Primordial black hole formation from cosmological fluctuations

Tomohiro Harada

Department of Physics, Rikkyo University, Tokyo, Japan

11/08/2015 HTGRG2 @ ICISE, Quy Nhon This talk is based on Harada, Yoo, Nakama and Koga, arXiv:1503.03934 Harada, Yoo and Kohri, arxiv:1309.4201.

イロト イポト イヨト イヨト

-

Primordial black holes and cosmology

- Black holes may have formed in the early universe. (Zeldovich & Novikov 1967, Hawking 1971)
- PBHs the source of emission due to Hawking radiation and the source of gravitational field and gravitational waves
- Hawking radiation: nearly black-body radiation

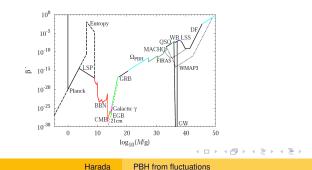
$$T_{H} = \frac{\hbar c^{3}}{8\pi GMk_{B}}, \quad \frac{dE}{dt} = -\frac{dM}{dt} = g_{\rm eff}4\pi R_{g}^{2}\sigma T_{H}^{4}, \quad R_{g} = \frac{2GM}{c^{2}}$$

 Mass accretion: important only immediately after the formation

・ロト ・ 同ト ・ ヨト ・ ヨト

Observational constraints on the PBH abundance

- PBHs of mass *M* is formed at the epoch when the mass contained within the Hubble length is *M*.
- Observational data can constrain the abundance of PBHs. Complementary to CMB observation. (Carr (1975), Carr et al. (2010))



ъ

Sac

Production rate of PBHs

- PBHs of mass *M* are formed from δ(*M*), the density perturbation of mass *M*.
- A Gaussian-like probability distribution for δ(M) (Carr (1975), cf. Kopp, Hofmann and Weller (2011))
- PBH production rate

$$\beta_0(M) \simeq \sqrt{\frac{2}{\pi}} \frac{\sigma(M)}{\delta_c(M)} \exp\left(-\frac{\delta_c^2}{2\sigma^2(M)}\right),$$

where $\delta_c = O(1)$ is the PBH threshold of δ and σ is the standard deviation of δ .

イロト 不得 トイヨト 不良ト 一日

2 Primordial fluctuations

Numerical simulations
 EOS dependence

Profile dependence

イロト イポト イヨト イヨト

ъ

DQC

Dynamics in PBH formation

- Fluctuations in super-horizon scales are generated by inflation.
- The fluctuations enter the Hubble horizon in the decelerated phase of the univese.
- The Jeans instability sets in and the fluctuation collapses if its amplitude is nonlinearly large enough.
- A black hole apparent horizon is formed.

イロト 不得 トイヨト イヨト

-

3-zone model

Simplified model for analytic approach

• Background: a flat FRW

$$ds^2 = -c^2 dt^2 + a_b^2(t)(dr^2 + r^2 d\Omega^2)$$

for $r > r_b$

• Overdense region: a closed FRW

$$ds^2 = -c^2 dt^2 + a^2(t)(d\chi^2 + \sin^2\chi d\Omega^2)$$

for $0 \le \chi < \chi_a$.

• Compensating region in between

イロト イボト イヨト イヨト 二日

DQC

Jeans instability argument

 $t_{\rm ff}$ (free-fall time) versus $t_{\rm sc}$ (sound-crossing time)

Jeans criterion

- If and only if the overdensity reaches maximum expansion before a sound wave crosses over its radius from the big bang, it collapses to a black hole.
- Equivalently, if and only if the overdense region ends in singularity before a sound wave crosses its diameter from the big bang, it collapses to a black hole.

・ロト ・ 同ト ・ ヨト ・ ヨト

Analytic formula

- We assume an EOS $p = (\Gamma 1)\rho$ for simplicity. We define $\tilde{\delta}$ as the density perturbation at the horizon entry in the comoving slicing. $\Gamma = 4/3$ for radiation.
- Carr's formula (1975): partially Newtonian estimate

$$ilde{\delta}_{c} = rac{3\Gamma}{3\Gamma+2}(\Gamma-1),$$

or $\tilde{\delta}_{\text{CMC},\textit{c}}=\Gamma-1$ in the constant-mean-curvature slicing.

• Harada, Yoo and Kohri (2013): fully GR

$$\tilde{\delta}_{c} = \frac{3\Gamma}{3\Gamma + 2} \sin^{2} \left(\frac{\pi \sqrt{\Gamma - 1}}{3\Gamma - 2} \right), \quad \tilde{\delta}_{max} = \frac{3\Gamma}{3\Gamma + 2}.$$

Analytic threshold formula Primordial fluctuations Numerical simulations

Numerical simulations EOS dependence

Profile dependence

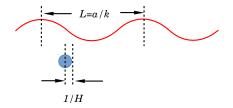
Harada PBH from fluctuations

イロト イポト イヨト イヨト

ъ

Sac

Cosmological long-wavelength solutions



- Generic initial conditions for numerical simulations
- The specetime is assumed smooth in the scales larger than L = a/k, which is much longer than the local Hubble length H^{-1} . By gradient expansion, the exact solution is expanded in powers of $\epsilon \sim k/(aH)$.

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

SQA

Construction of the CWLW solutions

• 3+1 and cosmological conformal decomposition

$$ds^{2} = -\alpha^{2}dt^{2} + \psi^{4}a^{2}(t)\tilde{\gamma}_{ij}(dx^{i} + \beta^{i}dt)(dx^{j} + \beta^{j}dt),$$

where $\tilde{\gamma} = \eta$, $\tilde{\gamma} = \det(\tilde{\gamma}_{ij})$, $\eta = \det(\eta_{ij})$, and η_{ij} is the metric of the 3D flat space.

- We assume the spacetime approach the flat FRW in the limit *ϵ* → 0 (Lyth, Malik & Sasaki (2005)).
- Einstein eqs in O(1) imply the Friedmann eq.
- We can deduce ψ = Ψ(xⁱ) + O(ε²) for a perfect fluid with barotropic EOS. Ψ(xⁱ) generates the solution.

イロト 不同 トイヨト イヨト 二日

Two approaches to spherically symmetric system

- Shibata and Sasaki (1999)
 - CMC slicing + conformally flat spatial coordinates (ϖ)
 - Initial conditions: The CLWL soln is generated by Ψ(ω), where ψ = Ψ(ω) + O(ϵ²).
- Polnarev and Musco (2007) (and many others)
 - Comoving slicing + comoving threading (r)
 - Initial conditions: The metric is assumed to approach

$$ds^{2} = -dt^{2} + a^{2}(t) \left[\frac{dr^{2}}{1 - K(r)r^{2}} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2}) \right]$$

in the limit $\epsilon \rightarrow 0$. The exact solution is expanded in powers of ϵ and generated by K(r).

・ロト ・ 国 ト ・ 国 ト ・ 国 ト

Equivalence of the two approaches

 The CLWL solutions and the Polnarev-Musco solutions are equivalent with each other through the relation

$$\begin{cases} r = \Psi^2(\varpi)\varpi, \\ K(r)r^2 = 1 - \left(1 + 2\frac{\varpi}{\Psi(\varpi)}\frac{d\Psi(\varpi)}{d\varpi}\right)^2 \end{cases}$$

• One of the correspondence relations is given by

$$\delta_{\rm C} = rac{3\Gamma}{3\Gamma+2}\delta_{\rm CMC} + O(\epsilon^4).$$

イロト イボト イヨト イヨト 二日

EOS dependence Profile dependence

Contents

2 Primordial fluctuations

Harada PBH from fluctuations

イロト イポト イヨト イヨト

ъ

Sac

EOS dependence Profile dependence

Amplitude of the perturbation

• $\tilde{\delta}$: "the density perturbation at the horizon entry"

$$\widetilde{\delta} := \lim_{\epsilon \to 0} \overline{\delta}_{\mathrm{C}}(t, r_0) \epsilon^{-2},$$

where $\bar{\delta}_{\rm C}(t, r_0)$ is the density in the comoving slicing averaged over r_0 , the radius of the overdense region. $\tilde{\delta}$ is directly calculated from $\Psi(\varpi)$ or K(r).

• ψ_0 : the initial peak value of the curvature variable

$$\psi_{\mathsf{0}} := \Psi(\mathsf{0})$$

Note $\psi = \Psi(x^i) + O(\epsilon^2)$.

• The PBH threshold is determined by numerical simulations.

Sac

EOS dependence Profile dependence

Carr's formula and numerical result

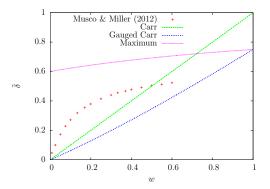


Figure: The gauged Carr's formula underestimates $\tilde{\delta}_c$ by a factor of 2 for $w(=\Gamma - 1) = 1/3$ and by a factor of 10 for the smaller values of $\Gamma - 1$. The numerical result is taken from Musco and Miller (2013) for the Gaussian curvature profile.

Dac

EOS dependence Profile dependence

HYK formula and numerical result

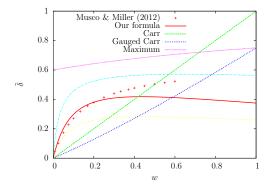


Figure: Harada-Yoo-Kohri formula agrees with the numerical result within 10-20% accuracy for $0.01 \le \Gamma - 1 \le 0.6$.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

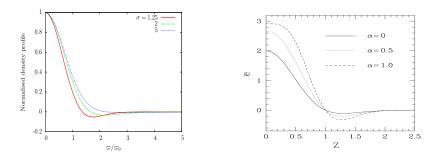
ъ

DQC

EOS dependence Profile dependence

Initial density profiles

Similar Gaussian-type profiles with different parametrisations a) SS99 b) PM07



Gentler transition for larger $\sigma(> 1)$.

Gentler transition for smaller $\alpha(\geq 0)$.

EOS dependence Profile dependence

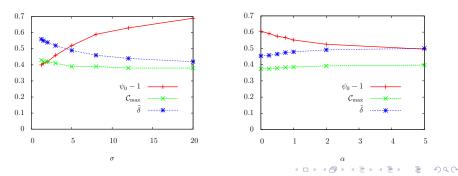
 $\tilde{\delta}_{c}$ and $\psi_{\mathbf{0},c}$

• Our numerical results are consistent with SS99 and PM07.

• $\tilde{\delta}_c$ is smaller but $\psi_{0,c}$ is larger for the gentler transition.

a) SS99 initial data

b) PM07 initial data



Harada PBH from fluctuations

EOS dependence Profile dependence

Interpretation of $\tilde{\delta}_c$

- $\tilde{\delta}_c$ is larger if the transition is sharper. This is because the pressure gradient force impedes gravitational collapse.
- $\tilde{\delta}_{c,\min}$ is close to Harada-Yoo-Kohri formula. $\tilde{\delta}_{c,\max}$ is close to the possible maximum value in the 3-zone model.

$$\tilde{\delta}_{c,\min} < \tilde{\delta}_{c} < \tilde{\delta}_{c,\max},$$

where

$$\tilde{\delta}_{c,\min} \simeq rac{3\Gamma}{3\Gamma+2} \sin^2\left(rac{\pi\sqrt{\Gamma-1}}{3\Gamma-2}
ight), \quad \tilde{\delta}_{c,\max} \simeq rac{3\Gamma}{3\Gamma+2}.$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Э

EOS dependence Profile dependence

Interpretation of $\psi_{0,c}$

- $\psi_{0,c}$ is smaller if the transition is sharper in contrast to $\tilde{\delta}_c$. This is because ψ is analogous to a Newtonian potential, which is affected by the perturbation in the far region.
- The PBH threshold should be determined by quasi-local dynamics within the local Hubble length. Since $\tilde{\delta}$ is a quasi-local quantity, $\tilde{\delta}_c$ is insensitive to the environment, while $\psi_{0,c}$ is sensitive to the environment.

・ロト ・ 同ト ・ ヨト ・ ヨト

-

Conclusion

- PBHs carry the information of the Early Universe.
- The Jeans criterion gives analytic threshold formulas.
- The CLWL solutions naturally give primordial fluctuations.
- $\tilde{\delta}_c$ is larger if the transition is sharper.

$$ilde{\delta}_{c,\min}\simeq rac{3\Gamma}{3\Gamma+2}\sin^2\left(rac{\pi\sqrt{\Gamma-1}}{3\Gamma-2}
ight), \;\; ilde{\delta}_{c,\max}\simeq rac{3\Gamma}{3\Gamma+2}.$$

 $\psi_{0,c}$ is subjected to environmental effect.

イロト イポト イヨト イヨト

-