Perturbations on a cosmological model with non-null Weyl tensor

Grasiele B. Santos ${ }^{1}$

University of Rome "La Sapienza" and ICRANet

Hot Topics in General Relativity and Gravitation
Quy Nhon, Vietnam, August 2015.

[^0]
Outline

Introduction

Background model

Construction of the basis

Perturbation Theory

Conclusions

Outline

Introduction

Background model

Construction of the basis

Perturbation Theory

Conclusions

- We consider a class of Friedmann-type metrics with constant spatial curvature and with a stochastic magnetic field as matter content.
- An anistropic pressure component sourced by this field is considered and it is found to be related to a non-null Weyl tensor.
- We analyse the gravitational stability of this model under linear scalar perturbations using the covariant gauge-invariant approach in order to understand the role of the Weyl tensor in structure formation in this context.

Outline

Introduction

Background model

Construction of the basis

Perturbation Theory

- Let's consider

$$
\begin{equation*}
d s^{2}=d t^{2}-a^{2}(t)\left[d \chi^{2}+\sigma^{2}(\chi) d \Omega^{2}\right] \tag{1}
\end{equation*}
$$

where t represents the cosmic time, $a(t)$ is the scale factor and $\sigma(\chi)$ is an arbitrary function.

- Let's consider

$$
\begin{equation*}
d s^{2}=d t^{2}-a^{2}(t)\left[d \chi^{2}+\sigma^{2}(\chi) d \Omega^{2}\right] \tag{1}
\end{equation*}
$$

where t represents the cosmic time, $a(t)$ is the scale factor and $\sigma(\chi)$ is an arbitrary function.

- We then take as source the EM field with

$$
\begin{gather*}
\overline{E_{i}}=0, \quad \overline{B_{i}}=0, \quad \overline{E_{i} B_{j}}=0, \quad \overline{E^{i} E_{i}}=0 \tag{2}\\
\overline{B^{i} B_{j}}=-\frac{1}{3} B^{2} h_{j}^{i}-\pi^{i}{ }_{j} . \tag{3}
\end{gather*}
$$

Therefore,

$$
\begin{equation*}
T_{\mu \nu}=(\rho+p) V_{\mu} V_{\nu}-p g_{\mu \nu}+\pi_{\mu \nu} \tag{4}
\end{equation*}
$$

with $p=\frac{1}{3} \rho$ and $\rho=\frac{B^{2}(t)}{2}$.

- Einstein equations admit a solution with constant spatial curvature and $\pi^{\mu}{ }_{\nu}$ only if

$$
\begin{equation*}
\pi^{2}=\pi_{3}^{3}, \quad \pi_{1}^{1}=-2 \pi_{2}^{2}, \quad \text { where } \quad \pi_{1}^{1}=\frac{2 k}{a^{2} \sigma^{3}} \tag{5}
\end{equation*}
$$

where k is an integration constant ${ }^{2}$. We can rewrite the metric as

$$
\begin{equation*}
d s^{2}=d t^{2}-a^{2}(t)\left(\frac{d r^{2}}{1-\epsilon r^{2}-\frac{2 k}{r}}+r^{2} d \Omega^{2}\right) \tag{6}
\end{equation*}
$$

${ }^{2}$ E. Bittencourt, J. Salim and GBS, Gen. Rel. Grav. 46 (2014); Mc Manus and Coley, Class. Quant. Grav. (1994).

- Einstein equations admit a solution with constant spatial curvature and $\pi^{\mu}{ }_{\nu}$ only if

$$
\begin{equation*}
\pi^{2}=\pi_{3}^{3}, \quad \pi_{1}^{1}=-2 \pi_{2}^{2}, \quad \text { where } \quad \pi_{1}^{1}=\frac{2 k}{a^{2} \sigma^{3}} \tag{5}
\end{equation*}
$$

where k is an integration constant ${ }^{2}$. We can rewrite the metric as

$$
\begin{equation*}
d s^{2}=d t^{2}-a^{2}(t)\left(\frac{d r^{2}}{1-\epsilon r^{2}-\frac{2 k}{r}}+r^{2} d \Omega^{2}\right) \tag{6}
\end{equation*}
$$

- FLRW is regained whenever $2 k \ll r$. From the evolution equation for the shear tensor and $V^{\mu}=\delta_{0}^{\mu}$ we get ${ }^{3}$

$$
\begin{equation*}
E_{\mu \nu} \doteq-W_{\mu \alpha \nu \beta} V^{\alpha} V^{\beta}=-\frac{1}{2} \pi_{\mu \nu} \tag{7}
\end{equation*}
$$

${ }^{2}$ E. Bittencourt, J. Salim and GBS, Gen. Rel. Grav. 46 (2014); Mc Manus and Coley, Class. Quant. Grav. (1994).
${ }^{3}$ J. Mimoso and P. Crawford, Class. Quant. Grav. (1993).

- The remaining equations are

$$
\begin{align*}
& \dot{\theta}+\frac{\theta^{2}}{3}=-\frac{1}{2}(\rho+3 p), \tag{8a}\\
& \dot{\rho}+(\rho+p) \theta=0, \tag{8b}\\
& E^{\alpha}{ }_{\mu ; \alpha}=0, \tag{8c}\\
& h^{\epsilon}{ }_{\mu} h^{\nu}{ }_{\lambda} \dot{E}^{\mu}{ }_{\nu}+\frac{2}{3} \theta E_{\lambda}^{\epsilon}=0 . \tag{8d}
\end{align*}
$$

- The model can be extended to any equation of state (EOS) of the form $p=(\gamma-1) \rho$, which is also valid for a mixture of non-interacting fluids.

Outline

Introduction

Background model

Construction of the basis

Perturbation Theory

Conclusions

- We take into account only the spatial scalar harmonic functions $Q_{(m)}\left(x^{k}\right)$ and its derived vector and tensor quantities:

$$
Q_{i} \doteq Q_{, i}, \quad Q_{i j} \doteq Q_{, i \mid j}=Q_{, i j} .
$$

- We take into account only the spatial scalar harmonic functions $Q_{(m)}\left(x^{k}\right)$ and its derived vector and tensor quantities:

$$
Q_{i} \doteq Q_{, i}, \quad Q_{i j} \doteq Q_{, i \| j}=Q_{, i ; j}
$$

- These functions satisfy

$$
\begin{equation*}
\nabla^{2} Q_{(m)}=m^{2} Q_{(m)} \tag{9}
\end{equation*}
$$

where m is a constant (the wave number) and

$$
\begin{equation*}
\nabla^{2} Q \doteq \gamma^{i j} Q_{, i \| j}=\gamma^{i j} Q_{, i ; j} \tag{10}
\end{equation*}
$$

defines the 3-dimensional Laplace-Beltrami operator.

- We take into account only the spatial scalar harmonic functions $Q_{(m)}\left(x^{k}\right)$ and its derived vector and tensor quantities:

$$
Q_{i} \doteq Q_{, i}, \quad Q_{i j} \doteq Q_{, i \| j}=Q_{, i ; j}
$$

- These functions satisfy

$$
\begin{equation*}
\nabla^{2} Q_{(m)}=m^{2} Q_{(m)} \tag{9}
\end{equation*}
$$

where m is a constant (the wave number) and

$$
\begin{equation*}
\nabla^{2} Q \doteq \gamma^{i j} Q_{, i \| j}=\gamma^{i j} Q_{, i ; j} \tag{10}
\end{equation*}
$$

defines the 3-dimensional Laplace-Beltrami operator.

- Then

$$
Q(r, \theta, \phi)=\sum_{l, n} R(r) Y_{l}^{n}(\theta, \phi)
$$

where $Y_{l}^{n}(\theta, \phi)$ are the spherical harmonics.

- We define the traceless operator

$$
\begin{equation*}
\hat{Q}_{i j}=\frac{1}{m^{2}} Q_{i j}-\frac{1}{3} Q \gamma_{i j}, \tag{11}
\end{equation*}
$$

and its divergence can be computed yielding

$$
\begin{equation*}
\hat{Q}^{j}{ }_{i \| j}=2\left(\frac{1}{3}-\frac{\epsilon}{m^{2}}\right) Q_{i}-\frac{\pi_{i j}}{m^{2}} Q^{j} . \tag{12}
\end{equation*}
$$

- We define the traceless operator

$$
\begin{equation*}
\hat{Q}_{i j}=\frac{1}{m^{2}} Q_{i j}-\frac{1}{3} Q \gamma_{i j}, \tag{11}
\end{equation*}
$$

and its divergence can be computed yielding

$$
\begin{equation*}
\hat{Q}_{i \| j}^{j}=2\left(\frac{1}{3}-\frac{\epsilon}{m^{2}}\right) Q_{i}-\frac{\pi_{i j}}{m^{2}} Q^{j} \tag{12}
\end{equation*}
$$

- In this model, we also need to consider the expansion of the terms

$$
\begin{align*}
& \pi_{i j} \hat{Q}_{(m)}^{i j}=\sum_{l} a_{l(m)} Q_{(l)} \tag{13}\\
& \pi_{i j} Q_{(m)}^{j}=\sum_{l} b_{l(m)} Q_{i(l)} \tag{14}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{1}{2} \pi_{k(i} \hat{Q}_{j)}^{k}{ }_{(m)}=\sum_{l} c_{l(m)} \hat{Q}_{i j(l)}+\frac{\gamma_{i j}}{3} \sum_{l} a_{l(m)} Q_{(l)} \tag{15}
\end{equation*}
$$

where the coefficients $a_{l(m)}, b_{l(m)}$ and $c_{l(m)}$ are constants for each of the modes m and I.

$$
\begin{equation*}
\frac{1}{2} \pi_{k(i} \hat{Q}_{j)}{ }^{k}(m)=\sum_{l} c_{l(m)} \hat{Q}_{i j(l)}+\frac{\gamma_{i j}}{3} \sum_{l} a_{l(m)} Q_{(l)} \tag{15}
\end{equation*}
$$

where the coefficients $a_{l(m)}, b_{l(m)}$ and $c_{l(m)}$ are constants for each of the modes m and l.

- Assuming small deviations of the metric given in (6) wrt to FLRW, the quantities

$$
A_{(m)} \doteq \sum_{l} a_{l(m)}, \quad B_{(m)} \doteq \sum_{l} b_{l(m)}, \quad C_{(m)} \doteq \sum_{l} c_{l(m)},
$$

should be bounded. They are determined through the full solution for the basis and depend on k.

Outline

Introduction

Background model

Construction of the basis

Perturbation Theory

Conclusions

- According to the evolution equation for the shear tensor, we can define

$$
\begin{equation*}
X_{\mu \nu} \doteq E_{\mu \nu}+\frac{1}{2} \pi_{\mu \nu} \tag{16}
\end{equation*}
$$

which is a good variable as it is null in the background.
\qquad
and the gradient of the expansion coefficient the divergence of the anisotropic pressure $I_{\mu} \equiv h_{\mu}{ }^{\epsilon} \pi_{\epsilon}{ }^{\nu}{ }_{; \nu}$

- According to the evolution equation for the shear tensor, we can define

$$
\begin{equation*}
X_{\mu \nu} \doteq E_{\mu \nu}+\frac{1}{2} \pi_{\mu \nu} \tag{16}
\end{equation*}
$$

which is a good variable as it is null in the background.

- Following Ellis \& Bruni ${ }^{4}$, we also consider the fractional energy density gradient

$$
\begin{equation*}
\chi_{\alpha} \doteq a(t) h_{\alpha}{ }^{\nu} \frac{\rho_{, \nu}}{\rho}, \tag{17}
\end{equation*}
$$

and the gradient of the expansion coefficient

$$
\begin{equation*}
Z_{\alpha} \doteq a(t) h_{\alpha}{ }^{\nu} \theta_{, \nu} \tag{18}
\end{equation*}
$$

${ }^{4}$ G. F. R. Ellis and M. Bruni, Phys. Rev. D 40, 1804 (1989).

- According to the evolution equation for the shear tensor, we can define

$$
\begin{equation*}
X_{\mu \nu} \doteq E_{\mu \nu}+\frac{1}{2} \pi_{\mu \nu} \tag{16}
\end{equation*}
$$

which is a good variable as it is null in the background.

- Following Ellis \& Bruni ${ }^{4}$, we also consider the fractional energy density gradient

$$
\begin{equation*}
\chi_{\alpha} \doteq a(t) h_{\alpha}{ }^{\nu} \frac{\rho_{, \nu}}{\rho}, \tag{17}
\end{equation*}
$$

and the gradient of the expansion coefficient

$$
\begin{equation*}
Z_{\alpha} \doteq a(t) h_{\alpha}{ }^{\nu} \theta_{, \nu} \tag{18}
\end{equation*}
$$

- To this set of variables we add: the acceleration $a_{\mu}, \sigma_{\mu \nu}$ and the divergence of the anisotropic pressure $I_{\mu} \equiv h_{\mu}{ }^{\epsilon} \pi_{\epsilon}{ }^{\nu}{ }^{\prime}, ~$.

[^1]- The perturbed equation for X is given by

$$
\begin{array}{r}
h_{\mu}^{\epsilon} h_{\nu}^{\lambda} \delta \dot{X}_{\epsilon \lambda}+\theta \delta X_{\mu \nu}+\frac{1}{2} \pi_{\alpha(\mu} \delta \sigma_{\nu)}^{\alpha}-\frac{1}{3} \pi_{\alpha \beta} \delta \sigma^{\alpha \beta} h_{\mu \nu}= \\
-\frac{1}{2} \gamma_{e f} \rho \delta \sigma_{\mu \nu}+\delta D_{\mu \nu} \tag{19}
\end{array}
$$

where $\delta D_{\mu \nu}=\xi \theta \delta \sigma_{\mu \nu}$ comes from the causal thermodynamical relation ${ }^{5}$

$$
\tau \dot{\pi}_{\mu \nu}+\pi_{\mu \nu}=\xi \sigma_{\mu \nu}
$$

with $\tau \propto 1 / \theta$.
${ }^{5}$ W. Israel, Ann. Phys. (N.Y.) 100, 310 (1976); W. Israel and J. M. Stewart, Phys. Lett. 58A, 213 (1976).

- The perturbed equation for X is given by

$$
\begin{array}{r}
h_{\mu}^{\epsilon} h_{\nu}^{\lambda} \delta \dot{X}_{\epsilon \lambda}+\theta \delta X_{\mu \nu}+\frac{1}{2} \pi_{\alpha(\mu} \delta \sigma_{\nu)}^{\alpha}-\frac{1}{3} \pi_{\alpha \beta} \delta \sigma^{\alpha \beta} h_{\mu \nu}= \\
-\frac{1}{2} \gamma_{e f} \rho \delta \sigma_{\mu \nu}+\delta D_{\mu \nu} \tag{19}
\end{array}
$$

where $\delta D_{\mu \nu}=\xi \theta \delta \sigma_{\mu \nu}$ comes from the causal thermodynamical relation ${ }^{5}$

$$
\tau \dot{\pi}_{\mu \nu}+\pi_{\mu \nu}=\xi \sigma_{\mu \nu}
$$

with $\tau \propto 1 / \theta$.

- Using the basis just defined we set

$$
\begin{array}{r}
\delta X_{i j}=X(t) \hat{Q}_{i j}, \quad \delta \sigma_{i j}=\sigma(t) \hat{Q}_{i j} \\
\delta \chi_{i}=\tilde{\chi}(t) Q_{i}, \quad \delta Z_{i}=Z(t) Q_{i} \\
\delta a_{i}=\psi(t) Q_{i} \quad \delta l_{i}=I(t) \hat{Q}_{i} \tag{20}
\end{array}
$$

${ }^{5}$ W. Israel, Ann. Phys. (N.Y.) 100, 310 (1976); W. Israel and J. M. Stewart, Phys. Lett. 58A, 213 (1976).

The perturbed equations then result

$$
\begin{gather*}
\dot{X}+\theta X+\left(-\frac{C}{a^{2}}+\frac{1}{2} \gamma_{e f} \rho-\xi \theta\right) \sigma=0, \tag{21}\\
\dot{\sigma}-m^{2} \psi+X=0, \tag{22}\\
\dot{Z}+\left(a \dot{\theta}-\frac{m^{2}}{a^{2}}\right) \psi+\frac{2 \theta}{3 a} Z+\frac{1}{2}\left(3 \gamma_{e f}-1\right) \rho_{t} \tilde{\chi}=0, \tag{23}\\
\dot{\tilde{\chi}}+\gamma_{e f} Z-\frac{1}{a^{3}} \frac{A}{\rho_{t}} \sigma-a \gamma_{e f} \theta \psi=0 . \tag{24}
\end{gather*}
$$

Together with the constraints we get a system of dynamical equations that is closed in 3 variables.

Long wavelength regime

- We can use the local decomposition in irreducible parts of the projected covariant derivative of χ_{μ} as

$$
\begin{equation*}
a h_{\mu}^{\lambda} h_{\nu}{ }^{\epsilon} \chi_{\lambda ; \epsilon}=\frac{1}{3} h_{\mu \nu} \Delta+\Sigma_{\mu \nu}+W_{\mu \nu} \tag{25}
\end{equation*}
$$

where $W_{\mu \nu}$ gives the anti-symmetric part, $\Sigma_{\mu \nu}$ is the symmetric traceless part and the variable Δ is the scalar gauge invariant variable that represents the clumping of matter ${ }^{6}$.

[^2]
Long wavelength regime

- We can use the local decomposition in irreducible parts of the projected covariant derivative of χ_{μ} as

$$
\begin{equation*}
a h_{\mu}^{\lambda} h_{\nu}^{\epsilon} \chi_{\lambda ; \epsilon}=\frac{1}{3} h_{\mu \nu} \Delta+\Sigma_{\mu \nu}+W_{\mu \nu} \tag{25}
\end{equation*}
$$

where $W_{\mu \nu}$ gives the anti-symmetric part, $\Sigma_{\mu \nu}$ is the symmetric traceless part and the variable Δ is the scalar gauge invariant variable that represents the clumping of matter ${ }^{6}$.

- The equation for Δ can be derived from Eq. (24) and up to first order reads

$$
\begin{equation*}
\dot{\Delta}=\frac{a^{2}}{\rho_{t}} h^{\alpha \beta}\left(\pi_{\mu \nu} \sigma^{\mu \nu}\right)_{, \alpha ; \beta}-\gamma_{e f} a h^{\alpha \beta} Z_{\alpha ; \beta}+a^{2} \gamma_{e f} \theta h^{\alpha \beta} a_{\alpha ; \beta} \tag{26}
\end{equation*}
$$

${ }^{6}$ M. Bruni, P. K. S. Dunsby and G. F. Ellis, ApJ 395, 34 (1992).

- In terms of a $2 n d$ order equation:

$$
\begin{equation*}
\sigma^{\prime \prime}+2 \frac{a^{\prime}}{a} \sigma^{\prime}+\left(C-\frac{1}{2} \gamma_{e f} a^{2} \rho_{t}\right) \sigma=0, \tag{27}
\end{equation*}
$$

whose solution for a dust dominated phase ($\gamma_{e f}=1$ and $a \propto \eta^{2}$) is

$$
\begin{equation*}
\sigma(\eta)=\frac{c_{1}}{\eta^{3 / 2}} \mathrm{~J}\left(\frac{\sqrt{33}}{2}, \sqrt{C} \eta\right)+\frac{c_{2}}{\eta^{3 / 2}} \mathrm{Y}\left(\frac{\sqrt{33}}{2}, \sqrt{C} \eta\right) \tag{28}
\end{equation*}
$$

where J and Y are Bessel functions of first and second kind.

- In terms of a $2 n d$ order equation:

$$
\begin{equation*}
\sigma^{\prime \prime}+2 \frac{a^{\prime}}{a} \sigma^{\prime}+\left(C-\frac{1}{2} \gamma_{e f} a^{2} \rho_{t}\right) \sigma=0 \tag{27}
\end{equation*}
$$

whose solution for a dust dominated phase ($\gamma_{e f}=1$ and $\left.a \propto \eta^{2}\right)$ is

$$
\begin{equation*}
\sigma(\eta)=\frac{c_{1}}{\eta^{3 / 2}} \mathrm{~J}\left(\frac{\sqrt{33}}{2}, \sqrt{C} \eta\right)+\frac{c_{2}}{\eta^{3 / 2}} \mathrm{Y}\left(\frac{\sqrt{33}}{2}, \sqrt{C} \eta\right) \tag{28}
\end{equation*}
$$

where J and Y are Bessel functions of first and second kind.

- Writing $\delta \Delta=\chi(\eta) Q\left(x^{i}\right)$ we have from Eq. (26)

$$
\begin{equation*}
\chi^{\prime}(\eta)=-\frac{A m^{2}}{\rho a} \sigma(\eta)-\frac{3 \gamma_{e f} m^{2}}{2}\left(\frac{2}{3} a-\frac{B}{a m^{2}}\right) \sigma(\eta) \tag{29}
\end{equation*}
$$

- Using the limit of small values of the argument in (28), $\sqrt{C} \eta \ll 1$, we explicitly obtain

$$
\begin{array}{r}
\chi(\eta)=\frac{c_{1}}{\Gamma\left(\frac{\sqrt{33}}{2}\right)}\left[\frac{3(\sqrt{33}+5)}{8} B+\frac{(3-\sqrt{33}) m^{2} \eta^{4}}{12 \eta_{0}^{4}}+\right. \\
\left.\quad+\frac{(\sqrt{33}-7) A m^{2} \eta^{6}}{96 \eta_{0}{ }^{4}}\right] \frac{(\sqrt{C} \eta)^{\frac{\sqrt{33}}{2}}}{\left(\eta / \eta_{0}\right)^{5 / 2}} \tag{30}
\end{array}
$$

- Using the limit of small values of the argument in (28), $\sqrt{C} \eta \ll 1$, we explicitly obtain

$$
\begin{array}{r}
\chi(\eta)=\frac{c_{1}}{\Gamma\left(\frac{\sqrt{33}}{2}\right)}\left[\begin{array}{r}
\frac{3(\sqrt{33}+5)}{8} B+\frac{(3-\sqrt{33}) m^{2} \eta^{4}}{12 \eta_{0}{ }^{4}}+ \\
\\
\left.\quad+\frac{(\sqrt{33}-7) A m^{2} \eta^{6}}{96 \eta_{0}{ }^{4}}\right] \frac{(\sqrt{C} \eta)^{\frac{\sqrt{33}}{2}}}{\left(\eta / \eta_{0}\right)^{5 / 2}}
\end{array},\right.
\end{array}
$$

- The corresponding solution in a matter-dominated FLRW case is ${ }^{7}$

$$
\chi(\eta)=\frac{c_{1}}{6} m^{2}\left(\frac{\eta}{\eta_{0}}\right)^{2}
$$

${ }^{7}$ M. Novello, J. M. Salim, M. C. M. da Silva, S. E. Jorás and R. Klippert, Phys. Rev. D 51, 450 (1995).

Outline

Introduction

Background model

Construction of the basis

Perturbation Theory

Conclusions

- We have performed a perturbative analysis of a quasi-Friedmann model with a non-null Weyl tensor. We have adopted the covariant and gauge-invariant approach to perturbations and suitable gauge-invariant variables directly related to observational quantities were used.
- We have performed a perturbative analysis of a quasi-Friedmann model with a non-null Weyl tensor. We have adopted the covariant and gauge-invariant approach to perturbations and suitable gauge-invariant variables directly related to observational quantities were used.
- It is shown that, for a large range of values for the parameters involved, it is possible to have a faster growing mode for the perturbations, which could in principle play the role of dark matter in structure formation (preliminary analysis though!).
- We have performed a perturbative analysis of a quasi-Friedmann model with a non-null Weyl tensor. We have adopted the covariant and gauge-invariant approach to perturbations and suitable gauge-invariant variables directly related to observational quantities were used.
- It is shown that, for a large range of values for the parameters involved, it is possible to have a faster growing mode for the perturbations, which could in principle play the role of dark matter in structure formation (preliminary analysis though!).
- We should understand and try to find explicit expressions for the quantities A, B and C which would also provide their dependence on the wavenumber that is needed to treat the issue of scale invariance (Harrison-Zeldovich spectrum) of the perturbations and the asymptotic behaviors for small wavenumbers.

Thank you for your attention!

[^0]: ${ }^{1}$ In collaboration with E. Bittencourt and J. Salim, JCAP 06 (2015) 013.

[^1]: ${ }^{4}$ G. F. R. Ellis and M. Bruni, Phys. Rev. D 40, 1804 (1989).

[^2]: ${ }^{6}$ M. Bruni, P. K. S. Dunsby and G. F. Ellis, ApJ 395, 34 (1992).

