Black Holes and Conductivity

David Tong

Hot Topics in General Relativity and Gravitation
Quy Nhon, Vietnam, August 2015

The Context: Holography

also known as: gauge gravity duality, or AdS/CFT correspondence

Strongly interacting quantum field theory

Gravity in (at least) one dimension higher

The Vacuum State

My attempt at drawing (the Poincare patch of) anti de-Sitter spacetime

$$
d s^{2}=\frac{L^{2}}{r^{2}}\left(d r^{2}+\eta_{\mu \nu} d x^{\mu} d x^{\nu}\right)
$$

Heating up the Boundary Theory

- Black hole
- Hawking radiation $=$ finite temperature, T

Boundary field theory

$$
d s^{2}=\frac{L^{2}}{r^{2}}\left(-f(r) d t^{2}+\frac{d r^{2}}{f(r)}+\eta_{\mu \nu} d x^{\mu} d x^{\nu}\right) \quad f(r)=1-\left(\frac{r}{r_{h}}\right)^{3}
$$

Finite Density Matter

- Reissner-Nordstrom black hole
- Hawking radiation = finite temperature, T

Boundary field theory
$d s^{2}=\frac{L^{2}}{r^{2}}\left(-f(r) d t^{2}+\frac{d r^{2}}{f(r)}+\eta_{\mu \nu} d x^{\mu} d x^{\nu}\right) \quad f(r)=1-\left(1+\frac{r_{h}^{2} \mu^{2}}{\gamma^{2}}\right)\left(\frac{r}{r_{h}}\right)^{3}+\frac{r_{h}^{2} \mu^{2}}{\gamma^{2}}\left(\frac{r}{r_{h}}\right)^{4}$

Ohm's Law

$$
J(\omega)=\sigma(\omega) E(\omega)
$$

Boundary field theory

Perturb the background...

$$
A_{x}=\frac{E}{i \omega} e^{i \omega t}+\left\langle J_{x}\right\rangle r+\ldots
$$

Optical Conductivity in $d=2$

Herzog, Kovtun, Sachdev, Son Hartnoll, 2007

$$
J(\omega)=\sigma(\omega) E(\omega)
$$

c.f. graphene

Optical Conductivity in d=2

Herzog, Kovtun, Sachdev, Son Hartnoll, 2007

$$
\operatorname{Re} \sigma(\omega) \sim K \delta(\omega)
$$

Finite charge density + momentum conservation

c.f. graphene

Breaking Translational Invariance

$\mu=\mu(x, y)$: spatially varying chemical potential

A rippled black hole

$$
d s^{2}=\frac{L^{2}}{z^{2}}\left[-g_{t t}(z, x) d t^{2}+g_{z z}(z, x) d z^{2}+g_{x x}(z, x)(d x+a(z, x) d z)^{2}+g_{y y}(z, x) d y^{2}\right]
$$

Optical Conductivity

$$
J(\omega)=\sigma(\omega) E(\omega)
$$

Horowitz, Santos, Tong, 2012

Delta function spreads out. The low-frequency curve is a perfect fit to the Drude model!

$$
\sigma(\omega)=\frac{K \tau}{1-i \omega \tau}
$$

DC Conductivity

Subsequently we managed to compute DC conductivity analytically.

Related to massive gravity

DC Conductivity

$$
\sigma_{\mathrm{DC}}=\frac{Q^{2}}{\mathcal{E}+P} \tau+\sigma_{0}
$$

Blake, Tong
Blake, Tong and Vegh
Donos and Gauntlett, 2013

+ many more now

Analytic DC Conductivity

*Related to the mass of the graviton at the horizon

Analytic DC Conductivity

Due to scattering of charged stuff

Some Surprises

$$
\sigma_{\mathrm{DC}}=\frac{Q^{2}}{\mathcal{E}+P} \tau+\sigma_{0}
$$

This formula is surprising: - First term is power law in temperature

- Second term is power law in temperature
- Inverse Matthiessen rule

Some Uses

Data suggests that second term is responsible for DC conductivity in cuprates

Hartnoll (2014)

Possible explanation for linear resistivity?
Hartnoll 2014 (see also Bruin et al; Sachdev, Zaanen)

But, in the presence of magnetic field, first term dominates
Blake and Donos, 2014
"Over broad regions of doping, the two kinds of relaxation rates, the one for the conductivity and the one for the Hall rotation, seem to add as inverses: conductivity is proportional to $1 / T+1 / T^{2}$. That is, it obeys an anti-Matthiessen law"

Much much more...

Black holes offer a framework to answer the simple question:
"What can strongly coupled matter do?"

They are providing new ways to think about old problems in condensed matter physics and fluid dynamics.

Thank you for your attention

Additional Material

DC Conductivity: Surprise 1

The first term varies as a power-law in temperature.

$$
\begin{gathered}
\sigma_{\mathrm{DC}}=\frac{Q^{2}}{\mathcal{E}+P} \tau+\sigma_{0} \\
\tau(T) \sim T^{-2 \Delta\left(k_{L}\right)}
\end{gathered}
$$

There must be low-energy degrees of freedom at finite momentum k In a metal, these come from the Fermi surface. But not in a black hole...

Low-Energy Excitations in a black hole

Finite momentum excitations arise in a more exotic way. Consider dispersion relations

$$
E \sim k
$$

$$
E \sim k^{2}
$$

$$
E \sim k^{z} \quad z>2
$$

relativistic

non-relativistic

unusual!

Excitations around the black hole have:

$$
E \sim k^{z} \quad z \rightarrow \infty
$$

This is known as local criticality.

Low-Energy Excitations in a black hole

$$
E \sim k^{z} \quad z \rightarrow \infty
$$

The DC conductivity for such a system is

ugly function depending on lattice spacing

This agrees with the first term of the black hole calculation

$$
\sigma_{\mathrm{DC}}=\frac{Q^{2}}{\mathcal{E}+P} \tau+\sigma_{0}
$$

Something Fun About Black Holes

In metals, a charged impurity gives Friedel Oscillations

Friedel Oscillations for Black Holes

DC Conductivity: Surprise 2

The second term also varies as a power-law in temperature

$$
\begin{gathered}
\sigma_{\mathrm{DC}}=\frac{Q^{2}}{\mathcal{E}+P} \tau+\sigma_{0} \\
\sigma_{0}(T) \sim T^{\#}
\end{gathered}
$$

Expected at $Q=0$ but surprising at finite charge density

Pair Creation at Weak Coupling

$$
Q=0
$$

$Q \neq 0$

Pair Creation at Weak Coupling

$$
Q=0
$$

$Q \neq 0$

$\sigma_{D C} \sim e^{-2 E_{F} / T}$

"Pair Creation" at Strong Coupling

$Q \neq 0 \quad \sigma_{0}(T) \sim T^{\#}$

Intuition behind this remains unclear.

Is there also a lesson here for strongly coupled electron systems?

Summary of Black Hole Conductivity

Two Processes

- Low energy modes at finite momentum
- But not a Fermi surface
- Low energy pair creation even at finite Q

Are there any similarities?

Strange Properties of Strange Metals

DC Conductivity

$$
\sigma_{D C} \sim \frac{1}{T}
$$

Mackenzie et al 1997
Hall Conductivity

$$
\frac{\sigma_{x y}}{\sigma_{x x}} \sim \frac{1}{T^{2}}
$$

AC Conductivity

$$
\sigma(\omega) \sim 1 /(i \omega)^{2 / 3}
$$

Lesson 1: Hall Angle

Drude model (or Fermi liquid theory)

$$
\sigma_{D C} \sim \frac{\sigma_{x y}}{\sigma_{x x}} \sim \tau
$$

Experimental data on strange metals

$$
\sigma_{D C} \sim \frac{1}{T} \quad \frac{\sigma_{x y}}{\sigma_{x x}} \sim \frac{1}{T^{2}}
$$

Suggests two time scales at play?
"Over broad regions of doping, the two kinds of relaxation rates, the one for the conductivity and the one for the Hall rotation, seem to add as inverses: conductivity is proportional to $1 / T+1 / T^{2}$. That is, it obeys an anti-Matthiessen law"

Lesson 1: Hall Angle

> Drude model (or Fermi liquid theory)

$$
\sigma_{D C} \sim \frac{\sigma_{x y}}{\sigma_{x x}} \sim \tau
$$

Experimental data on strange metals

$$
\sigma_{D C} \sim \frac{1}{T} \quad \frac{\sigma_{x y}}{\sigma_{x x}} \sim \frac{1}{T^{2}}
$$

If this term dominates DC transport, we get two time scales

Lesson 2: (In)coherent Transport

There is another interpretation of these two terms*

$$
\sigma_{\mathrm{DC}}=\frac{Q^{2}}{\mathcal{E}+P} \tau+\sigma_{0}
$$

Coherent Transport
Incoherent Transport
due to (almost) conserved momentum

$$
\tau^{-1} \gg T
$$

due to charge diffusion

$$
\tau_{\mathrm{eff}}^{-1} \sim T
$$

which of these processes describes actual materials?

Lesson 2: Incoherent Transport

$$
\tau^{-1} \sim \frac{k_{B} T}{\hbar}
$$

Suggests incoherent transport

Conjecture: there is a quantum bound for diffusion $\sigma_{0} \gtrsim \frac{\hbar}{k_{B} T}$

Summary

- We're understanding better the conductivity properties of black holes
- Are there lessons here for strongly interacting electrons?

The End (for real now)

