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Einstein approach  
to GR

• Equivalence Principle as guiding principle 

• Spacetime Geometry is fundamental 

• Diffeomorphism (General Coordinate) invariance is 
fundamental 

• Spacetime Curvature encodes strength of gravity 



Field theory approach  
to GR

• Gravity is a force like EM propagated by a massless spin-2 particle 

• GR (with a cosmological constant) is the unique Lorentz invariant 
low energy effective theory of a single massless spin 2 particle 
coupled to matter 

• Diffeomorphism invariance is a derived concept 

• Equivalence Principle is a derived concept (Weinberg ``Photons 
and Gravitons in S-Matrix Theory: Derivation of Charge 
Conservation and Equality of Gravitational and Inertial Mass~1964) 

• Form of action is derived by principles of LEEFT 

Gupta, Feynman, Weinberg, Deser, Boulware, Wald …



Sketch of proof
Spin 2 field is encoded in a 10 component symmetric tensor

hµ⌫

But physical degrees of freedom of a massless spin 2 field are 
d.o.f. = 2

We need to subtract 8 = 2  x 4

This is achieved by introducing 4 local symmetries

Every symmetry removes one component since 1 is pure 
gauge and the other is fixed by associated first class 

constraint (Lagrangian counting)



Sketch of proof
Lorentz invariance demands that the 4 symmetries form a 

vector (there are only 2 possible distinct scalar symmetries) 
and so we are led to the unique possibility

hµ⌫ ! hµ⌫ + @µ⇠⌫ + @⌫⇠µ

We can call this linear Diff symmetry but its really just 4 U(1) 
symmetries, its sometimes called spin 2 gauge invariance



Quadratic action
Demanding that the action is local and starts at lowest order in 

derivatives (two), we are led to a unique quadratic action 
which respects linear diffs

hµ⌫ ! hµ⌫ + @µ⇠⌫ + @⌫⇠µ
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Where … are terms which vanish in de Donder/harmonic gauge. It has an 
elegant representation with the Levi-Civita symbols …..
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Nonlinear theory
In order to construct the nonlinear theory we must have a 

nonlinear completion of the linear Diff symmetry to ensure 
that nonlinearly the degrees of freedom are 

hµ⌫ ! hµ⌫ + @µ⇠⌫ + @⌫⇠µ

10� 2⇥ 4 = 2

So the relevant question, and what all the proofs in effect rely 
on is, what are the nonlinear extensions of the symmetry which 

are consistent (i.e. form a group)



Nonlinear theory
The nonlinear symmetry should preserve Lorentz 

invariance so

hµ⌫ ! hµ⌫ + @µ⇠⌫ + @⌫⇠µ

becomes schematically

but the form of the transformation is strongly 
constrained by the requirement that it forms a group

hµ⌫ ! hµ⌫ + @µ⇠⌫ + @⌫⇠µ + h↵
µh

�
⌫ (@↵⇠� + @�⇠↵) + hn(@h)⇠ + hm@⇠

+higher derivatives



Unique result
There are only two nonlinear extensions of the linear Diff 

symmetry, (assumption over number of derivatives)

hµ⌫ ! hµ⌫ + @µ⇠⌫ + @⌫⇠µ

1. Linear Diff -> Linear Diff

Most complete proof Wald 1986

2. Linear Diff -> Full Diffeomorphism

gµ⌫ = ⌘µ⌫ + hµ⌫ Metric emerges as derived concept

hµ⌫ ! hµ⌫ + ⇠!@!hµ⌫ + gµ!@⌫⇠
! + g!⌫@µ⇠

!



Case 1: Coupling to matter
1. Linear Diff -> Linear Diff

hµ⌫ ! hµ⌫ + @µ⇠⌫ + @⌫⇠µ

The coupling to matter must respect this symmetry, e.g. if we 
consider Z

d

4
x
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hµ⌫(x)J

µ⌫(x) then we must have

@µJ
µ⌫(x) = 0
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performing transformation:



Case 1: Coupling to matter
Z

d

4
x

1

2
hµ⌫(x)J

µ⌫(x) then we must have

@µJ
µ⌫(x) = 0

The problem is that this must hold as an IDENTITY!!

We cannot couple h to the stress energy of matter which is conserved in 
the absence of the coupling because as soon as we add the interaction, 

the equations of motion for matter are modified in such a way that the 
stress energy is no longer conserved

Jµ⌫ 6= Tµ⌫

e.g. Feynman goes through expample of a point particle in his book …



Case 1:Non-gravitational 
spin 2 theory

@µJ
µ⌫(x) = 0

An interacting theory does exist in case 1, by taking J to be 
identically conserved

Example: `Galileon combinations’

Jµ⌫ = ✏µabc✏⌫ABCAaAA
0
bBA

00
cC

where each entry is either
AaA = @a@A⇡ or ⌘aA

Precisely these terms arise in the Decoupling 
Limit of Massive Gravity de Rham, Gabadadze 2010



Case 2: Coupling to matter

The coupling to matter must respect this symmetry, but this is 
now easy, we just couple matter covariantly to 

2. Linear Diff -> Full Diffeomorphism

gµ⌫

any such coupling is perturbatively equivalent to Z
d

4
xhµ⌫T

µ⌫

and so is a theory of gravity!

hµ⌫ ! hµ⌫ + ⇠!@!hµ⌫ + gµ!@⌫⇠
! + g!⌫@µ⇠

!



Kinetic Terms
Case 1: Non-Gravitational Spin 2.  

Since nonlinear symmetry is linear Diff, existing kinetic 
term is leading term at two derivative order (however 

there is a second term ….)

S =
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Case 2: Gravitational Spin 2 
Since nonlinear symmetry is nonlinear Diff, kinetic term 
must be leading two derivative diffeomorphism invariant 

operator

S =

Z
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What happens if we repeat this arguments 
starting with the assumption of a  

massive spin 2 field? 

i.e. suppose that the graviton is massive, are 
we inevitably led to the Einstein-Hilbert action 

(plus mass term)?

Basic Question



One argument says no
In a Massive theory of Gravity Diffeomorphism invariance is 

completely broken. Thus superficially it appears that 
everything that makes GR nice is completely lost

For instance, already at 2 derivative order we can imagine an 
infinite number of possible kinetic terms which are 

schematically

S =
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Fortunately this is wrong
If we really allowed for such a completely general form, then 

we would be at risk that all 10 components of metric are 
dynamical

Even if we ensure that        is not dynamical, we are at risk that 
the 6 remaining spatial components are dynamical

h0µ

hij which is one two many

L =
1

2
hµ⌫⇤hµ⌫ + . . .

6 = 5 + Ostrogradski ghost



A toy example, Proca theory
For a massive spin 1 field, we break gauge invariance, so we 
may think that we can allow non-gauge invariant kinetic terms 

of the form 

S =
1

2
F 2
µ⌫ + ↵(@µA

µ)2

However this would lead to 4 propagating degrees of freedom, 
instead of 2s+1 = 3

The key point is that         must remain non-dynamical to 
impose a second class constraint 

A0



A toy example, Proca theory

goes from a Lagrange multiplier of a first class constraint 
(which generates a symmetry)  

to a Lagrange multiplier of a second class constraint

In passing from massless to massive theory  
what happens is:

A0

this fixes the lowest order Lagrangian



Stuckelberg picture

But is now clearly higher derivative for   

All of this is much easier to understand in the Stuckelberg 
picture in which reintroduce gauge invariance

Therefore number of degrees of freedom are  
2         +  1    +    1 Ostrogradski

Aµ ! Aµ + @µ�

S =
1

4
F 2
µ⌫ + ↵(⇤�+ @µA

µ)2

�

Aµ �
�

Massive theory is now gauge invariant
Aµ ! Aµ + @µ⇠ , � ! �� ⇠



Now to massive spin 2
The general principle is the same in the spin 2 case 

Although the massive theory breaks the 4 nonlinear gauge 
symmetries, we still need that at least one second class 

constraint to ensure 5 degrees of freedom

Equivalently, if we Stuckelberg back the symmetries of the 
massless theory then we must demand that the Stuckelberg 

fields do not admit Ostrogradski instabilities
However, how we do this depends on whether we are looking 
at non-gravitational (SPIN 2 MESONS) or gravitational spin 2 

fields (GRAVITONS)



Case 1. Non-gravitational 
massive spin 2

In this case we should Stuckelberg the linear Diff symmetry

Remarkably there is a unique extension to the kinetic term 
already at two derivative level which is cubic

Thus for Case 1 theories, linearized E-H kinetic term,  
i.e. Fierz-Pauli kinetic term is not unique!!!

hµ⌫ ! hµ⌫ + @µ⇠⌫ + @⌫⇠µ

S(3) =

Z
d

4
x✏

ABCD
✏

abcd
haA@chbB@ChdD

Note this is NOT a limit of a Lovelock term as seen by counting derivatives

Hinterbichler 2013 
Folkerts, Pritzel, Wintergerst 2011 



Case 2. Gravitational 
massive spin 2

In this case we should Stuckelberg the nonlinear Diff symmetry

In this case we are led (after much calculation) to a unique 
kinetic term in four dimensions (up to total deriavatives), i.e. 

Einstein-Hilbert kinetic term

This is done explicitly by replacing h with a tensor 

hµ⌫ = gµ⌫ � @µ�
a@⌫�

b⌘ab
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Case 2. Gravitational 
massive spin 2

S =

Z
d

4
x

M

2
P

2

p
�gR

Thus all of the key features of Einstein gravity emerge equally from the 
assumption that the graviton is massive even though Diffeomorphism 

invariance is strictly broken

This is remarkable!

de Rham, Matas, Tolley, 
  ``New Kinetic Interactions for Massive Gravity?,'' 
  1311.6485 

I’m leaving out all the details of the proof which is complicated but what it 
means is there is no `graviton’ analoge of the spin-2 meson kinetic term ….

S(3) =

Z
d

4
x✏

ABCD
✏

abcd
haA@chbB@ChdD

Coupled with the uniqueness of the mass terms this means the 
theory of a massive spin 2 particle is unique!

de Rham, Gabadadze, Tolley (2010)



Extensions I
This result extends to all bigravity and multi-gravity theory

E.g. the unique kinetic term in metric language for a single 
massless and a single massive spin 2 field is a direct sum of 2 

E-H kinetic terms (up to field redefinitions)

S =

Z
d

4
x

M

2
P

2

p
�gR[g] +

M

2
f

2

p
�fR[f ]

If this were not the case, then it would be possible to take 
a decoupling limit in which the f metric fluctuations 
decouple and generate a new kinetic term for the metric 
g which we have already rules out

de Rham, Matas, Tolley, 
  ``New Kinetic Terms for Massive Gravity and Multi-gravity:  
A No-Go in Vielbein Form,’' 1505.00831   

Hassan, Rosen 2011, Hinterbichler, Rosen 2012

c.f. Luc Blanchet talk



Extensions II
This result extends to the Einstein-Cartan (first order 

formalism)
For example, in bigravity we have 2 vierbeins and 2 spin 

connections, but we respect only a single copy of Diffs and a 
single copy of local Lorentz invariance

Thus superficially the following looks ok

S =

Z
e ^ e ^R[!] + f ^ f ^R[⌦] + ↵(! � ⌦) ^ (! � ⌦) ^ e ^ e

de Rham, Matas, Tolley, 
  ``New Kinetic Terms for Massive Gravity and Multi-gravity:  
A No-Go in Vielbein Form,’' 1505.00831   

S =

Z
e ^ e ^R[!] + f ^ f ^R[⌦] + e ^ f ^R[!] + . . .or



Extensions II

However in this case, the massless theory would have the 
symmetry 

which is broken to 

Diff ⇥ Lorentz ⇥Diff ⇥ Lorentz

(Diff)
Diagonal

⇥ (Lorentz)
Diagonal

We thus must introduce 4 Diff stuckelberg fields and 6 local 
Lorentz stuckelberg fields

S =

Z
e ^ e ^R[!] + f ^ f ^R[⌦] + e ^ f ^R[!] + . . .



Extensions II

Demanding that these have no Ostrogradski ghosts fixes the 
form of the kinetic term to the sum of two separate E-H kinetic 

terms

S =

Z
e ^ e ^R[!] + f ^ f ^R[⌦] + ↵(! � ⌦) ^ (! � ⌦) ^ e ^ e

We thus must introduce 4 Diffeomorphism Stueckelberg fields 
and 6 local Lorentz Stueckelberg fields

fa
µ ! @µ�

Afa0

A ⇤a
a0 ⇤⌘⇤T = ⌘



Kaluza-Klein theory

EH Kinetic term in 5 dimensions = `Sum of’       
EH Kinetic terms in 4 dimensions

The most famous example of this is Kaluza-Klein theory

In mass eigenstate basis these are not diagonal but are field 
redefinable to diagonaliable - thus KK theory is the 
prototypical example of a theory of gravitional massive spin 2 
particles

S =

Z
d

5
x e ^ e ^R

(5) =

Z
dy

Z
d

4
x
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e ^ e ^R

(4) + . . .

⌘

c.f. Claudia de Rham talk
Discretize through DECONSTRUCTION



Charged Spin 2

A significant consequence of these results is the following: 

It is impossible to write down a consistent effective field theory 
of a single charged spin 2 particle coupled to gravity, i.e. a 
theory in which the number of degrees of freedom is only  

2 + 5 (particle)+5 (antiparticle)

de Rham, Matas, Ondo and Tolley, 
  ``Interactions of Charged Spin-2 Fields,''1410.5422



Charged Spin 2

This was a surprise to us: but the reason is very simple

A charged spin 2 field is described at the linearized level by a 
complex tensor  

Hµ⌫ 6= H⇤
µ⌫

we want to couple this to gravity, so we will have in effect 3 
tensors

gµ⌫ Hµ⌫ H⇤
µ⌫



Charged Spin 2
The kinetic term is determined by the symmetries that arise in 

the massless limit 

There are two possibilities:
Case 1: One nonlinear Diff (g) and a complex linear Diff

Case 2: Three nonlinear Diffs acting in some combination of
gµ⌫ Hµ⌫ H⇤

µ⌫

Hµ⌫ H⇤
µ⌫



Charged Spin 2
Case 1: One nonlinear Diff (g) and a complex linear Diff

This just corresponds to covariantizing Fierz-Pauli Lagrangian 
for 

However it is an old result that this covariantization does not 
preserve the correct number of degrees of freedom as soon as 

g is not an Einstein space

Hµ⌫ H⇤
µ⌫

Hµ⌫

Buchdahl 1958 
Aragone and Deser 1980



Charged Spin 2

This is equivalent to considering a tri-gravity theory, and 
asking that the trigravity Lagrangian admits a global U(1) 

symmetry that ultimately may be gauged. 

However from out uniqueness statements, the unique tri-
gravity kinetic term is  

Case 2: Three nonlinear Diffs acting in some combination of

e1 ^ e1 ^R[!1] + e2 ^ e2 ^R[!2] + e3 ^ e3 ^R[!3]

which admits no global U(1) symmetry

gµ⌫ Hµ⌫ H⇤
µ⌫

de Rham, Matas, Ondo and Tolley, 
  ``Interactions of Charged Spin-2 Fields,''1410.5422



Implications

1. That there is a built in cutoff at/above which the theory 
must be UV completed by new degrees of freedom 

2. Or new degrees of freedom arise already at a lower scale 
and must be included into the EFT (however no known 

case of finite number of d.o.f.)

Of course this does not mean that charged spin 2 fields do not 
exist, rather it means

E.g. the spin 2 may be completed by a tower of Kaluza-Klein 
states or it may be a composite, not fundamental, excitation in 

some otherwise partially UV complete theory like QCD



Coupling to Electromagnetism
In fact already in the absence of gravity, the theory of a single 

charged spin 2 theory has a build in cutoff

of a single, massive charged spin-2 field in [29] that was argued to propagate five dofs
in the background of a constant electromagnetic field. Charged spin-2 fields have also
been studied by Porrati in [34]. In this section we will review what is known about the
flat space case, following the discussion in [34]. We will also find that the Federbush

theory (also derived by Porrati) is completely ghost free. To our knowledge this
goes beyond what has been done in the literature, where the stability analysis has
been restricted to constant electromagnetic backgrounds.

We start with the Fierz-Pauli action for a complex spin-2 field Hµν

S =

∫

d4x
(

H∗

µνEµνρσHρσ −m2 ([H∗H ]− [H∗][H ])
)

, (2.1)

where E is the Lichnerowicz operator, normalized so that

EµνρσHρσ = εµραβενσα
′

β ∂α∂α′Hρσ = !Hµν + · · · (2.2)

Square brackets refer to taking the trace with respect to the flat space-time metric,
[H ] = ηµνHµν . Since Hµν is complex, this theory propagates 2× 5 = 10 real dofs.

This theory has a global U(1) symmetry under which H → Heiθ. We can make
this symmetry local by coupling Hµν to a U(1) gauge field Aµ, adding a kinetic term
for Aµ, and making the replacement

∂µ → Dµ = ∂µ − iqAµ, (2.3)

where q is the charge.
When applied to Fierz-Pauli, this procedure is ambiguous, because the covariant

derivatives do not commute. When acting on a field φ with charge q,

[Dµ, Dν ]φ = −iqFµν . (2.4)

Since there are different representations of the Lichnerowicz operator that differ by
integrating by parts and commuting partial derivatives, there are different “minimal”
covariantizations. The most general minimally coupled action is

S =

∫

d4x
(

εµνρσεµ
′ν′ρ′

σ H∗

µµ′DνDν′Hρρ′ −m2 ([H∗H ]− [H∗][H ])−
1

4
F 2
µν

+ iq(2g − 1)H∗

µνF
νρH µ

ρ

)

. (2.5)

The ordering ambiguity is represented by the parameter g, which we may identify with
the gyromagnetic ratio [33]. Already we may comment that from the point of view of
an effective field theory, as long as this additional operator is not forbidden by some
symmetry we expect it to arise, at least from quantum corrections.

Following [34], we can study this theory using a Stückelberg analysis. We may
introduce complex Stückelberg fields

Hµν = hµν +D(µ

(

1

m
Bν) +

1

2m2
Dν)π

)

. (2.6)

– 6 –

Consider a charged spin 2 coupled to EM with a Pauli-term 
(magnetic moment)

Introduce Stuckelberg fields 
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Porrati and Rahman 2008



Cutoff for charged spin 2
Taking the decoupling limit

where (a, b) ≡ ab+ba, the action is invariant under charged linearized diffeomorphisms
(diffs).

We now study the interactions in this theory, which arise entirely through the
coupling between the U(1) gauge field and the spin-2 field. That is, there are no self
interactions of the spin-2 dofs. It will be useful to consider a decoupling limit

q → 0, m → 0, Λq,n ≡
m

q1/n
fixed. (2.7)

The parameter n will be fixed by the interaction that arises at the lowest scale in this
limit. Interestingly for q = m/MPl, Λq,n = (mn−1MPl)1/n, which we may identify as
the usual scale Λn arising in the effective field theory approach to massive gravity [63].

We may de-mix the kinetic term for the helicity-0 mode by performing the field
redefinition

hµν → hµν +
1

2
πηµν . (2.8)

The kinetic terms for h,B, π, A take the form

Skin =

∫

d4x

(

h∗

µνEµνρσhρσ −
1

4
|Gµν |2 −

3

4
|∂π|2 −

1

4
F 2
µν

)

, (2.9)

where Gµν ≡ ∂µBν − ∂νBµ

From the scalings given in Equation (2.6), the kinetic terms for the Stückelberg
fields Bµ and π do not scale with q. Thus for a generic choice of g we can identify the
scale of the lowest order interactions as Λq,4 = q−1/4m. Explicitly the interactions are
given by
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These interactions are higher derivative and signal the presence of ghosts arising at the
scale Λq,4. Since this interacting is genuinely ghostly, we cannot imagine any strong-
coupling self-unitarization mechanism to resolve it. Thus we may definitively say that
the cutoff of this theory is at highest Λc ∼ Λq,4/(2g − 1)1/4.

2.1 Federbush is ghost-free

However, as shown in [34], we may remove all interactions arising at the scale Λq,4

by the special choice of gyromagnetic ratio g = 1/2 (this corresponds to the theory
originally proposed by Federbush [29]). In our conventions, it is clear that this choice
corresponds to minimal coupling prescription
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where (a, b) ≡ ab+ba, the action is invariant under charged linearized diffeomorphisms
(diffs).

We now study the interactions in this theory, which arise entirely through the
coupling between the U(1) gauge field and the spin-2 field. That is, there are no self
interactions of the spin-2 dofs. It will be useful to consider a decoupling limit

q → 0, m → 0, Λq,n ≡
m

q1/n
fixed. (2.7)

The parameter n will be fixed by the interaction that arises at the lowest scale in this
limit. Interestingly for q = m/MPl, Λq,n = (mn−1MPl)1/n, which we may identify as
the usual scale Λn arising in the effective field theory approach to massive gravity [63].
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This gives a ghost! or cutoff at scale
⇤q,4 =

m

q1/4



Federbush
However if we make the special choice first of gyromagnetic 

ratio 
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No ghost, i.e. no Ostrogradski instability -  
 strong coupling scale at 

Let us first consider the interactions at order q. Because of the double epsilon structure
the only non-vanishing term at this order uses the commutator to make εεDDDB ∼
qεεF∂B. The interaction arises at the scale Λq,3. It is given explicitly by

LΛq,3
= −

i

Λ3
q,3

ϵµνρσϵµ
′ν′ρ′

σ∂µ∂µ′π∗FνρGν′ρ′ + c.c. . (2.13)

Because of the double epsilon structure, the equations of motion for LΛq,3
are

manifestly second order. As a result, the Federbush theory is ghost-free at the

scale Λq,3. This means that there is no obstacle to treating the Federbush theory as a
strongly coupled theory till energy scales Λc where we could potentially have Λc ≫ Λq,3,
so long as no new dofs enter below Λc.

In fact, the Federbush theory is ghost-free to all orders in q. This follows directly
from the double epsilon structure, which automatically removes any higher derivatives
in the equations of motion. The ghost-freedom has also been explicitly checked by
computing the equations of motion for the Stückleberg–ed action and showing that all
of the equations of motion are second order in time derivatives, using the techniques
described in [9].

2.2 Velo-Zwanziger problem in the Stückelberg language

Even though it is ghost-free, the Galileon-type structure of the interactions might
lead us to suspect that the Federbush theory admits superluminal propagation around
certain backgrounds. Indeed this is simply a manifestation of the well-known Velo–
Zwanziger problem, expressed in modern language.

Let us consider an external electromagnetic field, F̄µν . Then the quadratic action
for the perturbations is

S(2) =

∫

d4x

(

−
1

4
|Gµν |2 −

3

4
|∂π|2 −

i

Λ3
q,3

(

ϵµναλϵρσβ λ∂νF̄ρσ

)

B∗

µ∂α∂βπ + c.c.

)

. (2.14)

In this language it is clear that we can find backgrounds with superluminal group veloc-
ity. For example, perturbing around an electromagnetic background F̄µν , the operator
Λ−3

q,e∂F̄B∗∂2πΛ3
q,3 will modify the kinetic structure and can lead to superluminalities.

This problem can occur even for arbitrarily small values of the electromagnetic field,
since a sound speed c2s = 1 + ϵ for small ϵ is still superluminal.

In the literature the Velo–Zwanziger problem has traditionally been studied for
backgrounds with a constant electromagnetic field. For such backgrounds, there is no
contribution to the kinetic term at the scale Λq,3, as is evident by the expression above.
Instead for background with constant electromagnetic fields, the leading correction to
the kinetic term is schematically of the form

Lint,Λq,2
⊃

1

Λ2
q,2

F̄G∗G+
1

Λ4
q,2

F̄ 2∂π∗∂π. (2.15)

Thus in standard presentations of the Velo-Zwanziger problem considering constant
electromagnetic backgrounds, the superluminalities come from the operator that arises
at a higher scale Λq,2.
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⇤q,4 =
m

q1/3

Federbush 1961

g =
1

2



EFT understanding
Already in the absence of gravity, theory of charged spin-2 

field has cutoff of either 

⇤q,4 =
m

q1/4 ⇤q,3 =
m

q1/3
g 6= 1

2
g =

1

2

Thus when we add gravity, we can happily live with an 
Ostrogradski ghost whose mass is above these scales!

Specific UV completions will indicate precisely how LEFT is 
resolved at or before cutoff but this is model dependent



Conclusions
• There are two types of interacting spin-2 fields, non-gravitational 

(spin 2 mesons) and gravitational (gravitons) 

• In the case of gravitational, for any number of gravitons the kinetic 
terms must be a direct sum of Einstein-Hilbert kinetic terms, thus 
Einstein gravity always arises in some limit of a theory of a  
interacting massive spin 2 field that couples to matter 

• For charged spin 2 fields there are two built in cutoffs, one 
dependent on m and q and one dependent on m and M_Planck. 
Nevertheless such theories make sense as LEEFTs 

• NOTE WE CAN LIVE WITH NON-STANDARD KINETIC TERMS PROVIDED THAT THEY ARE 
SUPRESSED BY THE CUTOFF


