},
$$

the equations above also imply

$$
\bar{D}_{K}^{2} \Psi=-\frac{\bar{\Theta} \Xi}{3} .
$$

Adiabatic and Entropy Perturbations

The calculation above shows that:
■ The constraints naturally lead to effective fluids variable.
■ The physical degrees of freedom are $\left(\mathcal{U}_{i}, \Pi_{\mathcal{U} i}\right)$.
We incorporate both notions writing the Lagrangian in terms of the effective fluid (curvature perturbation) variable:

$$
\zeta \equiv \mathcal{U}-\frac{\bar{K} \bar{\Theta} \Pi_{\mathcal{U}}}{3 \sqrt{-\bar{g}}(\bar{\rho}+\bar{p})}
$$

and the gauge invariant energy density contrast

$$
\delta_{\psi i}=3 \mathcal{U}_{i}-\frac{\bar{\Theta} \bar{D}_{K}^{2} \Pi_{\mathcal{U} i}}{3 \sqrt{-\bar{g}}\left(\bar{\rho}_{i}+\bar{p}_{i}\right)}=\frac{\delta \rho_{i}}{\bar{\rho}_{i}+\bar{p}_{i}}+3 \psi
$$

Naturally we define

$$
(\bar{\rho}+\bar{p}) \delta_{\psi}=\sum_{i}\left(\bar{\rho}_{i}+\bar{p}_{i}\right) \delta_{\psi i}, \quad \tilde{\delta}_{\psi i}=\tilde{\delta}_{\psi i}-\delta_{\psi}, \quad \tilde{\mathcal{U}}_{i} \equiv \mathcal{U}_{i}-\mathcal{U}
$$

Multiple Fluids Hamiltonian

Splitting the Lagrangian between adiabatic and entropy modes

$$
\delta \mathcal{L}^{(2, s)}=\delta \mathcal{L}_{a}^{(2, s)}+\delta \mathcal{L}_{s}^{(2, s)} .
$$

we have

$$
\begin{aligned}
\delta \mathcal{L}_{a}^{(2, s)} & =\Pi_{\zeta} \dot{\zeta}-\delta \mathcal{H}_{a}^{(2, s)} \\
\delta \mathcal{L}_{s}^{(2, s)} & =\sum_{i} \frac{3 \sqrt{-\bar{g}}\left(\bar{\rho}_{i}+\bar{p}_{i}\right) \tilde{\mathcal{U}}_{i}}{\bar{\Theta}} \dot{\hat{\delta}}_{\psi i}-\delta \mathcal{H}_{s}^{(2, s)}, \\
\delta \mathcal{H}_{a}^{(2, s)} & =\frac{\bar{c}_{s}^{2} \bar{\Theta}^{2} \Pi_{\zeta} \bar{D}^{2} \bar{D}_{K}^{-2} \Pi_{\zeta}}{18 \sqrt{-\bar{g}}(\bar{\rho}+\bar{p})}-\sqrt{-\bar{g}} \frac{9(\bar{\rho}+\bar{p})}{2 \bar{\Theta}^{2}} \zeta \bar{D}_{K}^{2} \zeta, \\
\delta \mathcal{H}_{s}^{(2, s)} & =\sum_{i}\left[\frac{\sqrt{-\bar{g}} \bar{c}_{s i}^{2}\left(\bar{\rho}_{i}+\bar{p}_{i}\right) \tilde{\delta}_{\psi i}^{2}}{2}\right. \\
& \left.-\sqrt{-\bar{g}} \frac{9\left(\bar{\rho}_{i}+\bar{p}_{i}\right)}{2 \bar{\Theta}^{2}} \tilde{\mathcal{U}}_{i} \bar{D}^{2} \tilde{\mathcal{U}}_{i}-\frac{\bar{\Theta} \Pi_{\zeta}}{3(\bar{\rho}+\bar{p})} \bar{c}_{s i}^{2}\left(\bar{\rho}_{i}+\bar{p}_{i}\right) \tilde{\delta}_{\psi i}\right] .
\end{aligned}
$$

where we defined the momentum conjugated to ζ as $\Pi_{\zeta} \equiv \bar{D}_{K}^{2} \Pi_{\mathcal{U}}$.

Two Fluids Lagrangian

For two fluids the perturbations $\tilde{\delta}_{\psi i}$ and $\widetilde{\mathcal{U}}_{i}$ can be written in terms of

$$
\Pi_{Q} \equiv \delta_{\psi 2}-\delta_{\psi 1}, \quad \text { and }, \quad Q=\frac{3 \sqrt{-\bar{g}} \varpi}{\bar{\Theta}}\left(\mathcal{U}_{1}-\mathcal{U}_{2}\right)
$$

where the "reduced variable" is $\varpi \equiv\left(\bar{\rho}_{1}+\bar{p}_{1}\right)\left(\bar{\rho}_{2}+\bar{p}_{2}\right) /(\bar{\rho}+\bar{p})$. The Lagrangian/Hamiltonian then reads

$$
\begin{aligned}
\delta \mathcal{L}^{(2, s)}=\Pi_{\zeta} \zeta^{\prime}+\Pi_{Q} Q^{\prime}- & {\left[\frac{\Pi_{\zeta}^{2}}{2 m_{\zeta}}+\frac{\Pi_{Q}^{2}}{2 m_{S}}+\frac{m_{\zeta} \nu_{\zeta}^{2} \zeta^{2}}{2}+\frac{m_{S} \nu_{S}^{2} Q^{2}}{2}\right.} \\
& \left.+\frac{\bar{c}_{n}^{2}}{\bar{c}_{s}^{2} \bar{c}_{m}^{2}} \frac{\Pi_{\zeta} \Pi_{Q}}{m_{\zeta} m_{S} N H \Delta_{K}}\right]
\end{aligned}
$$

where we changed the time derivative introducing the lapse function N,

$$
\begin{aligned}
m_{\zeta} & \equiv \frac{a^{3}(\bar{\rho}+\bar{p})}{N \bar{c}_{s}^{2} \Delta_{K} H^{2}}, & \nu_{\zeta}^{2} \equiv-\frac{N^{2} \bar{c}_{s}^{2} \hat{D}^{2}}{a^{2}}, \\
m_{S} & \equiv \frac{1}{N a^{3} \bar{c}_{m}^{2} \varpi}, & \nu_{S}^{2} \equiv-\frac{N^{2} \bar{c}_{m}^{2} \hat{D}^{2}}{a^{2}} .
\end{aligned}
$$

Symplectic structure

To perform the quantization we need the following structure:
■ The phase space vector $\chi_{a}=\left(\varphi_{1}, \ldots, \varphi_{n}, \Pi_{\varphi 1}, \ldots, \Pi_{\varphi n}\right)$.

- The Hamiltonian

$$
\mathcal{H}(\chi)=\frac{\chi_{a} \mathcal{H}^{a b} \chi_{b}}{2}
$$

with $\mathcal{H}^{a b}$ being symmetric.

- The symplectic forms

$$
\mathbb{S}_{a b} \doteq \mathrm{i}\left(\begin{array}{cc}
0 & \mathbf{1}_{n \times n} \\
-\mathbf{1}_{n \times n} & 0
\end{array}\right), \quad \mathbb{S}^{a b} \doteq \mathrm{i}\left(\begin{array}{cc}
0 & \mathbf{1}_{n \times n} \\
-\mathbf{1}_{n \times n} & 0
\end{array}\right),
$$

■ The solutions thus satisfy $\mathrm{i} £_{\bar{v}} \chi_{a}=\mathbb{S}_{a b} \mathcal{H}^{b c} \chi_{c}$.

- The product of two solutions χ and ϖ,

$$
\mathbb{S}(\chi, \varpi)=\int_{\Sigma} \mathrm{d}^{3} x \chi_{a} \varpi_{b} \mathbb{S}^{a b}
$$

is conserved, i.e., $\mathfrak{i}_{\bar{v}}(\chi, \varpi)=0$.

Complex Phase Space

We complexify the phase space and define the product

$$
(\chi, \varpi) \equiv \mathbb{S}\left(\chi^{*}, \varpi\right) .
$$

To probe the phase space we introduce the Laplacian eigenfunctions

$$
\bar{D}^{2} \mathcal{Y}_{q}=-\lambda_{q}^{2} \mathcal{Y}_{q}, \quad \int_{\Sigma} \mathrm{d}^{3} x \mathcal{Y}_{q_{1}} \mathcal{Y}_{q_{2}}=\delta^{3}\left(q_{1}-q_{2}\right)
$$

We write the vector in the phase space for each mode as,

$$
\begin{aligned}
\mathrm{U}_{q, a} & \equiv \mathrm{~T}_{a} \mathcal{Y}_{q} \\
\mathrm{~T}_{a} & =\left(\varphi_{q, 1}, \ldots, \varphi_{q, n}, \Pi_{\varphi q, 1}, \ldots, \Pi_{\varphi q, n}\right)
\end{aligned}
$$

where the functions T_{a} depend only on time $\bar{D}_{\mu} \mathrm{T}_{a}=0$ and q.
The product of two solution will be given by

$$
\left(\mathrm{U}_{q_{1}}, \mathrm{~V}_{q_{2}}\right)=\mathrm{T}_{a}^{*}\left(q_{1}\right) \mathrm{W}_{b}\left(q_{2}\right) \mathbb{S}^{a b} \delta^{3}\left(q_{1}-q_{2}\right),
$$

where $\mathrm{V}_{q}=\mathrm{W}_{a} \mathcal{Y}_{q}$.

Finite Dimensional Phase Space

Now our problem is reduced to the product

$$
\mathrm{T} \cdot \mathrm{~W}=\mathrm{T}_{a}^{*} \mathbb{S}^{\mathbb{S}^{a b}} \mathrm{~W}_{b}
$$

defined in a finite $2 n$-dimensional phase space for each mode q. If for a given vector T_{a} its norm is positive

$$
\mathrm{T} \cdot \mathrm{~T}=\mathrm{T}_{a}^{*} \mathrm{~T}_{b} \mathbb{S}^{a b}>0,
$$

the vector T_{a}^{*} will have the norm

$$
\mathrm{T}^{*} \cdot \mathrm{~T}^{*}=\mathrm{T}_{a} \mathrm{~T}_{b}^{*} \mathbb{S}^{a b}=-\mathrm{T} \cdot \mathrm{~T}<0
$$

Thus we build normalized n-dimensional basis such that $e^{i} \cdot e^{j}=\delta^{i j}$, consequently

$$
e^{i *} \cdot e^{j *}=-\delta^{i j}, \quad e^{i *} \cdot e^{j}=e^{i}{ }_{a} \mathbb{S}^{a b} e^{j}{ }_{b}=0 .
$$

Canonical Quantization

The Poisson bracket structure of our problem is given by

$$
\left\{F_{1}, F_{2}\right\}=-\mathrm{i} \int_{\Sigma} \mathrm{d}^{3} x \frac{\delta F_{1}}{\delta \chi_{a}(x)} \mathbb{S}_{a b} \frac{\delta F_{2}}{\delta \chi_{b}(x)},
$$

where F_{1} and F_{2} are two field functionals. Using the definitions above is easy to see that

$$
\left\{\chi_{a}(x), \chi_{b}\left(x^{\prime}\right)\right\}=-i \mathbb{S}_{a b} \delta^{3}\left(x-x^{\prime}\right),
$$

where we have, for example, $\left\{\varphi_{1}, \Pi_{\varphi 1}\right\}=\delta^{3}\left(x-x^{\prime}\right)$, as expected. By the canonical quantization rules we promote the fields to Hermitian operators. The fields operators then satisfy the commutation relations,

$$
\left[\hat{\chi}_{a}(x), \hat{\chi}_{b}\left(x^{\prime}\right)\right]=\mathbb{S}_{a b} \delta^{3}\left(x-x^{\prime}\right) .
$$

Creation and Annihilation Operators

First of all, we extend the product to the operators (and classical fields)

$$
(\chi, \varpi)=\mathbb{S}\left(\chi^{\dagger}, \varpi\right) .
$$

Having the following properties:

- $[(\varpi, \hat{\chi}),(\vartheta, \hat{\chi})]=\left(\vartheta, \varpi^{*}\right)$,
- $\left[(\varpi, \hat{\chi}),(\vartheta, \hat{\chi})^{\dagger}\right]=(\varpi, \vartheta)$,
- $\left[(\varpi, \hat{\chi})^{\dagger},(\vartheta, \hat{\chi})^{\dagger}\right]=\left(\vartheta^{*}, \varpi\right)$.

Given a orthonormal basis $\mathrm{U}_{q, a}^{i}$, the annihilation operators associated with this basis is

$$
\mathrm{a}_{q}^{i} \equiv\left(\mathrm{U}_{q}^{i}, \hat{\chi}\right)
$$

It follows directly from the definition and the properties above that

$$
\left[\mathrm{a}_{q}^{i}, \mathrm{a}_{q^{\prime}}^{j \dagger}\right]=\delta^{i j} \delta^{3}\left(q-q^{\prime}\right), \quad\left[\mathrm{a}_{q}^{i}, \mathrm{a}_{q^{\prime}}^{j}\right]=0=\left[\mathrm{a}_{q}^{i \dagger}, \mathrm{a}_{q^{\prime}}^{j \dagger}\right]
$$

Representation Choice

- Each choice of basis $\bigcup_{q, a}^{i}$ produces a different representation.
- The representation choice reduces to find a basis in the finite dimensional space of T^{i}.
Defining a vacuum at the instant $t_{1}, \mathrm{~T}^{i}{ }_{a}\left(t_{1}\right)=\mathrm{t}^{i}{ }_{a}$, at a time t_{2} we have

$$
\mathrm{T}^{i}{ }_{a}\left(t_{2}\right)=\alpha^{i}{ }_{j}\left(t_{2}\right) \mathrm{t}^{j}{ }_{a}+\beta^{i}{ }_{j}\left(t_{2}\right) \mathrm{t}^{\mathrm{t}_{a}^{*}},
$$

where the functions

$$
\alpha^{i}{ }_{j}(t) \equiv \mathrm{T}^{i}{ }_{a}(t) \mathrm{t}_{j}{ }^{a *}, \quad \beta^{i}{ }_{j}(t) \equiv \mathrm{T}^{i}{ }_{a}(t) \mathrm{t}_{j}{ }^{a},
$$

satisfy $\alpha^{i}{ }_{j}\left(t_{1}\right)=\delta^{i}{ }_{j}$ and $\beta^{i}{ }_{j}\left(t_{1}\right)=0$.
Then, the annihilation and creation operators at t_{2} can be written in terms of the same operators at t_{1} as

$$
\begin{aligned}
\mathrm{a}_{q}^{i}\left(t_{2}\right) & =\alpha_{j}^{i *}\left(t_{2}\right) \mathrm{a}_{q}^{j}\left(t_{1}\right)-\beta_{j}^{i *}\left(t_{2}\right) \mathrm{a}_{q}^{j \dagger}\left(t_{1}\right), \\
\mathrm{a}_{q}^{i \dagger}\left(t_{2}\right) & =\alpha^{i}{ }_{j}^{i}\left(t_{2}\right) \mathrm{a}_{q}^{j \dagger}\left(t_{1}\right)-\beta^{i}{ }_{j}\left(t_{2}\right) \mathrm{a}_{q}^{j}\left(t_{1}\right) .
\end{aligned}
$$

Representation Choice

■ The number operator $N_{q}^{i}(t) \equiv \mathrm{a}_{q}^{i \dagger}(t) \mathrm{a}_{q}^{i}(t)$ applied at $\left|0_{t_{1}}\right\rangle$ measures

$$
\left\langle 0_{t_{1}}\right| N_{q}^{i}(t)\left|0_{t_{1}}\right\rangle=\delta^{3}(0) \int \mathrm{d}^{3} q \sum_{j}\left|\beta_{j}^{i}(t)\right|^{2}
$$

where the $\delta^{3}(0)$ is volume of the spatial section.
■ If the integral converges we have defined a unitary evolution.
■ The time evolution of each matrix are

$$
\begin{aligned}
& \mathrm{i} \dot{\alpha}_{j}^{i}=M^{i}{ }_{k} \alpha^{k}{ }_{j}-N^{i}{ }_{k} \beta^{k *}, \\
& \mathrm{i} \dot{\beta}_{j}^{i}=M^{i}{ }_{k} \beta^{k}{ }_{j}-N^{i}{ }_{k} \alpha^{k *},
\end{aligned}
$$

where we defined the following matrices

$$
M_{k}^{i} \equiv \mathrm{~T}^{i}{ }_{a} \mathcal{H}^{a b} \mathrm{~T}_{k b}^{*}, \quad N_{k}^{i} \equiv \mathrm{~T}^{i}{ }_{a} \mathcal{H}^{a b} \mathrm{~T}_{k b}
$$

■ Note that the matrix $N_{j}{ }^{k}$ control the mixing between $\alpha^{i}{ }_{j}$ and $\beta^{i}{ }_{j}$, for instance, if it is null then there is no particle creation.
■ However, in general $\mathcal{H}_{a}{ }^{b}$ will depend on time, thus, even if $N_{j}{ }^{k}$ is null initially at t_{1} nothing guarantees that it will remain null.

Hamiltonian Eigenvectors

- The matrix $\mathcal{H}_{a}{ }^{b} \equiv \mathbb{S}_{a c} \mathcal{H}^{c b}$ works as an operator in the space of the solutions.
- This operator is Hermitian, given the product of the two vectors V_{a} and $\mathcal{H}_{a}{ }^{b} U_{b}$,

$$
V \cdot(\mathcal{H} U)=V_{a}^{*} \mathbb{S}^{a b}\left(\mathcal{H}_{b}{ }^{c} U_{c}\right)=\left(\mathcal{H}_{c}{ }^{a} V_{a}\right)^{*} \mathbb{S}^{c d} U_{d}=(\mathcal{H} V) \cdot U
$$

■ Finally, if we assume that $\mathrm{t}^{i}{ }_{a}$ are the eigenvectors of $\mathcal{H}_{a}{ }^{b}\left(t_{1}\right)$, the condition of the time independent vacuum is simply

$$
N^{i j}\left(t_{1}\right)=\left.\mathrm{t}_{a}^{i} \mathbb{S}^{a b} \mathcal{H}_{b}{ }^{c} \mathrm{t}^{j}{ }_{c}\right|_{t_{1}}=\left.\nu^{j}{ }_{k} \mathrm{t}^{i}{ }_{a} \mathbb{S}^{a b} \mathrm{t}^{k}{ }_{b}\right|_{t_{1}}=0
$$

where $\mathcal{H}_{a}{ }^{b} \mathrm{t}^{i}{ }_{b}=\nu^{i}{ }_{j} \mathrm{t}^{j}$ and $\nu^{i}{ }_{j}$ is a diagonal real matrix containing the eigenvalues.

- This gives zero particle creation in first order expansion of $N^{i}{ }_{k}(t)$.
- This choice does not guarantee that higher order terms will be zero or provides a convergent $\beta^{i}{ }_{j}$.

Diagonal $\mathcal{H}^{a b}$

For a diagonal Hamiltonian

$$
\mathcal{H}^{a b} \doteq \operatorname{diag}\left(m_{1} \nu_{1}^{2}, \ldots, m_{n} \nu_{n}^{2}, 1 / m_{i}, \ldots, 1 / m_{n}\right)
$$

The eigenvectors are given by

$$
V_{a}^{i} \doteq\left(\frac{1}{\sqrt{2 m_{i} \nu_{i}}},-\mathrm{i} \sqrt{\frac{m_{i} \nu_{i}}{2}}\right) .
$$

- The canonical transformation in each field in the form

$$
q_{i} \rightarrow \sqrt{\frac{m_{i}}{M_{i}}} q_{i}, \quad p_{i} \rightarrow M_{i}\left(\sqrt{\frac{m_{i}}{M_{i}}}\right)^{\prime} q_{i}+\sqrt{\frac{M_{i}}{m_{i}}} p_{i} .
$$

- It changes the masses arbitrarily $m_{i} \rightarrow M_{i}$.
- The frequency, however, change as

$$
\nu_{i}^{2} \rightarrow W_{i}^{2}=\nu_{i}^{2}-\frac{\left(\sqrt{m_{i}}\right)^{\prime \prime}}{\sqrt{m_{i}}}+\frac{\left(\sqrt{M_{i}}\right)^{\prime \prime}}{\sqrt{M_{i}}} .
$$

Diagonal $\mathcal{H}^{a b}$

In the new representation the eigenvectors are simply

$$
V_{a}^{i} \doteq\left(\frac{1}{\sqrt{2 M_{i} W_{i}}},-\mathrm{i} \sqrt{\frac{M_{i} W_{i}}{2}}\right)
$$

Then we can make two main choices for

$$
M_{i} W_{i}=\sqrt{M_{i}^{2} \nu_{i}^{2}-M_{i}^{2}\left(\frac{\left(\sqrt{m_{i}}\right)^{\prime \prime}}{\sqrt{m_{i}}}-\frac{\left(\sqrt{M_{i}}\right)^{\prime \prime}}{\sqrt{M_{i}}}\right)}
$$

■ Constant $M_{i}^{2} \nu_{i}^{2}$, defines algebraically M_{i} for each field and it is possible to show that leads to a unitary evolution with particle creation.
■ Constant $M_{i} W_{i}$, leads to a differential equation definition of W_{i}, i.e.,

$$
W_{i}^{2}+\frac{1}{2} \frac{W_{i}^{\prime \prime}}{W_{i}}-\frac{3}{4} \frac{W_{i}^{\prime 2}}{W_{i}^{2}}=\nu_{i}^{2}-\frac{\left(\sqrt{m_{i}}\right)^{\prime \prime}}{\sqrt{m_{i}}}
$$

In this representation the eigenvectors are constant, and is possible to show that it leads to unitary evolution with zero particle creation.

Adiabatic Vacuum

- The last option leads naturally to the adiabatic vacuum, the differential equation can be approximated by a asymptotic series starting with

$$
W_{i}^{2} \approx \nu_{i}^{2}-\frac{\left(\sqrt{m_{i}}\right)^{\prime \prime}}{\sqrt{m_{i}}} .
$$

- This is exactly what one would obtain from the WKB approximation of the field, for any field representation.
- This can be extended to non-diagonal Hamiltonians, and is there is a limit where the Hamiltonian is diagonal, we can show that there is also a representation with zero particles production.

To perform the quantization we the last steps and make the canonical transformation:

$$
\begin{aligned}
& A=\sqrt{\frac{m_{\zeta}}{m_{A}}} \zeta, \quad P_{A}=\sqrt{\frac{m_{A}}{m_{\zeta}}} \Pi_{\zeta}+m_{A}{\sqrt{\frac{m_{\zeta}}{m_{A}}}}^{\prime} \\
& B=\sqrt{\frac{m_{S}}{m_{B}}} Q, \quad P_{B}=\sqrt{\frac{m_{B}}{m_{S}}} \Pi_{Q}+m_{B}{\sqrt{\frac{m_{S}}{m_{B}}}}^{\prime} Q
\end{aligned}
$$

With the new frequencies satisfying

$$
\begin{aligned}
& \nu_{A}^{2}+\frac{1}{2} \frac{\nu_{A}^{\prime \prime}}{\nu_{A}}-\frac{3}{4} \frac{\nu_{A}^{\prime 2}}{\nu_{A}^{2}}=\nu_{\zeta}^{2}-\frac{\left(\sqrt{m_{\zeta}}\right)^{\prime \prime}}{\sqrt{m_{\zeta}}}, \\
& \nu_{B}^{2}+\frac{1}{2} \frac{\nu_{B}^{\prime \prime}}{\nu_{B}}-\frac{3}{4} \frac{\nu_{B}^{\prime 2}}{\nu_{B}^{2}}=\nu_{S}^{2}-\frac{\left(\sqrt{m_{S}}\right)^{\prime \prime}}{\sqrt{m_{S}}} .
\end{aligned}
$$

The Hamiltonian in these variables is

$$
\begin{aligned}
& \delta \mathcal{L}^{(2, s)}=P_{A} A^{\prime}+P_{B} B^{\prime}-\left[\frac{\nu_{A} P_{A}^{2}}{2 \tilde{\lambda}_{q}}+\frac{\nu_{B} P_{B}^{2}}{2 \tilde{\lambda}_{q}}\right. \\
& \left.+\frac{\tilde{\lambda}_{q} \nu_{A} A^{2}}{2}+\frac{\tilde{\lambda}_{q} \nu_{B} B^{2}}{2}+y\left(P_{A}-L_{A} A\right)\left(P_{B}-L_{B} B\right)\right]
\end{aligned}
$$

Integral Solution

Writing the fields in terms of

$$
R_{A}^{ \pm}=\sqrt{\tilde{\lambda}_{q}} A \pm \mathrm{i} \frac{P_{A}}{\sqrt{\tilde{\lambda}_{q}}} \quad \text { and } \quad R_{B}^{ \pm}=\sqrt{\tilde{\lambda}_{q}} B \pm \mathrm{i} \frac{P_{B}}{\sqrt{\tilde{\lambda}_{q}}}
$$

The equations for these variables can be readily integrated, resulting in a set of integral equations,

$$
\begin{aligned}
& R_{A}^{ \pm}=e^{\mp \mathrm{i} \int \mathrm{~d} \tau \nu_{A}}\left[R_{A 0}^{ \pm}+\int \mathrm{d} \tau y\left(\sqrt{\tilde{\lambda}_{q}} \pm \mathrm{i} \frac{L_{A}}{\sqrt{\tilde{\lambda}_{q}}}\right)\left(P_{B}-L_{B} B\right) e^{ \pm \mathrm{i} \int \mathrm{~d} \tau \nu_{A}}\right], \\
& R_{B}^{ \pm}=e^{\mp \mathrm{i} \int \mathrm{~d} \tau \nu_{B}}\left[R_{B 0}^{ \pm}+\int \mathrm{d} \tau y\left(\sqrt{\tilde{\lambda}_{q}} \pm \mathrm{i} \frac{L_{B}}{\sqrt{\tilde{\lambda}_{q}}}\right)\left(P_{A}-L_{A} A\right) e^{ \pm \mathrm{i} \int \mathrm{~d} \tau \nu_{B}}\right] .
\end{aligned}
$$

Adiabatic Approximation

If ν_{A} and ν_{B} are large enough, we can approximate the integral solutions by

$$
\begin{aligned}
& R_{A}^{ \pm}=e^{\mp \mathrm{i} \int \mathrm{~d} \tau \nu_{A}} R_{A 0}^{ \pm} \pm \frac{1}{\mathrm{i} \nu_{A}} y\left(\sqrt{\tilde{\lambda}_{q}} \pm \mathrm{i} \frac{L_{A}}{\sqrt{\tilde{\lambda}_{q}}}\right)\left(P_{B}-L_{B} B\right), \\
& R_{B}^{ \pm}=e^{\mp \mathrm{i} \int \mathrm{~d} \tau \nu_{B}} R_{B 0}^{ \pm} \pm \frac{1}{\mathrm{i} \nu_{B}} y\left(\sqrt{\tilde{\lambda}_{q}} \pm \mathrm{i} \frac{L_{B}}{\sqrt{\tilde{\lambda}_{q}}}\right)\left(P_{A}-L_{A} A\right) .
\end{aligned}
$$

- This approximation assumes only that ν_{A} and ν_{B} are large.
- Therefore, it can be applied even when the coupling y is large.
- The equations above provide a linear system in terms of $R_{A}^{ \pm}$and $R_{B}^{ \pm}$.

Conclusions

■ We obtained the second order Hamiltonian for a multiple fluids system.

- This Hamiltonian was obtained without assuming a dynamics for the background.
- We suggested a well defined procedure to find a vacuum for a multiple components system.
- This in turn leads to a WKB approximation which can be easily applied to a multiple components system.

[^0]: ${ }^{2}$ L. Faddeev and R. Jackiw, Physical Review Letters 60 (1988), 1692-1694.

