Perturbations on a cosmological model with non-null Weyl tensor

Grasiele B. Santos¹

University of Rome "La Sapienza" and ICRANet

Hot Topics in General Relativity and Gravitation

Quy Nhon, Vietnam, August 2015.

¹In collaboration with E. Bittencourt and J. Salim, JCAP 06 (2015) 013.

Perturbation Theory

Conclusions

Outline

Introduction

Background model

Construction of the basis

Perturbation Theory

Background model

Construction of the basis

Perturbation Theory

Conclusions

Outline

Introduction

Background model

Construction of the basis

Perturbation Theory

- We consider a class of Friedmann-type metrics with constant spatial curvature and with a stochastic magnetic field as matter content.
- An anistropic pressure component sourced by this field is considered and it is found to be related to a non-null Weyl tensor.
- We analyse the gravitational stability of this model under linear scalar perturbations using the covariant gauge-invariant approach in order to understand the role of the Weyl tensor in structure formation in this context.

Background model

Construction of the basis

Perturbation Theory

Conclusions

Outline

Introduction

Background model

Construction of the basis

Perturbation Theory

• Let's consider

$$ds^{2} = dt^{2} - a^{2}(t)[d\chi^{2} + \sigma^{2}(\chi)d\Omega^{2}], \qquad (1)$$

where t represents the cosmic time, a(t) is the scale factor and $\sigma(\chi)$ is an arbitrary function.

• We then take as source the EM field with

$$\overline{E_i} = 0, \quad \overline{B_i} = 0, \quad \overline{E_i B_j} = 0, \quad \overline{E^i E_i} = 0$$
 (2)
 $\overline{B^i B_j} = -\frac{1}{3} B^2 h^i{}_j - \pi^i{}_j.$ (3)

Therefore,

$$T_{\mu\nu} = (\rho + p) V_{\mu} V_{\nu} - p g_{\mu\nu} + \pi_{\mu\nu}, \qquad (4)$$

with
$$p=rac{1}{3}
ho$$
 and $ho=rac{B^2(t)}{2}.$

• Let's consider

$$ds^{2} = dt^{2} - a^{2}(t)[d\chi^{2} + \sigma^{2}(\chi)d\Omega^{2}], \qquad (1)$$

where t represents the cosmic time, a(t) is the scale factor and $\sigma(\chi)$ is an arbitrary function.

• We then take as source the EM field with

$$\overline{E_i} = 0, \quad \overline{B_i} = 0, \quad \overline{E_i B_j} = 0, \quad \overline{E^i E_i} = 0$$
(2)
$$\overline{B^i B_j} = -\frac{1}{3} B^2 h^i{}_j - \pi^i{}_j.$$
(3)

Therefore,

$$T_{\mu\nu} = (\rho + p) V_{\mu} V_{\nu} - p g_{\mu\nu} + \pi_{\mu\nu}, \qquad (4)$$

with
$$p=rac{1}{3}
ho$$
 and $ho=rac{B^2(t)}{2}$

- Einstein equations admit a solution with constant spatial curvature and $\pi^{\mu}{}_{\nu}$ only if

$$\pi^{2}_{2} = \pi^{3}_{3}, \qquad \pi^{1}_{1} = -2\pi^{2}_{2}, \quad \text{where} \quad \pi^{1}_{1} = \frac{2k}{a^{2}\sigma^{3}},$$
 (5)

where k is an integration constant². We can rewrite the metric as

$$ds^{2} = dt^{2} - a^{2}(t) \left(\frac{dr^{2}}{1 - \epsilon r^{2} - \frac{2k}{r}} + r^{2} d\Omega^{2} \right).$$
 (6)

• FLRW is regained whenever $2k \ll r$. From the evolution equation for the shear tensor and $V^{\mu} = \delta_0^{\mu}$ we get³

$$E_{\mu\nu} \doteq -W_{\mu\alpha\nu\beta}V^{\alpha}V^{\beta} = -\frac{1}{2}\pi_{\mu\nu}.$$
 (7)

²E. Bittencourt, J. Salim and GBS, *Gen. Rel. Grav.* **46** (2014); Mc Manus and Coley, *Class. Quant. Grav.* (1994).

³J. Mimoso and P. Crawford, *Class. Quant. Grav.* (1993).

-

- Einstein equations admit a solution with constant spatial curvature and $\pi^{\mu}{}_{\nu}$ only if

$$\pi^{2}_{2} = \pi^{3}_{3}, \qquad \pi^{1}_{1} = -2\pi^{2}_{2}, \quad \text{where} \quad \pi^{1}_{1} = \frac{2k}{a^{2}\sigma^{3}},$$
 (5)

where k is an integration constant². We can rewrite the metric as

$$ds^{2} = dt^{2} - a^{2}(t) \left(\frac{dr^{2}}{1 - \epsilon r^{2} - \frac{2k}{r}} + r^{2} d\Omega^{2} \right).$$
 (6)

• FLRW is regained whenever $2k \ll r$. From the evolution equation for the shear tensor and $V^{\mu} = \delta_0^{\mu}$ we get³

$$E_{\mu\nu} \doteq -W_{\mu\alpha\nu\beta}V^{\alpha}V^{\beta} = -\frac{1}{2}\pi_{\mu\nu}.$$
 (7)

²E. Bittencourt, J. Salim and GBS, *Gen. Rel. Grav.* **46** (2014); Mc Manus and Coley, *Class. Quant. Grav.* (1994).

³J. Mimoso and P. Crawford, Class. Quant. Grav. (1993).

• The remaining equations are

$$\dot{\theta} + \frac{\theta^2}{3} = -\frac{1}{2}(\rho + 3p),$$
 (8a)

$$\dot{\rho} + (\rho + p)\theta = 0,$$
 (8b)

$$E^{\alpha}{}_{\mu;\alpha} = 0, \tag{8c}$$

$$h^{\epsilon}{}_{\mu}h^{\nu}{}_{\lambda}\dot{E}^{\mu}{}_{\nu}+\frac{2}{3}\theta E^{\epsilon}{}_{\lambda}=0. \tag{8d}$$

 The model can be extended to any equation of state (EOS) of the form p = (γ - 1)ρ, which is also valid for a mixture of non-interacting fluids.

Background model

Construction of the basis

Perturbation Theory

Conclusions

Outline

Introduction

Background model

Construction of the basis

Perturbation Theory

• We take into account only the spatial scalar harmonic functions $Q_{(m)}(x^k)$ and its derived vector and tensor quantities:

$$Q_i \doteq Q_{,i}, \quad Q_{ij} \doteq Q_{,i||j} = Q_{,i;j}.$$

• These functions satisfy

$$\nabla^2 Q_{(m)} = m^2 Q_{(m)},\tag{9}$$

where *m* is a constant (the wave number) and

$$\nabla^2 Q \doteq \gamma^{ij} Q_{,i|j} = \gamma^{ij} Q_{,i;j},\tag{10}$$

defines the 3-dimensional Laplace-Beltrami operator.

• Then

$$Q(r,\theta,\phi) = \sum_{l,n} R(r) Y_l^n(\theta,\phi),$$

where $Y_I^n(\theta, \phi)$ are the spherical harmonics.

• We take into account only the spatial scalar harmonic functions $Q_{(m)}(x^k)$ and its derived vector and tensor quantities:

$$Q_i \doteq Q_{,i}, \quad Q_{ij} \doteq Q_{,i||j} = Q_{,i;j}.$$

• These functions satisfy

$$\nabla^2 Q_{(m)} = m^2 Q_{(m)}, \qquad (9)$$

where m is a constant (the wave number) and

$$\nabla^2 Q \doteq \gamma^{ij} Q_{,i|j} = \gamma^{ij} Q_{,i;j}, \tag{10}$$

defines the 3-dimensional Laplace-Beltrami operator.

• Then

$$Q(r,\theta,\phi) = \sum_{l,n} R(r) Y_l^n(\theta,\phi),$$

where $Y_I^n(\theta, \phi)$ are the spherical harmonics.

• We take into account only the spatial scalar harmonic functions $Q_{(m)}(x^k)$ and its derived vector and tensor quantities:

$$Q_i \doteq Q_{,i}, \quad Q_{ij} \doteq Q_{,i||j} = Q_{,i;j}.$$

• These functions satisfy

$$\nabla^2 Q_{(m)} = m^2 Q_{(m)}, \qquad (9)$$

where m is a constant (the wave number) and

$$\nabla^2 Q \doteq \gamma^{ij} Q_{,i|j} = \gamma^{ij} Q_{,i;j},\tag{10}$$

defines the 3-dimensional Laplace-Beltrami operator.

Then

$$Q(r,\theta,\phi) = \sum_{l,n} R(r) Y_l^n(\theta,\phi),$$

where $Y_l^n(\theta, \phi)$ are the spherical harmonics.

• We define the traceless operator

$$\hat{Q}_{ij} = \frac{1}{m^2} Q_{ij} - \frac{1}{3} Q \gamma_{ij}, \qquad (11)$$

and its divergence can be computed yielding

$$\hat{Q}^{j}{}_{i||j} = 2\left(\frac{1}{3} - \frac{\epsilon}{m^{2}}\right)Q_{i} - \frac{\pi_{ij}}{m^{2}}Q^{j}.$$
(12)

• In this model, we also need to consider the expansion of the terms

$$\pi_{ij}\hat{Q}_{(m)}^{ij} = \sum_{l} a_{l(m)} Q_{(l)}, \qquad (13)$$

$$\pi_{ij} Q^{j}_{(m)} = \sum_{l} b_{l(m)} Q_{i(l)}, \qquad (14)$$

• We define the traceless operator

$$\hat{Q}_{ij} = \frac{1}{m^2} Q_{ij} - \frac{1}{3} Q \gamma_{ij}, \qquad (11)$$

and its divergence can be computed yielding

$$\hat{Q}^{j}{}_{i||j} = 2\left(\frac{1}{3} - \frac{\epsilon}{m^{2}}\right)Q_{i} - \frac{\pi_{ij}}{m^{2}}Q^{j}.$$
 (12)

• In this model, we also need to consider the expansion of the terms

$$\pi_{ij} \hat{Q}_{(m)}^{ij} = \sum_{l} a_{l(m)} Q_{(l)}, \qquad (13)$$
$$\pi_{ij} Q_{(m)}^{j} = \sum_{l} b_{l(m)} Q_{i(l)}, \qquad (14)$$

$$\frac{1}{2}\pi_{k(i}\hat{Q}_{j)}^{k}{}_{(m)} = \sum_{l}c_{l(m)}\hat{Q}_{ij(l)} + \frac{\gamma_{ij}}{3}\sum_{l}a_{l(m)}Q_{(l)}, \quad (15)$$

where the coefficients $a_{l(m)}$, $b_{l(m)}$ and $c_{l(m)}$ are constants for each of the modes *m* and *l*.

• Assuming small deviations of the metric given in (6) wrt to FLRW, the quantities

$$A_{(m)} \doteq \sum_{l} a_{l(m)}, \quad B_{(m)} \doteq \sum_{l} b_{l(m)}, \quad C_{(m)} \doteq \sum_{l} c_{l(m)},$$

should be bounded. They are determined through the full solution for the basis and depend on *k*.

$$\frac{1}{2}\pi_{k(i}\hat{Q}_{j)}^{k}{}_{(m)} = \sum_{l}c_{l(m)}\hat{Q}_{ij(l)} + \frac{\gamma_{ij}}{3}\sum_{l}a_{l(m)}Q_{(l)}, \quad (15)$$

where the coefficients $a_{l(m)}$, $b_{l(m)}$ and $c_{l(m)}$ are constants for each of the modes *m* and *l*.

 Assuming small deviations of the metric given in (6) wrt to FLRW, the quantities

$$A_{(m)} \doteq \sum_{l} a_{l(m)}, \quad B_{(m)} \doteq \sum_{l} b_{l(m)}, \quad C_{(m)} \doteq \sum_{l} c_{l(m)},$$

should be bounded. They are determined through the full solution for the basis and depend on k.

Background model

Construction of the basis

Perturbation Theory

Conclusions

Outline

Introduction

Background model

Construction of the basis

Perturbation Theory

• According to the evolution equation for the shear tensor, we can define

$$X_{\mu\nu} \doteq E_{\mu\nu} + \frac{1}{2}\pi_{\mu\nu},$$
 (16)

which is a good variable as it is null in the background.

 Following Ellis & Bruni⁴, we also consider the fractional energy density gradient

$$\chi_{\alpha} \doteq a(t) h_{\alpha}^{\nu} \frac{\rho_{,\nu}}{\rho}, \qquad (17)$$

and the gradient of the expansion coefficient

$$Z_{\alpha} \doteq a(t) h_{\alpha}{}^{\nu} \theta_{,\nu}. \tag{18}$$

 To this set of variables we add: the acceleration a_μ, σ_{μν} and the divergence of the anisotropic pressure I_μ ≡ h_μ^ϵπ_ϵ^ν;_ν.

⁴G. F. R. Ellis and M. Bruni, *Phys. Rev. D* **40**, 1804 (1989).

• According to the evolution equation for the shear tensor, we can define

$$X_{\mu\nu} \doteq E_{\mu\nu} + \frac{1}{2}\pi_{\mu\nu},$$
 (16)

which is a good variable as it is null in the background.

 Following Ellis & Bruni⁴, we also consider the fractional energy density gradient

$$\chi_{\alpha} \doteq a(t) h_{\alpha}^{\nu} \frac{\rho_{,\nu}}{\rho}, \qquad (17)$$

and the gradient of the expansion coefficient

$$Z_{\alpha} \doteq a(t) h_{\alpha}{}^{\nu} \theta_{,\nu}. \tag{18}$$

 To this set of variables we add: the acceleration a_μ, σ_{μν} and the divergence of the anisotropic pressure I_μ ≡ h_μ^ϵπ_ϵ^ν;_ν.

⁴G. F. R. Ellis and M. Bruni, *Phys. Rev. D* 40, 1804 (1989).

• According to the evolution equation for the shear tensor, we can define

$$X_{\mu\nu} \doteq E_{\mu\nu} + \frac{1}{2}\pi_{\mu\nu},$$
 (16)

which is a good variable as it is null in the background.

 Following Ellis & Bruni⁴, we also consider the fractional energy density gradient

$$\chi_{\alpha} \doteq a(t) h_{\alpha}^{\nu} \frac{\rho_{,\nu}}{\rho}, \qquad (17)$$

and the gradient of the expansion coefficient

$$Z_{\alpha} \doteq a(t) h_{\alpha}{}^{\nu} \theta_{,\nu}. \tag{18}$$

• To this set of variables we add: the acceleration a_{μ} , $\sigma_{\mu\nu}$ and the divergence of the anisotropic pressure $I_{\mu} \equiv h_{\mu}{}^{\epsilon} \pi_{\epsilon}{}^{\nu}{}_{;\nu}$.

⁴G. F. R. Ellis and M. Bruni, *Phys. Rev. D* 40, 1804 (1989).

The perturbed equation for X is given by

$$h^{\epsilon}_{\mu}h^{\lambda}_{\nu}\delta\dot{X}_{\epsilon\lambda} + \theta\delta X_{\mu\nu} + \frac{1}{2}\pi_{\alpha(\mu}\delta\sigma_{\nu)}^{\ \alpha} - \frac{1}{3}\pi_{\alpha\beta}\delta\sigma^{\alpha\beta}h_{\mu\nu} = -\frac{1}{2}\gamma_{ef}\rho\delta\sigma_{\mu\nu} + \delta D_{\mu\nu}, \quad (19)$$

where $\delta D_{\mu\nu} = \xi \theta \delta \sigma_{\mu\nu}$ comes from the causal thermodynamical relation⁵

$$\tau \dot{\pi}_{\mu\nu} + \pi_{\mu\nu} = \xi \sigma_{\mu\nu}$$

with $\tau \propto 1/\theta$.

Using the basis just defined we set

$$\begin{split} \delta X_{ij} &= X(t) \hat{Q}_{ij}, \quad \delta \sigma_{ij} = \sigma(t) \hat{Q}_{ij}, \\ \delta \chi_i &= \tilde{\chi}(t) Q_i, \quad \delta Z_i = Z(t) Q_i, \\ \delta a_i &= \psi(t) Q_i \quad \delta I_i = I(t) \hat{Q}_i. \end{split}$$

⁵W. Israel, *Ann. Phys. (N.Y.)* **100**, 310 (1976); W. Israel and J. M. Stewart, *Phys. Lett.* **58A**, 213 (1976).

The perturbed equation for X is given by

$$h^{\epsilon}_{\mu}h^{\lambda}_{\nu}\delta\dot{X}_{\epsilon\lambda} + \theta\delta X_{\mu\nu} + \frac{1}{2}\pi_{\alpha(\mu}\delta\sigma_{\nu)}^{\ \alpha} - \frac{1}{3}\pi_{\alpha\beta}\delta\sigma^{\alpha\beta}h_{\mu\nu} = -\frac{1}{2}\gamma_{ef}\rho\delta\sigma_{\mu\nu} + \delta D_{\mu\nu}, \quad (19)$$

where $\delta D_{\mu\nu} = \xi \theta \delta \sigma_{\mu\nu}$ comes from the causal thermodynamical relation⁵

$$\tau \dot{\pi}_{\mu\nu} + \pi_{\mu\nu} = \xi \sigma_{\mu\nu}$$

with $\tau \propto 1/\theta$.

Using the basis just defined we set

$$\delta X_{ij} = X(t)\hat{Q}_{ij}, \quad \delta \sigma_{ij} = \sigma(t)\hat{Q}_{ij}, \\ \delta \chi_i = \tilde{\chi}(t)Q_i, \quad \delta Z_i = Z(t)Q_i, \\ \delta a_i = \psi(t)Q_i \quad \delta I_i = I(t)\hat{Q}_i.$$
(20)

⁵W. Israel, *Ann. Phys.* (*N.Y.*) **100**, 310 (1976); W. Israel and J. M. Stewart, *Phys. Lett.* **58A**, 213 (1976).

The perturbed equations then result

$$\dot{X} + \theta X + \left(-\frac{C}{a^2} + \frac{1}{2}\gamma_{ef}\rho - \xi\theta\right)\sigma = 0,$$
(21)

$$\dot{\sigma} - m^2 \psi + X = 0, \qquad (22)$$

$$\dot{Z} + \left(a\dot{\theta} - \frac{m^2}{a^2}\right)\psi + \frac{2\theta}{3a}Z + \frac{1}{2}(3\gamma_{ef} - 1)\rho_t\tilde{\chi} = 0, \qquad (23)$$

$$\dot{\tilde{\chi}} + \gamma_{ef} Z - \frac{1}{a^3} \frac{A}{\rho_t} \sigma - a \gamma_{ef} \theta \psi = 0.$$
(24)

Together with the constraints we get a system of dynamical equations that is closed in 3 variables.

Long wavelength regime

• We can use the local decomposition in irreducible parts of the projected covariant derivative of χ_{μ} as

$$ah_{\mu}{}^{\lambda}h_{\nu}{}^{\epsilon}\chi_{\lambda;\epsilon} = \frac{1}{3}h_{\mu\nu}\Delta + \Sigma_{\mu\nu} + W_{\mu\nu}, \qquad (25)$$

where $W_{\mu\nu}$ gives the anti-symmetric part, $\Sigma_{\mu\nu}$ is the symmetric traceless part and the variable Δ is the scalar gauge invariant variable that represents the clumping of matter⁶.

• The equation for Δ can be derived from Eq. (24) and up to first order reads

$$\dot{\Delta} = \frac{a^2}{\rho_t} h^{\alpha\beta} (\pi_{\mu\nu} \sigma^{\mu\nu})_{,\alpha;\beta} - \gamma_{ef} a h^{\alpha\beta} Z_{\alpha;\beta} + a^2 \gamma_{ef} \theta h^{\alpha\beta} a_{\alpha;\beta}.$$
(26)

⁶M. Bruni, P. K. S. Dunsby and G. F. Ellis, ApJ 395, 34 (1992).

Long wavelength regime

• We can use the local decomposition in irreducible parts of the projected covariant derivative of χ_{μ} as

$$ah_{\mu}{}^{\lambda}h_{\nu}{}^{\epsilon}\chi_{\lambda;\epsilon} = \frac{1}{3}h_{\mu\nu}\Delta + \Sigma_{\mu\nu} + W_{\mu\nu}, \qquad (25)$$

where $W_{\mu\nu}$ gives the anti-symmetric part, $\Sigma_{\mu\nu}$ is the symmetric traceless part and the variable Δ is the scalar gauge invariant variable that represents the clumping of matter⁶.

• The equation for Δ can be derived from Eq. (24) and up to first order reads

$$\dot{\Delta} = \frac{a^2}{\rho_t} h^{\alpha\beta} (\pi_{\mu\nu} \sigma^{\mu\nu})_{,\alpha;\beta} - \gamma_{ef} a h^{\alpha\beta} Z_{\alpha;\beta} + a^2 \gamma_{ef} \theta h^{\alpha\beta} a_{\alpha;\beta}.$$
(26)

⁶M. Bruni, P. K. S. Dunsby and G. F. Ellis, *ApJ* 395, 34 (1992).

• In terms of a 2nd order equation:

$$\sigma'' + 2\frac{a'}{a}\sigma' + \left(C - \frac{1}{2}\gamma_{ef}a^2\rho_t\right)\sigma = 0, \qquad (27)$$

whose solution for a dust dominated phase ($\gamma_{\it ef}=1$ and ${\it a}\propto\eta^2)$ is

$$\sigma(\eta) = \frac{c_1}{\eta^{3/2}} J\left(\frac{\sqrt{33}}{2}, \sqrt{C}\eta\right) + \frac{c_2}{\eta^{3/2}} Y\left(\frac{\sqrt{33}}{2}, \sqrt{C}\eta\right), \quad (28)$$

where J and Y are Bessel functions of first and second kind. Writing $\delta \Delta = \chi(\eta)Q(x^i)$ we have from Eq. (26)

$$\chi'(\eta) = -\frac{Am^2}{\rho a} \,\sigma(\eta) - \frac{3\gamma_{ef} m^2}{2} \,\left(\frac{2}{3} \,a - \frac{B}{am^2}\right) \sigma(\eta). \tag{29}$$

• In terms of a 2nd order equation:

$$\sigma'' + 2\frac{a'}{a}\sigma' + \left(C - \frac{1}{2}\gamma_{ef}a^2\rho_t\right)\sigma = 0, \qquad (27)$$

whose solution for a dust dominated phase ($\gamma_{\it ef}=1$ and ${\it a}\propto\eta^2)$ is

$$\sigma(\eta) = \frac{c_1}{\eta^{3/2}} J\left(\frac{\sqrt{33}}{2}, \sqrt{C}\eta\right) + \frac{c_2}{\eta^{3/2}} Y\left(\frac{\sqrt{33}}{2}, \sqrt{C}\eta\right), \quad (28)$$

where ${\rm J}$ and ${\rm Y}$ are Bessel functions of first and second kind.

• Writing $\delta \Delta = \chi(\eta) Q(x^i)$ we have from Eq. (26)

$$\chi'(\eta) = -\frac{Am^2}{\rho a} \,\sigma(\eta) - \frac{3\gamma_{ef} m^2}{2} \,\left(\frac{2}{3} \,a - \frac{B}{am^2}\right) \sigma(\eta). \tag{29}$$

• Using the limit of small values of the argument in (28), $\sqrt{C}\eta \ll 1$, we explicitly obtain

$$\chi(\eta) = \frac{c_1}{\Gamma\left(\frac{\sqrt{33}}{2}\right)} \left[\frac{3(\sqrt{33}+5)}{8}B + \frac{(3-\sqrt{33})m^2\eta^4}{12\eta_0^4} + \frac{(\sqrt{33}-7)Am^2\eta^6}{96\eta_0^4}\right] \frac{\left(\sqrt{C}\eta\right)^{\frac{\sqrt{33}}{2}}}{(\eta/\eta_0)^{5/2}} \quad (30)$$

The corresponding solution in a matter-dominated FLRW case is⁷

$$\chi(\eta) = \frac{c_1}{6} m^2 \left(\frac{\eta}{\eta_0}\right)^2.$$

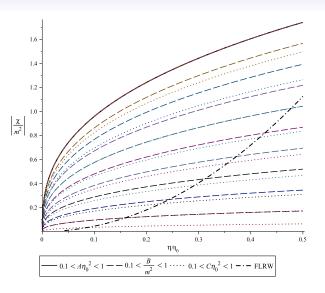
⁷M. Novello, J. M. Salim, M. C. M. da Silva, S. E. Jorás and R. Klippert, *Phys. Rev. D* **51**, 450 (1995). • Using the limit of small values of the argument in (28), $\sqrt{C}\eta \ll 1$, we explicitly obtain

$$\chi(\eta) = \frac{c_1}{\Gamma\left(\frac{\sqrt{33}}{2}\right)} \left[\frac{3(\sqrt{33}+5)}{8}B + \frac{(3-\sqrt{33})m^2\eta^4}{12\eta_0^4} + \frac{(\sqrt{33}-7)Am^2\eta^6}{96\eta_0^4}\right] \frac{\left(\sqrt{C}\eta\right)^{\frac{\sqrt{33}}{2}}}{(\eta/\eta_0)^{5/2}} \quad (30)$$

The corresponding solution in a matter-dominated FLRW case is⁷

$$\chi(\eta) = \frac{c_1}{6} m^2 \left(\frac{\eta}{\eta_0}\right)^2.$$

⁷M. Novello, J. M. Salim, M. C. M. da Silva, S. E. Jorás and R. Klippert, *Phys. Rev. D* **51**, 450 (1995).



Perturbation Theory

Conclusions

Outline

Introduction

Background model

Construction of the basis

Perturbation Theory

- We have performed a perturbative analysis of a quasi-Friedmann model with a **non-null Weyl tensor**. We have adopted the **covariant and gauge-invariant approach** to perturbations and suitable gauge-invariant variables directly related to observational quantities were used.
- It is shown that, for a large range of values for the parameters involved, it is possible to have a **faster growing mode** for the perturbations, which could in principle play the role of dark matter in structure formation (preliminary analysis though!).
- We should understand and try to find explicit expressions for the quantities *A*, *B* and *C* which would also provide their dependence on the wavenumber that is needed to treat the issue of scale invariance (Harrison-Zeldovich spectrum) of the perturbations and the asymptotic behaviors for small wavenumbers.

- We have performed a perturbative analysis of a quasi-Friedmann model with a non-null Weyl tensor. We have adopted the covariant and gauge-invariant approach to perturbations and suitable gauge-invariant variables directly related to observational quantities were used.
- It is shown that, for a large range of values for the parameters involved, it is possible to have a **faster growing mode** for the perturbations, which could in principle play the role of dark matter in structure formation (preliminary analysis though!).
- We should understand and try to find explicit expressions for the quantities *A*, *B* and *C* which would also provide their dependence on the wavenumber that is needed to treat the issue of scale invariance (Harrison-Zeldovich spectrum) of the perturbations and the asymptotic behaviors for small wavenumbers.

- We have performed a perturbative analysis of a quasi-Friedmann model with a non-null Weyl tensor. We have adopted the covariant and gauge-invariant approach to perturbations and suitable gauge-invariant variables directly related to observational quantities were used.
- It is shown that, for a large range of values for the parameters involved, it is possible to have a **faster growing mode** for the perturbations, which could in principle play the role of dark matter in structure formation (preliminary analysis though!).
- We should understand and try to find explicit expressions for the quantities *A*, *B* and *C* which would also provide their dependence on the wavenumber that is needed to treat the issue of scale invariance (Harrison-Zeldovich spectrum) of the perturbations and the asymptotic behaviors for small wavenumbers.

Thank you for your attention!