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• We consider a class of Friedmann-type metrics with constant
spatial curvature and with a stochastic magnetic field as
matter content.

• An anistropic pressure component sourced by this field is
considered and it is found to be related to a non-null Weyl
tensor.

• We analyse the gravitational stability of this model under
linear scalar perturbations using the covariant
gauge-invariant approach in order to understand the role of the
Weyl tensor in structure formation in this context.
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• Let’s consider

ds2 = dt2 − a2(t)[dχ2 + σ2(χ)dΩ2], (1)

where t represents the cosmic time, a(t) is the scale factor
and σ(χ) is an arbitrary function.

• We then take as source the EM field with

Ei = 0, Bi = 0, EiBj = 0, E iEi = 0 (2)

B iBj = −1
3
B2hi

j − πi
j . (3)

Therefore,

Tµν = (ρ+ p)VµVν − pgµν + πµν , (4)

with p = 1
3ρ and ρ =

B2(t)
2 .
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• Einstein equations admit a solution with constant spatial
curvature and πµν only if

π2
2 = π3

3, π1
1 = −2π2

2, where π1
1 =

2k
a2 σ3 , (5)

where k is an integration constant2. We can rewrite the metric
as

ds2 = dt2 − a2(t)

(
dr2

1− εr2 − 2k
r

+ r2dΩ2

)
. (6)

• FLRW is regained whenever 2k � r . From the evolution
equation for the shear tensor and V µ = δµ0 we get3

Eµν
.

= −WµανβV αV β = −1
2
πµν . (7)

2E. Bittencourt, J. Salim and GBS, Gen. Rel. Grav. 46 (2014); Mc Manus
and Coley, Class. Quant. Grav. (1994).

3J. Mimoso and P. Crawford, Class. Quant. Grav. (1993).
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• The remaining equations are

θ̇ +
θ2

3
= −1

2
(ρ+ 3p), (8a)

ρ̇+ (ρ+ p) θ = 0, (8b)

Eαµ;α = 0, (8c)

hεµhνλĖµν +
2
3
θ E ελ = 0. (8d)

• The model can be extended to any equation of state (EOS) of
the form p = (γ − 1)ρ, which is also valid for a mixture of
non-interacting fluids.
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• We take into account only the spatial scalar harmonic functions
Q(m)(xk) and its derived vector and tensor quantities:

Qi
.

= Q,i , Qij
.

= Q,i ||j = Q,i ;j .

• These functions satisfy

∇2Q(m) = m2Q(m), (9)

where m is a constant (the wave number) and

∇2Q .
= γ ijQ,i ||j = γ ijQ,i ;j , (10)

defines the 3-dimensional Laplace-Beltrami operator.
• Then

Q(r , θ, φ) =
∑
l ,n

R(r)Y n
l (θ, φ),

where Y n
l (θ, φ) are the spherical harmonics.
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• We define the traceless operator

Q̂ij =
1

m2 Qij −
1
3
Qγij , (11)

and its divergence can be computed yielding

Q̂ j
i ||j = 2

(
1
3
− ε

m2

)
Qi −

πij

m2 Q j . (12)

• In this model, we also need to consider the expansion of the
terms

πij Q̂
ij
(m) =

∑
l

al(m)Q(l), (13)

πijQ
j
(m) =

∑
l

bl(m)Qi(l), (14)

and
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1
2
πk(i Q̂j)

k
(m) =

∑
l

cl(m)Q̂ij(l) +
γij

3

∑
l

al(m)Q(l), (15)

where the coefficients al(m), bl(m) and cl(m) are constants for each
of the modes m and l .
• Assuming small deviations of the metric given in (6) wrt to
FLRW, the quantities

A(m)
.

=
∑

l

al(m), B(m)
.

=
∑

l

bl(m), C(m)
.

=
∑

l

cl(m),

should be bounded. They are determined through the full
solution for the basis and depend on k .
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• According to the evolution equation for the shear tensor, we
can define

Xµν
.

= Eµν +
1
2
πµν , (16)

which is a good variable as it is null in the background.
• Following Ellis & Bruni4, we also consider the fractional energy
density gradient

χα
.

= a(t)hαν
ρ,ν
ρ
, (17)

and the gradient of the expansion coefficient

Zα
.

= a(t)hανθ,ν . (18)

• To this set of variables we add: the acceleration aµ, σµν and
the divergence of the anisotropic pressure Iµ ≡ hµεπεν ;ν .

4G. F. R. Ellis and M. Bruni, Phys. Rev. D 40, 1804 (1989).



Introduction Background model Construction of the basis Perturbation Theory Conclusions

• According to the evolution equation for the shear tensor, we
can define

Xµν
.

= Eµν +
1
2
πµν , (16)

which is a good variable as it is null in the background.
• Following Ellis & Bruni4, we also consider the fractional energy
density gradient

χα
.

= a(t)hαν
ρ,ν
ρ
, (17)

and the gradient of the expansion coefficient

Zα
.

= a(t)hανθ,ν . (18)

• To this set of variables we add: the acceleration aµ, σµν and
the divergence of the anisotropic pressure Iµ ≡ hµεπεν ;ν .

4G. F. R. Ellis and M. Bruni, Phys. Rev. D 40, 1804 (1989).



Introduction Background model Construction of the basis Perturbation Theory Conclusions

• According to the evolution equation for the shear tensor, we
can define

Xµν
.

= Eµν +
1
2
πµν , (16)

which is a good variable as it is null in the background.
• Following Ellis & Bruni4, we also consider the fractional energy
density gradient

χα
.

= a(t)hαν
ρ,ν
ρ
, (17)

and the gradient of the expansion coefficient

Zα
.

= a(t)hανθ,ν . (18)

• To this set of variables we add: the acceleration aµ, σµν and
the divergence of the anisotropic pressure Iµ ≡ hµεπεν ;ν .

4G. F. R. Ellis and M. Bruni, Phys. Rev. D 40, 1804 (1989).



Introduction Background model Construction of the basis Perturbation Theory Conclusions

• The perturbed equation for X is given by

hεµh
λ
ν

˙δXελ + θδXµν +
1
2
πα(µδσν)

α − 1
3
παβδσ

αβhµν =

−1
2
γef ρδσµν + δDµν , (19)

where δDµν = ξθδσµν comes from the causal
thermodynamical relation5

τ π̇µν + πµν = ξσµν

with τ ∝ 1/θ.
• Using the basis just defined we set

δXij = X (t)Q̂ij , δσij = σ(t)Q̂ij ,

δχi = χ̃(t)Qi , δZi = Z (t)Qi ,

δai = ψ(t)Qi δIi = I (t)Q̂i . (20)
5W. Israel, Ann. Phys. (N.Y.) 100, 310 (1976); W. Israel and J. M.

Stewart, Phys. Lett. 58A, 213 (1976).
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The perturbed equations then result

Ẋ + θX +

(
− C

a2 +
1
2
γef ρ− ξθ

)
σ = 0, (21)

σ̇ −m2ψ + X = 0, (22)

Ż +

(
a θ̇ − m2

a2

)
ψ +

2θ
3a

Z +
1
2

(3γef − 1)ρt χ̃ = 0, (23)

˙̃χ+ γef Z −
1
a3

A
ρt
σ − aγef θψ = 0. (24)

Together with the constraints we get a system of dynamical
equations that is closed in 3 variables.
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Long wavelength regime

• We can use the local decomposition in irreducible parts of the
projected covariant derivative of χµ as

ahµλhνεχλ;ε =
1
3
hµν∆ + Σµν + Wµν , (25)

where Wµν gives the anti-symmetric part, Σµν is the
symmetric traceless part and the variable ∆ is the scalar gauge
invariant variable that represents the clumping of matter6.

• The equation for ∆ can be derived from Eq. (24) and up to
first order reads

∆̇ =
a2

ρt
hαβ(πµνσ

µν),α;β−γef ahαβZα;β+a2γef θhαβaα;β. (26)

6M. Bruni, P. K. S. Dunsby and G. F. Ellis, ApJ 395, 34 (1992).
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• In terms of a 2nd order equation:

σ′′ + 2
a′

a
σ′ +

(
C − 1

2
γef a2ρt

)
σ = 0, (27)

whose solution for a dust dominated phase (γef = 1 and
a ∝ η2) is

σ(η) =
c1

η3/2 J

(√
33
2
,
√

Cη

)
+

c2

η3/2 Y

(√
33
2
,
√

Cη

)
, (28)

where J and Y are Bessel functions of first and second kind.
• Writing δ∆ = χ(η)Q(x i ) we have from Eq. (26)

χ′(η) = −Am2

ρ a
σ(η)− 3γef m2

2

(
2
3

a − B
am2

)
σ(η). (29)
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• Using the limit of small values of the argument in (28),√
Cη � 1, we explicitly obtain

χ(η) =
c1

Γ
(√

33
2

) [3(
√
33 + 5)

8
B +

(3−
√
33)m2 η4

12 η04 +

+
(
√
33− 7)Am2 η6

96 η04

] (√
Cη
)√33

2

(η/η0)5/2 (30)

• The corresponding solution in a matter-dominated FLRW case
is7

χ(η) =
c1

6
m2
(
η

η0

)2

.

7M. Novello, J. M. Salim, M. C. M. da Silva, S. E. Jorás and R. Klippert,
Phys. Rev. D 51, 450 (1995).
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• We have performed a perturbative analysis of a
quasi-Friedmann model with a non-null Weyl tensor. We
have adopted the covariant and gauge-invariant approach
to perturbations and suitable gauge-invariant variables directly
related to observational quantities were used.

• It is shown that, for a large range of values for the parameters
involved, it is possible to have a faster growing mode for the
perturbations, which could in principle play the role of dark
matter in structure formation (preliminary analysis though!).

• We should understand and try to find explicit expressions for
the quantities A, B and C which would also provide their
dependence on the wavenumber that is needed to treat the
issue of scale invariance (Harrison-Zeldovich spectrum) of
the perturbations and the asymptotic behaviors for small
wavenumbers.
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Thank you for your attention!
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