# Equations of motion of compact binaries at the fourth post-Newtonian order

#### Laura BERNARD

in collaboration with L.Blanchet, A. Bohé, G. Faye, S. Marsat

Hot Topics in General Relativity and Gravitation 2015

10/08/2015

#### INSTITUT D'ASTROPHYSIQUE DE PARIS

Unité mixte de recherche 7095 CNRS - Université Pierre et Marie Curie

## Outline

Introduction

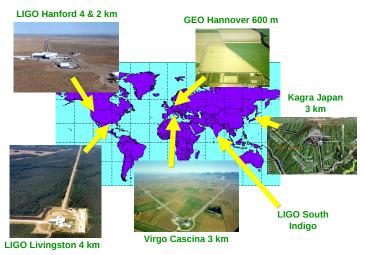
The post-Newtonian Fokker action

Results and consistency checks

Conclusion

#### Motivations

#### **A Global Network of Interferometers**



# Coalescing compact binary systems

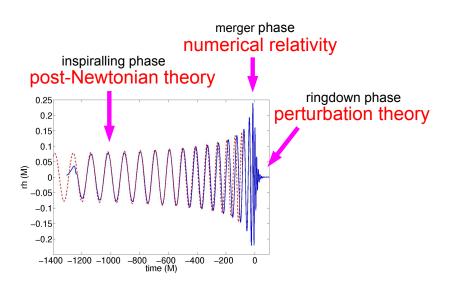


 $\operatorname{NS-NS}$  merger



BH-BH merger

## Coalescing compact binary systems



# Principle of the Fokker action

▶ Starting from the action

$$S_{\mathrm{tot}}\left[g_{\mu\nu},\mathbf{y}_{B}(t),\mathbf{v}_{B}(t)\right] = S_{\mathrm{grav}}\left[g_{\mu\nu}\right] + S_{\mathrm{mat}}\left[(g_{\mu\nu})_{B},\mathbf{y}_{B}(t),\mathbf{v}_{B}(t)\right]$$

- $\triangleright$  we solve the Einstein equation  $\frac{\delta S_{\mathrm{tot}}}{\delta g_{\mu\nu}} = 0 \rightarrow \overline{g}_{\mu\nu} \left[ \mathbf{y}_A(t), \mathbf{v}_A(t), \cdots \right]$
- ▷ and construct the Fokker action

$$S_{\text{Fokker}}\left[\mathbf{y}_{B}(t), \mathbf{v}_{B}(t), \cdots\right] = S_{\text{tot}}\left[\overline{g}_{\mu\nu}\left(\mathbf{y}_{A}(t), \mathbf{v}_{A}(t), \cdots\right), \mathbf{y}_{B}(t), \mathbf{v}_{B}(t)\right]$$

# Principle of the Fokker action

▶ Starting from the action

$$S_{\mathrm{tot}}\left[g_{\mu\nu},\mathbf{y}_{B}(t),\mathbf{v}_{B}(t)\right] = S_{\mathrm{grav}}\left[g_{\mu\nu}\right] + S_{\mathrm{mat}}\left[(g_{\mu\nu})_{B},\mathbf{y}_{B}(t),\mathbf{v}_{B}(t)\right]$$

- $\triangleright$  we solve the Einstein equation  $\frac{\delta S_{\mathrm{tot}}}{\delta g_{\mu\nu}} = 0 \rightarrow \overline{g}_{\mu\nu} \left[ \mathbf{y}_A(t), \mathbf{v}_A(t), \cdots \right]$
- ▶ and construct the Fokker action

$$S_{\text{Fokker}}\left[\mathbf{y}_{B}(t), \mathbf{v}_{B}(t), \cdots\right] = S_{\text{tot}}\left[\overline{g}_{\mu\nu}\left(\mathbf{y}_{A}(t), \mathbf{v}_{A}(t), \cdots\right), \mathbf{y}_{B}(t), \mathbf{v}_{B}(t)\right]$$

▶ The dynamics for the particles is unchanged

$$\frac{\delta S_{\text{Fokker}}}{\delta y_A} = \underbrace{\left. \frac{\delta S_{\text{tot}}}{\delta g_{\mu\nu}} \right|_{g=\overline{g}}}_{=0} \cdot \underbrace{\left. \frac{\delta g_{\mu\nu}}{\delta y_A} + \frac{\delta S_{\text{tot}}}{\delta y_A} \right|_{g=\overline{g}}}_{g=\overline{g}}$$

$$= \underbrace{\left. \frac{\delta S_{\text{tot}}}{\delta y_A} \right|_{g=\overline{g}}}_{g=\overline{g}}$$

### Our Fokker action

$$S_{\rm grav} = \frac{c^3}{16\pi G} \int {\rm d}^4 x \, \sqrt{-g} \left[ g^{\mu\nu} \left( \Gamma^\rho_{\mu\lambda} \Gamma^\lambda_{\nu\rho} - \Gamma^\rho_{\mu\nu} \Gamma^\lambda_{\rho\lambda} \right) - \underbrace{\frac{1}{2} g_{\mu\nu} \Gamma^\mu \Gamma^\nu}_{\rm gauge \ fixing \ term} \right] \, , \label{eq:Sgrav}$$

$$S_{\text{mat}} = -\sum_{A} m_{A} c^{2} \int dt \sqrt{-(g_{\mu\nu})_{A} \frac{v_{A}^{\mu} v_{A}^{\nu}}{c^{2}}}.$$

### Our Fokker action

$$S_{\rm grav} = \frac{c^3}{16\pi G} \int {\rm d}^4 x \, \sqrt{-g} \left[ g^{\mu\nu} \left( \Gamma^\rho_{\mu\lambda} \Gamma^\lambda_{\nu\rho} - \Gamma^\rho_{\mu\nu} \Gamma^\lambda_{\rho\lambda} \right) - \underbrace{\frac{1}{2} g_{\mu\nu} \Gamma^\mu \Gamma^\nu}_{\rm gauge \; fixing \; term} \right] \, , \label{eq:Sgrav}$$

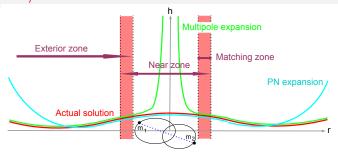
$$S_{\text{mat}} = -\sum_{A} m_{A} c^{2} \int dt \sqrt{-(g_{\mu\nu})_{A} \frac{v_{A}^{\mu} v_{A}^{\nu}}{c^{2}}}.$$

#### Relaxed Einstein equations

$$\Box h^{\mu\nu} = \frac{16\pi G}{c^4} |g| T^{\mu\nu} + \Lambda^{\mu\nu} \left[ h, \partial h, \partial^2 h \right]$$

- with  $h^{\mu\nu} = \sqrt{|g|}g^{\mu\nu} \eta^{\mu\nu}$  the metric perturbation variable.
- We don't impose the harmonicity condition  $\partial_{\nu}h^{\mu\nu} = 0$ .
- $ightharpoonup \Lambda^{\mu\nu}$  encodes the non-linearities, with supplementary harmonicity terms containing  $H^{\mu} = \partial_{\nu} h^{\mu\nu}$ .

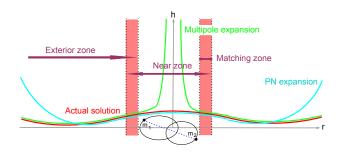
## Near zone / Wave zone



- ▶ **Near zone** : Post-Newtonian expansion  $h = \overline{h}$ ,
- $\triangleright$  Wave zone : Multipole expansion  $h = \mathcal{M}(h)$ ,
- $ightharpoonup \mathbf{Matching\ zone}: \overline{h} = \mathcal{M}(h) \implies \mathcal{M}\left(\overline{h}\right) = \overline{\mathcal{M}(h)}.$

$$S_{g} = \underset{B=0}{\text{FP}} \int dt \int d^{3}\mathbf{x} \left(\frac{r}{r_{0}}\right)^{B} \overline{\mathcal{L}}_{F} + \underset{B=0}{\text{FP}} \int dt \int d^{3}\mathbf{x} \left(\frac{r}{r_{0}}\right)^{B} \mathcal{M}\left(\mathcal{L}_{F}\right)$$

## Near zone / Wave zone



- **Near zone**: Post-Newtonian expansion  $h = \overline{h}$ ,
- $\triangleright$  Wave zone: Multipole expansion  $h = \mathcal{M}(h)$ ,
- Matching zone :  $\overline{h} = \mathcal{M}(h) \implies \mathcal{M}(\overline{h}) = \overline{\mathcal{M}(h)}$  everywhere.

$$S_{g} = \underset{B=0}{\text{FP}} \int dt \int d^{3}\mathbf{x} \left(\frac{r}{r_{0}}\right)^{B} \overline{\mathcal{L}}_{F} + \underbrace{\underset{B=0}{\text{FP}} \int dt \int d^{3}\mathbf{x} \left(\frac{r}{r_{0}}\right)^{B} \mathcal{M}(\mathcal{L}_{F})}_{\mathcal{O}(5.5PN)}$$

## Post-Newtonian counting in a Fokker action

Thanks to the property of the Fokker action, cancellations between gravitational and matter terms in the action occur.

▷ To get the Lagrangian at nPN i.e.  $\mathcal{O}\left(\frac{1}{c^{2n}}\right)$ , we only need to know the metric at roughly half the order we would have expected:

$$\left(h^{00ii}, h^{0i}, h^{ij}\right) = \mathcal{O}\left(\frac{1}{c^{n+2}}\right).$$

## Post-Newtonian counting in a Fokker action

Thanks to the property of the Fokker action, cancellations between gravitational and matter terms in the action occur.

▷ To get the Lagrangian at nPN i.e.  $\mathcal{O}\left(\frac{1}{c^{2n}}\right)$ , we only need to know the metric at roughly half the order we would have expected:

$$\left(h^{00ii}, h^{0i}, h^{ij}\right) = \mathcal{O}\left(\frac{1}{c^{n+2}}\right).$$

#### Tail effects at 4PN

▶ At 4PN we have to insert some tail effects,

$$\overline{h}^{\mu\nu} = \overline{h}^{\mu\nu}_{\text{part}} - \frac{2G}{c^4} \sum_{l=0}^{+\infty} \frac{(-1)^l}{l!} \partial_L \left\{ \frac{\mathcal{A}^{\mu\nu}_L(t-r/c) - \mathcal{A}^{\mu\nu}_L(t+r/c)}{r} \right\}$$

▶ When inserted into the Fokker action it gives in the following contribution

$$S_{\text{tail}} = \frac{G^2(m_1 + m_2)}{5c^8} \underbrace{\Pr_{\frac{2s_0}{c}}} \int \int \frac{\mathrm{d}t \,\mathrm{d}t'}{|t - t'|} I_{ij}^{(3)}(t) I_{ij}^{(3)}(t')$$

 $\triangleright$  The two constant of integration are linked through  $s_0 = r_0 e^{-\alpha}$ .

## Different regularization schemes

IR Singularity of the PN expansion at infinity :  $r_0$ 

Tail effects:  $s_0$ 

- ▶ The two constants of integration are linked through  $s_0 = r_0 e^{-\alpha}$ .
- $\triangleright \alpha$  will be determined by comparison with self-force results.

## Different regularization schemes

## IR Singularity of the PN expansion at infinity : $r_0$

### Tail effects: $s_0$

- ▷ The two constants of integration are linked through  $s_0 = r_0 e^{-\alpha}$ .
- $\triangleright \alpha$  will be determined by comparison with self-force results.

## UV Singularity at the location of the point particles

- ▶ Dimensional regularization,
  - 1. We calculate the Lagrangian in  $d = 3 + \varepsilon$  dimensions.
  - 2. We expand the results when  $\varepsilon \to 0$ : appearance of a pole  $1/\varepsilon$ .
  - 3. We eliminate the pole through a redefinition of the variables.
- $\triangleright$  The physical result should not depend on  $\varepsilon$ .

## The equations of motion at 4PN

## The generalized Lagrangian

$$L_{4\text{PN}} = \frac{Gm_1m_2}{r_{12}} + \frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 + L_{1\text{pn}} + L_{2\text{pn}} + L_{3\text{pn}} + L_{4\text{pn}}[y_A(t), v_A(t), a_A(t), \partial a_A(t), \cdots]$$

## The equations of motion

$$a_{1,4\text{PN}}^i = -\frac{Gm_2}{r_{12}^2}n_{12}^i + a_{1,1\text{pn}}^i + a_{1,2\text{pn}}^i + a_{1,3\text{pn}}^i + a_{1,4\text{pn}}^i[\alpha]$$

 Previous results at 4PN were obtained with the Hamiltonian formalism (Jaranowski, Schaffer 2013 and Damour, Jaranowski, Schaffer 2014) and partially with EFT (Foffa, Sturani 2012).

## Binding energy for circular orbits

 $\triangleright$  The constant  $\alpha$  is determined by comparison of the binding energy for circular orbits with another method, such as self-force calculations:

$$\begin{split} E(x;\nu) &= -\frac{\mu c^2 x}{2} \left[ 1 - \left( \frac{3}{4} + \frac{\nu}{12} \right) x + \left( -\frac{27}{8} + \frac{19\nu}{8} - \frac{\nu^2}{24} \right) x^2 \right. \\ &+ \left( -\frac{675}{64} + \left( \frac{34445}{576} - \frac{205\pi^2}{96} \right) \nu - \frac{155\nu^2}{96} - \frac{35\nu^3}{5184} \right) x^3 \\ &+ \left( -\frac{3969}{128} + \left( \frac{9037\pi^2}{1536} - \frac{123671}{5760} + \frac{448}{15} \left( 2\gamma + \ln(16x) \right) \right) \nu \\ &- \left( \frac{3157\pi^2}{576} - \frac{198449}{3456} \right) \nu^2 + \frac{301\nu^3}{1728} + \frac{77\nu^4}{31104} \right) x^4 \right] \end{split}$$

with  $x = \left(\frac{G(m_1 + m_2)\Omega}{c^3}\right)^{2/3}$  and  $\nu = \frac{m_1 m_2}{(m_1 + m_2)^2}$  the symmetric mass ratio.

# Consistency checks

#### We have checked that

- $\triangleright$  the IR regularization is in agreement with the tail part : **no**  $r_0$ ,
- $\triangleright$  the result does not depend on the UV regularization : **no pole**  $1/\varepsilon$ ,
- by the equations of motion are manifestly **Lorentz invariant**,
- ▷ in the test mass limit we recover the Schwarzschild geodesics,
- b we recover the **conserved energy for circular orbits**.

## Summary

- ▶ We obtained the equations of motion at 4PN from a Fokker Lagrangian, in harmonic coordinates.
- ▶ We recover all the physical results that we expected.

## Summary

- ▶ We obtained the equations of motion at 4PN from a Fokker Lagrangian, in harmonic coordinates.
- ▶ We recover all the physical results that we expected.
- ▶ We are now systematically computing the conserved quantities.
- ▶ The important goal is now to compute the gravitational radiation field at 4PN.