Equations of motion of compact binaries at the fourth post-Newtonian order

Laura BERNARD

in collaboration with L.Blanchet, A. Bohé, G. Faye, S. Marsat

Hot Topics in General Relativity and Gravitation 2015

$$
10 / 08 / 2015
$$

Outline

Introduction

The post-Newtonian Fokker action

Results and consistency checks

Conclusion

Motivations

A Global Network of Interferometers

Coalescing compact binary systems

NS-NS merger

BH-BH merger

Coalescing compact binary systems

Principle of the Fokker action

\triangleright Starting from the action

$$
S_{\mathrm{tot}}\left[g_{\mu \nu}, \mathbf{y}_{B}(t), \mathbf{v}_{B}(t)\right]=S_{\mathrm{grav}}\left[g_{\mu \nu}\right]+S_{\mathrm{mat}}\left[\left(g_{\mu \nu}\right)_{B}, \mathbf{y}_{B}(t), \mathbf{v}_{B}(t)\right]
$$

\triangleright we solve the Einstein equation $\frac{\delta S_{\mathrm{tot}}}{\delta g_{\mu \nu}}=0 \rightarrow \bar{g}_{\mu \nu}\left[\mathbf{y}_{A}(t), \mathbf{v}_{A}(t), \cdots\right]$
\triangleright and construct the Fokker action
$S_{\text {Fokker }}\left[\mathbf{y}_{B}(t), \mathbf{v}_{B}(t), \cdots\right]=S_{\text {tot }}\left[\bar{g}_{\mu \nu}\left(\mathbf{y}_{A}(t), \mathbf{v}_{A}(t), \cdots\right), \mathbf{y}_{B}(t), \mathbf{v}_{B}(t)\right]$

Principle of the Fokker action

\triangleright Starting from the action

$$
S_{\mathrm{tot}}\left[g_{\mu \nu}, \mathbf{y}_{B}(t), \mathbf{v}_{B}(t)\right]=S_{\mathrm{grav}}\left[g_{\mu \nu}\right]+S_{\mathrm{mat}}\left[\left(g_{\mu \nu}\right)_{B}, \mathbf{y}_{B}(t), \mathbf{v}_{B}(t)\right]
$$

\triangleright we solve the Einstein equation $\frac{\delta S_{\mathrm{tot}}}{\delta g_{\mu \nu}}=0 \rightarrow \bar{g}_{\mu \nu}\left[\mathbf{y}_{A}(t), \mathbf{v}_{A}(t), \cdots\right]$
\triangleright and construct the Fokker action
$S_{\text {Fokker }}\left[\mathbf{y}_{B}(t), \mathbf{v}_{B}(t), \cdots\right]=S_{\text {tot }}\left[\bar{g}_{\mu \nu}\left(\mathbf{y}_{A}(t), \mathbf{v}_{A}(t), \cdots\right), \mathbf{y}_{B}(t), \mathbf{v}_{B}(t)\right]$
\triangleright The dynamics for the particles is unchanged

$$
\begin{aligned}
\frac{\delta S_{\text {Fokker }}}{\delta y_{A}} & =\left.\underbrace{\frac{\delta S_{\mathrm{tot}}}{\delta g_{\mu \nu}}}_{=0}\right|_{g=\bar{g}} \cdot \frac{\delta g_{\mu \nu}}{\delta y_{A}}+\left.\frac{\delta S_{\mathrm{tot}}}{\delta y_{A}}\right|_{g=\bar{g}} \\
& =\left.\frac{\delta S_{\mathrm{tot}}}{\delta y_{A}}\right|_{g=\bar{g}}
\end{aligned}
$$

Our Fokker action

$$
\begin{gathered}
S_{\text {grav }}=\frac{c^{3}}{16 \pi G} \int \mathrm{~d}^{4} x \sqrt{-g}[g^{\mu \nu}\left(\Gamma_{\mu \lambda}^{\rho} \Gamma_{\nu \rho}^{\lambda}-\Gamma_{\mu \nu}^{\rho} \Gamma_{\rho \lambda}^{\lambda}\right)-\underbrace{\frac{1}{2} g_{\mu \nu} \Gamma^{\mu} \Gamma^{\nu}}_{\text {gauge fixing term }}] \\
S_{\text {mat }}=-\sum_{A} m_{A} c^{2} \int \mathrm{~d} t \sqrt{-\left(g_{\mu \nu}\right)_{A} \frac{v_{A}^{\mu} v_{A}^{\nu}}{c^{2}}}
\end{gathered}
$$

Our Fokker action

$$
\begin{gathered}
S_{\text {grav }}=\frac{c^{3}}{16 \pi G} \int \mathrm{~d}^{4} x \sqrt{-g}[g^{\mu \nu}\left(\Gamma_{\mu \lambda}^{\rho} \Gamma_{\nu \rho}^{\lambda}-\Gamma_{\mu \nu}^{\rho} \Gamma_{\rho \lambda}^{\lambda}\right)-\underbrace{\frac{1}{g_{\mu \nu}} \Gamma^{\mu} \Gamma^{\nu}}_{\text {gauge fixing term }}], \\
S_{\text {mat }}=-\sum_{A} m_{A} c^{2} \int \mathrm{~d} t \sqrt{-\left(g_{\mu \nu}\right)_{A} \frac{v_{A}^{\mu} v_{A}^{\nu}}{c^{2}}} .
\end{gathered}
$$

Relaxed Einstein equations

$$
\square h^{\mu \nu}=\frac{16 \pi G}{c^{4}}|g| T^{\mu \nu}+\Lambda^{\mu \nu}\left[h, \partial h, \partial^{2} h\right]
$$

- with $h^{\mu \nu}=\sqrt{|g|} g^{\mu \nu}-\eta^{\mu \nu}$ the metric perturbation variable.
- We don't impose the harmonicity condition $\partial_{\nu} h^{\mu \nu}=0$.
- $\Lambda^{\mu \nu}$ encodes the non-linearities, with supplementary harmonicity terms containing $H^{\mu}=\partial_{\nu} h^{\mu \nu}$.

Near zone / Wave zone

\triangleright Near zone : Post-Newtonian expansion $h=\bar{h}$,
\triangleright Wave zone : Multipole expansion $h=\mathcal{M}(h)$,
\triangleright Matching zone $: \bar{h}=\mathcal{M}(h) \quad \Longrightarrow \quad \mathcal{M}(\bar{h})=\overline{\mathcal{M}(h)}$.

$$
S_{g}=\underset{B=0}{\mathrm{FP}} \int \mathrm{~d} t \int \mathrm{~d}^{3} \mathbf{x}\left(\frac{r}{r_{0}}\right)^{B} \overline{\mathcal{L}}_{F}+\underset{B=0}{\mathrm{FP}} \int \mathrm{~d} t \int \mathrm{~d}^{3} \mathbf{x}\left(\frac{r}{r_{0}}\right)^{B} \mathcal{M}\left(\mathcal{L}_{F}\right)
$$

Near zone / Wave zone

\triangleright Near zone : Post-Newtonian expansion $h=\bar{h}$,
\triangleright Wave zone : Multipole expansion $h=\mathcal{M}(h)$,
\triangleright Matching zone $: \bar{h}=\mathcal{M}(h) \quad \Longrightarrow \quad \mathcal{M}(\bar{h})=\overline{\mathcal{M}(h)}$ everywhere.

$$
S_{g}=\underset{B=0}{\mathrm{FP}} \int \mathrm{~d} t \int \mathrm{~d}^{3} \mathbf{x}\left(\frac{r}{r_{0}}\right)^{B} \overline{\mathcal{L}}_{F}+\underbrace{\underset{B=0}{\mathrm{FP}} \int \mathrm{~d} t \int \mathrm{~d}^{3} \mathbf{x}\left(\frac{r}{r_{0}}\right)^{B} \mathcal{M}\left(\mathcal{L}_{F}\right)}_{\mathcal{O}(5.5 P N)}
$$

Post-Newtonian counting in a Fokker action

Thanks to the property of the Fokker action, cancellations between gravitational and matter terms in the action occur.
\triangleright To get the Lagrangian at $n \mathrm{PN}$ i.e. $\mathcal{O}\left(\frac{1}{c^{2 n}}\right)$, we only need to know the metric at roughly half the order we would have expected:

$$
\left(h^{00 i i}, h^{0 i}, h^{i j}\right)=\mathcal{O}\left(\frac{1}{c^{n+2}}\right) .
$$

Post-Newtonian counting in a Fokker action

Thanks to the property of the Fokker action, cancellations between gravitational and matter terms in the action occur.
\triangleright To get the Lagrangian at $n \mathrm{PN}$ i.e. $\mathcal{O}\left(\frac{1}{c^{2 n}}\right)$, we only need to know the metric at roughly half the order we would have expected:

$$
\left(h^{00 i i}, h^{0 i}, h^{i j}\right)=\mathcal{O}\left(\frac{1}{c^{n+2}}\right) .
$$

\triangleright For $4 \mathrm{PN}:\left(h^{00 i i}, h^{0 i}, h^{i j}\right)=\mathcal{O}\left(\frac{1}{c^{6}}, \frac{1}{c^{5}}, \frac{1}{c^{6}}\right)$

Tail effects at 4PN

- At 4PN we have to insert some tail effects,

$$
\bar{h}^{\mu \nu}=\bar{h}_{\mathrm{part}}^{\mu \nu}-\frac{2 G}{c^{4}} \sum_{l=0}^{+\infty} \frac{(-1)^{l}}{l!} \partial_{L}\left\{\frac{\mathcal{A}_{L}^{\mu \nu}(t-r / c)-\mathcal{A}_{L}^{\mu \nu}(t+r / c)}{r}\right\}
$$

- When inserted into the Fokker action it gives in the following contribution

$$
S_{\text {tail }}=\frac{G^{2}\left(m_{1}+m_{2}\right)}{5 c^{8}} \underset{\frac{2 s_{0}}{c}}{\operatorname{Pf}} \iint \frac{\mathrm{~d} t \mathrm{~d} t^{\prime}}{\left|t-t^{\prime}\right|} I_{i j}^{(3)}(t) I_{i j}^{(3)}\left(t^{\prime}\right)
$$

\triangleright The two constant of integration are linked through $s_{0}=r_{0} \mathrm{e}^{-\alpha}$.

Different regularization schemes

IR Singularity of the PN expansion at infinity : $\boldsymbol{r}_{\mathbf{0}}$
Tail effects : s_{0}
\triangleright The two constants of integration are linked through $s_{0}=r_{0} \mathrm{e}^{-\alpha}$.
$\triangleright \alpha$ will be determined by comparison with self-force results.

Different regularization schemes

IR Singularity of the PN expansion at infinity : r_{0}
Tail effects : s_{0}
\triangleright The two constants of integration are linked through $s_{0}=r_{0} \mathrm{e}^{-\alpha}$.
$\triangleright \alpha$ will be determined by comparison with self-force results.

UV Singularity at the location of the point particles
\triangleright Dimensional regularization,

1. We calculate the Lagrangian in $d=3+\varepsilon$ dimensions.
2. We expand the results when $\varepsilon \rightarrow 0$: appearance of a pole $1 / \varepsilon$.
3. We eliminate the pole through a redefinition of the variables.
\triangleright The physical result should not depend on ε.

The equations of motion at 4PN

The generalized Lagrangian

$$
\begin{aligned}
L_{4 \mathrm{PN}}= & \frac{G m_{1} m_{2}}{r_{12}}+\frac{1}{2} m_{1} v_{1}^{2}+\frac{1}{2} m_{2} v_{2}^{2}+L_{1 \mathrm{pn}}+L_{2 \mathrm{pn}}+L_{3 \mathrm{pn}} \\
& +L_{4 \mathrm{pn}}\left[y_{A}(t), v_{A}(t), a_{A}(t), \partial a_{A}(t), \cdots\right]
\end{aligned}
$$

The equations of motion

$$
a_{1,4 \mathrm{PN}}^{i}=-\frac{G m_{2}}{r_{12}^{2}} n_{12}^{i}+a_{1,1 \mathrm{pn}}^{i}+a_{1,2 \mathrm{pn}}^{i}+a_{1,3 \mathrm{pn}}^{i}+a_{1,4 \mathrm{pn}}^{i}[\alpha]
$$

\triangleright Previous results at 4PN were obtained with the Hamiltonian formalism (Jaranowski, Schaffer 2013 and Damour, Jaranowski, Schaffer 2014) and partially with EFT (Foffa, Sturani 2012).

Binding energy for circular orbits

\triangleright The constant α is determined by comparison of the binding energy for circular orbits with another method, such as self-force calculations:

$$
\begin{aligned}
E(x ; \nu)= & -\frac{\mu c^{2} x}{2}\left[1-\left(\frac{3}{4}+\frac{\nu}{12}\right) x+\left(-\frac{27}{8}+\frac{19 \nu}{8}-\frac{\nu^{2}}{24}\right) x^{2}\right. \\
& +\left(-\frac{675}{64}+\left(\frac{34445}{576}-\frac{205 \pi^{2}}{96}\right) \nu-\frac{155 \nu^{2}}{96}-\frac{35 \nu^{3}}{5184}\right) x^{3} \\
& +\left(-\frac{3969}{128}+\left(\frac{9037 \pi^{2}}{1536}-\frac{123671}{5760}+\frac{448}{15}(2 \gamma+\ln (16 x))\right) \nu\right. \\
& \left.\left.-\left(\frac{3157 \pi^{2}}{576}-\frac{198449}{3456}\right) \nu^{2}+\frac{301 \nu^{3}}{1728}+\frac{77 \nu^{4}}{31104}\right) x^{4}\right]
\end{aligned}
$$

with $x=\left(\frac{G\left(m_{1}+m_{2}\right) \Omega}{c^{3}}\right)^{2 / 3}$ and $\nu=\frac{m_{1} m_{2}}{\left(m_{1}+m_{2}\right)^{2}}$ the symmetric mass ratio.

Consistency checks

We have checked that
\triangleright the IR regularization is in agreement with the tail part : no r_{0},
\triangleright the result does not depend on the UV regularization : no pole $1 / \varepsilon$,
\triangleright the equations of motion are manifestly Lorentz invariant,
\triangleright in the test mass limit we recover the Schwarzschild geodesics,
\triangleright we recover the conserved energy for circular orbits.

Summary

- We obtained the equations of motion at 4PN from a Fokker Lagrangian, in harmonic coordinates.
- We recover all the physical results that we expected.

Summary

- We obtained the equations of motion at 4PN from a Fokker Lagrangian, in harmonic coordinates.
- We recover all the physical results that we expected.
- We are now systematically computing the conserved quantities.
- The important goal is now to compute the gravitational radiation field at 4PN.

