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The negative cosmological constant Λ = −3/κ2L2 is tuned so that the
ground state is the AdS metric (1) with curvature scale L.

As we reviewed in Section 2, the metric is dual to the boundary stress
tensor Tµν and the gauge field is dual to a conserved current Jµ. We won’t
turn on any other fields in the bulk, but all the results that we describe
below will hold for any bulk theory with an Einstein-Maxwell sector

We will compute the conductivity associated to the current Jµ. Before
we do this, there are a few rudimentary concepts that we need to introduce
into our gravitational model. These are the temperature and chemical po-
tential of the boundary theory. As we now review, both are associated with
black holes in the bulk.

4.1. Black Holes

The first thing that we want to do is to place the boundary theory at
some finite temperature T . This is done by placing a black hole in the bulk
of AdS [15]. In the Poincaré patch, the black hole is really a black brane;
the horizon lies parallel to the (spatial) boundary.

There are a few ways to see that the black hole corresponds to thermal
field theory. Perhaps the easiest is to Wick rotate to Euclidean signature.
Equilibrium thermal physics in quantum field theories is captured by com-
pactifying Euclidean time with period β = 1/T . Solving the bulk equations
of motion with a such a compact Euclidean circle, one finds the Euclidean
AdS black hole.

Wick rotating back to Lorentzian signature, we have the AdS Schwarzchild
black hole with metric,

ds2 =
L2

r2

�

−f(r)dt2 +
dr2

f(r)
+ ηµνdx

µdxν
�

(24)

and

f(r) = 1−
�

r

rh

�3

(25)

so that the black hole horizon sits at r = rh where f(r) = 0. The claim
is that this background continues to describe the boundary field theory at
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Boundary	  field	  theory	  

•  Reissner-‐Nordstrom	  black	  hole	  
•  Hawking	  radia/on	  =	  finite	  temperature,	  T	  
•  Electric	  field	  =	  chemical	  poten/al,	  	  
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finite temperature, now in Lorentzian signature. The temperature of the

boundary is given by the Hawking temperature of the black hole,

T =
3

4πrh
(26)

However, in Lorentzian signature, the identification of the black hole with a

thermal field theory is much more powerful than the corresponding identifi-

cation in Euclidean space. This is because the bulk no longer captures only

equilibrium physics. Instead, dynamics in the bulk spacetime corresponds

to real time dynamics in the boundary thermal field theory. Usually it’s

rather challenging to do such computations in field theory. But, within the

context of holography, it’s conceptually trivial: we simply need to solve the

time dependent Einstein equations. This ease with which one can compute

transport properties — even far from equilibrium transport — is one of

the real powers of holography. Note, in particular, that dynamics at finite

temperature exhibits a new phenomenon that does not arise at zero tem-

perature: dissipation. This is captured in the bulk by stuff falling into the

black hole horizon.

We should elaborate on this a little more. In Section ??, we briefly men-

tioned that, when performing holographic calculations, you must impose

some appropriate boundary conditions in the infra-red of the geometry. In

the presence of the black hole, this means appropriate boundary conditions

at the horizon. But which boundary conditions? In fact, we have a choice

and this choice corresponds to the choice of Lorentzian propagator in the

boundary field theory. The most useful and physically motivated choice

is simply to impose ingoing boundary conditions on the horizon, ensuring

that stuff only falls into the black hole and nothing comes out. In the

boundary field theory, this corresponds to working with retarded propaga-

tors. This is the choice relevant for linear response calculations. (Had we

imposed outgoing boundary conditions at the horizon, we would have ad-

vanced propagators on the boundary). For more details of this relationship,

see [?].
So black holes in the bulk correspond to placing the boundary field

theory at some finite temperature. We would now like to throw in a finite

density of stuff in the boundary which is achieved by placing the theory

at a chemical potential µ. This corresponds to charging the black hole,

so it emits an electric field [?]. This is the Reissner-Nordström black hole

solution. It again has metric (??), now with the function f(r) taking the

form
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�

1 +
r2hµ

2

γ2

��
r

rh

�3

+
r2hµ

2

γ2

�
r

rh

�4

(27)



Ohm’s	  Law	  

E	   Boundary	  field	  theory	  
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The horizon is again at r = rh where f(rh) = 0. The coefficient γ is a ratio
of the gravitational and electromagnetic couplings,

γ =
2e2L2

κ2
(28)

The Hawking temperature of the black hole horizon is now given by
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Meanwhile, the temporal component of the gauge field takes the form

A0 = µ
�
1− r

rh

�
(30)

Note that A0 = 0 at the horizon. This is necessary because the Killing
vector ∂/∂t degenerates at the horizon and the gauge field A0 is ill-defined
unless it vanishes there.

From our discussion in Section ??, we can read off the physics from the
profile of A0. We know that in the boundary field theory the gauge field
couples to a conserved current, Lboundary ∼ AµJµ. The leading order term
in A0 should be interpreted as the source for J0. This is indeed the chemical
potential µ. Meanwhile, the subleading term should be interpreted as the
expectation value �J0�, which is simply the charge density. We see that

�J0 � ∼ µ

rh
(31)

We can then use (??) to re-express rh in terms of T and µ.

4.2. Computing Conductivity

The Reissner-Nordström black hole describes the boundary field theory
at finite temperature and density. Now we want to perturb the boundary
by turning on an electric field with frequency ω. This is a source for the
current Jx. We would like to extract the response of the current �Jx�.

We can implement this using the basic techniques described in Section
??. We work with an electric field in the Ax direction and turn on a source
Ax = (E/iω)eiωt on the boundary. Obviously, then, the electric field is
Ȧx = Eeiωt as required. In the bulk, the leading order terms in Ax take the
form,

Ax =
E

iω
eiωt + �Jx�r + . . . (32)

Perturb	  the	  background…	  

Fix	  this	   Solve	  for	  this	  

10 zakopane printed on August 7, 2015

3. Basics of Conductivity

In this section, we leave ideas of holography behind. Instead, we will take
something of a diversion to explain a few basic features of conductivity. Our
goal is to simply review some essential facts in order to place the holographic
calculations of the next section in some kind of context.

We all learned about Ohm’s law in kindergarten. It is “V = IR”, relat-
ing the voltage drop V to an induced current I. The ratio is the resistance
R. Here we work in slightly more grown-up language. We will discuss the
induced current density �j(t, �x) due an applied electric field �E(t, �x).

In what follows, we will work with an electric field that is constant in
space, but varying in time. It is most convenient to work with the Fourier
transform of the fields vibrating at some fixed frequency ω,

�E(t) =
�

dω

2π
e−iωt �E(ω) , �j(t) =

�
dω

2π
e−iωt�j(ω) (19)

In this notation, Ohm’s law reads

�j(ω) = σ(ω) �E(ω) (20)

J(ω) = σ(ω)E(ω) (21)

Note that if we shake the electric field at frequency ω then the system
responds at the same frequency ω. This is the regime of linear response.

The ratio σ(ω) is the optical conductivity. Because we are working in
Fourier space, σ is complex. The real part captures what you would intu-
itively call the conductivity (or inverse resistivity) of the system: it describes
the dissipation of the current. The imaginary part is the reactive part. We
will illustrate this with some examples below.

3.1. The Drude Model

Let’s go right back to basics. The Drude model is a simple description
of charge transport, based on the idea of billiard ball-like charge carriers
bouncing off things in a solid. It is nothing more than Newtonian physics.
However, rather surprisingly, several features of the Drude model are ex-
tremely robust, surviving many subsequent revolutions in physics. Indeed,
in the next section we’ll see aspects of the Drude model emerging from
general relativity! But we’re getting ahead of ourselves...

Consider a particle of mass m, charge q and velocity �v. The essence of
the Drude model is Newtonian “F = ma”, where the force is due to the
electric field, together with a linear friction term,

m
d�v

dt
+

m

τ
�v = q �E (22)



Op/cal	  Conduc/vity	  in	  d=2	  

c.f.	  graphene	  

Herzog,	  Kovtun,	  Sachdev,	  Son	  
	  Hartnoll,	  2007	  
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j(ω) = σ(ω)E(ω)

Reσ(ω) ∼ K δ(ω)

Gµν =
1

M2
pl

Tµν − Λgµν

Mpl ≈ 10
27 eV

Λ ≈ (10
−3 eV )

4

Λobserved = Λbare + Λinduced

Λobserved ≈ (10
−3 eV )

4

Λinduced ≈ (10
12 eV )

4
(1)

= 10
60 Λobserved

Λinduced ≈ (10
12 eV )

4
(2)

= 10
120 Λobserved

Λinduced ≈ (10
12 eV )

4

Λbare ≈ −(10
12 eV )

4

�E =
e�̂r

4πr2

Λinduced ≈ 10
60 Λobserved

Λbare ≈ −10
60 Λobserved
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d3r �E · �E
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� ∞
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4πr2
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e2

4πa
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4πa
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a =
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4π�c < 1

e2

4π�c ≈ 1

137

Hi Bobby - hope you’re well. And welcome to the long-promised musings on the Alfy

project. Below I’ve concentrated on the hyper-kähler quotient construction of ALF spaces.
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Finite	  charge	  density	  +	  momentum	  conserva/on	  
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A	  rippled	  black	  hole	  

:	  spa/ally	  varying	  chemical	  poten/al	  

D-BRANES ON ALF SPACES

ds2 =
L2

z2

�
− gtt(z, x)dt

2 + gzz(z, x)dz
2 + gxx(z, x)(dx+ a(z, x)dz)2 + gyy(z, x)dy

2
�

ds2 =
L2

z2

�
− gttdt

2 + gzzdz
2 + gxx(dx+ a dz)2 + gyydy

2
�

Φ(x, z)

A0(z, x)

Φ ←→ O

m2
ΦL

2 = −1

Φ → zφ0 + z2φ1 + . . .

φ0 = A cos(kLx)

L = LCFT + µQ+ φ0(x, y)O

Gµν =
1

M2
pl

Tµν − Λgµν

Mpl ≈ 1027 eV

Λ ≈ (10−3 eV )4

Λobserved = Λbare + Λinduced

Λobserved ≈ (10−3 eV )4

Λinduced ≈ (1012 eV )4 (1)

= 1060 Λobserved

Λinduced ≈ (1012 eV )4 (2)

= 10120 Λobserved

1



Op/cal	  Conduc/vity	  
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Figure 5: The optical conductivity, both without the lattice (dashed line) and with the lattice
(solid line and data points) for µ = 1.4 and temperature T/µ = 0.115. Note that the lattice
(which has wavenumber k0 = 2 and amplitude A0 = 1.5) only changes the low frequency behavior.
The pole in Im σ without the lattice reflects the existence of a ω = 0 delta-function in Re σ.

There is nothing mysterious about the presence of this delta-function. It follows solely on the
grounds of momentum conservation in the boundary theory. If we have a translationally invariant
state with nonzero charge density, then one can always boost it to obtain a nonzero current with
zero applied electric field. This results in the infinite DC conductivity.

The introduction of a background spatial lattice, as described in the previous section, resolves
this issue. With no translational invariance, there is no momentum conservation and the ω = 0
delta-function spreads out, revealing its secrets. In this section we describe what was hiding in
that delta-function.

The optical conductivity, σ(ω), in the presence of the lattice is shown by the solid line in Fig. 5.
At high frequencies, ω � µ, the optical conductivity in the lattice background remains unchanged
from the translationally invariant black hole. The interesting physics lies at lower frequencies.
The dissipative part of the conductivity, Reσ, now rises at low ω. This is the redistribution of the
spectral weight of the delta-function. Moreover, the pole in the responsive part of the conductivity,
Im σ, has now disappeared, with Im σ(ω) → 0, as ω → 0, confirming that there is no longer a
delta-function at zero frequency3. We now describe the characteristics of the conductivity in more
detail.

3
The resolution of a delta-function into a Drude-like peak has been seen in a somewhat different context in

conformal fixed points with vanishing charge density [16]. Here the delta-function is resolved by interactions rather

than breaking of translational symmetry, either in an � expansion [16] or a 1/N expansion [17].
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Delta	  func/on	  spreads	  out.	  The	  low-‐frequency	  curve	  is	  a	  perfect	  fit	  to	  the	  Drude	  model!	  

Horowitz,	  Santos,	  Tong,	  2012	  
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3. Basics of Conductivity

In this section, we leave ideas of holography behind. Instead, we will take
something of a diversion to explain a few basic features of conductivity. Our
goal is to simply review some essential facts in order to place the holographic
calculations of the next section in some kind of context.

We all learned about Ohm’s law in kindergarten. It is “V = IR”, relat-
ing the voltage drop V to an induced current I. The ratio is the resistance
R. Here we work in slightly more grown-up language. We will discuss the
induced current density �j(t, �x) due an applied electric field �E(t, �x).

In what follows, we will work with an electric field that is constant in
space, but varying in time. It is most convenient to work with the Fourier
transform of the fields vibrating at some fixed frequency ω,

�E(t) =
�

dω

2π
e−iωt �E(ω) , �j(t) =

�
dω

2π
e−iωt�j(ω) (19)

In this notation, Ohm’s law reads

�j(ω) = σ(ω) �E(ω) (20)

J(ω) = σ(ω)E(ω) (21)

Note that if we shake the electric field at frequency ω then the system
responds at the same frequency ω. This is the regime of linear response.

The ratio σ(ω) is the optical conductivity. Because we are working in
Fourier space, σ is complex. The real part captures what you would intu-
itively call the conductivity (or inverse resistivity) of the system: it describes
the dissipation of the current. The imaginary part is the reactive part. We
will illustrate this with some examples below.

3.1. The Drude Model

Let’s go right back to basics. The Drude model is a simple description
of charge transport, based on the idea of billiard ball-like charge carriers
bouncing off things in a solid. It is nothing more than Newtonian physics.
However, rather surprisingly, several features of the Drude model are ex-
tremely robust, surviving many subsequent revolutions in physics. Indeed,
in the next section we’ll see aspects of the Drude model emerging from
general relativity! But we’re getting ahead of ourselves...

Consider a particle of mass m, charge q and velocity �v. The essence of
the Drude model is Newtonian “F = ma”, where the force is due to the
electric field, together with a linear friction term,

m
d�v

dt
+

m

τ
�v = q �E (22)
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Figure 6: A blow up of the low frequency optical conductivity with lattice shown in Fig. 5. The

data points in both curves are fit by the simple two-parameter Drude form (3.2).

3.1 The Drude Peak

At low frequency, both the real and imaginary parts of the conductivity can be fit by the two-

parameter Drude form

σ(ω) =
Kτ

1− iωτ
(3.2)

with both the scattering time τ and the overall amplitude K constants, independent of ω. This is
shown in Fig. 6. It can be checked numerically that the overall amplitude K agrees (to about the

1% level) with the coefficient of the pole (3.1) in the translationally invariant case. All interesting

physics in this regime is therefore captured by the single parameter, τ . We have varied the

temperature and lattice spacing and found that this Drude form holds in all cases. Given the lack

of well-defined quasi-particles in our holographic system, it seems surprising that the low-frequency

behaviour of our system is governed so well by the exact Drude form.

3.2 DC Resistivity

The resolution of the ω = 0 delta-function leaves behind a well-defined DC resistivity, ρ = (Kτ)−1
.

The Drude amplitude K is essentially independent of temperature T and all temperature de-

pendence in the resistivity ρ(T ) is inherited from τ . The results depend strongly on the lattice

wavenumber k0 and are shown on the left hand side of Fig. 7.

To make sense of this complicated plot, we review some recent work in the literature. Since

the near horizon geometry of an extremal Reissner-Nordström AdS black hole is AdS2 × R2
, the

dual theory is said to be “locally critical” in the sense that it is invariant under rescalings of time,

with no rescaling of space. Hartnoll and Hofman [12] have recently studied the DC conductivity

in a locally critical theory. They showed that the DC conductivity can be extracted from the two
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DC	  Conduc/vity	  

Vegh	  
Blake	  and	  Tong	  
Blake,	  Tong	  and	  Vegh,	  2013	  

Subsequently	  we	  managed	  to	  compute	  DC	  conduc/vity	  analy/cally.	  
	  
	  
	  

Related	  to	  massive	  gravity	  



DC	  Conduc/vity	  
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Analy/c	  DC	  Conduc/vity	  
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Donos	  and	  GauntleQ,	  2013	  
+	  many	  more	  now	  

*Related	  to	  the	  mass	  of	  the	  graviton	  at	  the	  horizon	  



Analy/c	  DC	  Conduc/vity	  
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Some	  Surprises	  

This	  formula	  is	  surprising:	  
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•  First	  term	  is	  power	  law	  in	  temperature	  

•  Second	  term	  is	  power	  law	  in	  temperature	  

•  Inverse	  MaQhiessen	  rule	  



Some	  Uses	  

Hartnoll	  2014	  (see	  also	  Bruin	  et	  al;	  Sachdev,	  Zaanen)	  

• LSCO, Takenaka et al. ‘03

• BSCCO, Hwang et al. ‘07

• YBCO, Boris et al. ‘04

1

τ
∼ kBT

�

LSCO	  
Takenaka	  et	  al	  	  

Possible	  explana/on	  for	  linear	  resis/vity?	  

Data	  suggests	  that	  second	  
term	  is	  responsible	  for	  DC	  
conduc/vity	  in	  cuprates	  

Hartnoll	  (2014)	  

Blake	  and	  Donos,	  2014	  But,	  in	  the	  presence	  of	  magne/c	  field,	  first	  term	  dominates	  

“Over	  broad	  regions	  of	  doping,	  the	  two	  kinds	  of	  relaxa9on	  rates,	  the	  one	  for	  	  
the	  conduc9vity	  and	  the	  one	  for	  the	  Hall	  rota9on,	  seem	  to	  add	  as	  inverses:	  
	  conduc9vity	  is	  propor9onal	  to	  1/T	  +	  1/T2.	  That	  is,	  it	  obeys	  an	  an9-‐MaGhiessen	  law”	  

P.W.	  Anderson	  



Much	  much	  more…	  

Black	  holes	  offer	  a	  framework	  to	  answer	  the	  simple	  ques/on:	  	  
	  

“What	  can	  strongly	  coupled	  maQer	  do?”	  
	  
	  
	  

They	  are	  providing	  new	  ways	  to	  think	  about	  old	  problems	  in	  
condensed	  maQer	  physics	  and	  fluid	  dynamics.	  



Thank	  you	  for	  your	  aQen/on	  



Addi/onal	  Material	  



DC	  Conduc/vity:	  Surprise	  1	  

The	  first	  term	  varies	  as	  a	  power-‐law	  in	  temperature.	  

There	  must	  be	  low-‐energy	  degrees	  of	  freedom	  at	  finite	  momentum	  k	  
	  
In	  a	  metal,	  these	  come	  from	  the	  Fermi	  surface.	  But	  not	  in	  a	  black	  hole…	  
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Low-‐Energy	  Excita/ons	  in	  a	  black	  hole	  
Finite	  momentum	  excita/ons	  arise	  in	  a	  more	  exo/c	  way.	  Consider	  dispersion	  rela/ons	  
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rela/vis/c	   non-‐rela/vis/c	   unusual!	  
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Excita/ons	  around	  the	  black	  hole	  have:	  
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This	  is	  known	  as	  	  
local	  cri9cality.	  

Si	  et	  al.	  2001	  



Low-‐Energy	  Excita/ons	  in	  a	  black	  hole	  

AdS3 × S3
+ × S3

− ×R

Lchiral =

�
1 +

log(y2/z2)

y2 − z2

�
χ̄−∂+χ− + . . .

log(y2/z2)

y2 − z2
→

�
log y y → 0
1
y2 y = z → 0

M = R1,d−1 × S1

σDC = σ0 +
Q2

E + P
τ

τ(T ) ∼ T−2∆(k)

τ(T ) ∼ T−2

σ0(T ) ∼ 1/T#

Q = 0

Q �= 0

EF

σDC ∼ T d−2

σDC ∼ e−2EF /T

E ∼ kz

z → ∞

E ∼ k

E ∼ k2

z > 2

5

AdS3 × S3
+ × S3

− ×R

Lchiral =

�
1 +

log(y2/z2)

y2 − z2

�
χ̄−∂+χ− + . . .

log(y2/z2)

y2 − z2
→

�
log y y → 0
1
y2 y = z → 0

M = R1,d−1 × S1

σDC = σ0 +
Q2

E + P
τ

τ(T ) ∼ T−2∆(k)

τ(T ) ∼ T−2

σ0(T ) ∼ 1/T#

Q = 0

Q �= 0

EF

σDC ∼ T d−2

σDC ∼ e−2EF /T

E ∼ kz

z → ∞

E ∼ k

E ∼ k2

z > 2

5
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Something	  Fun	  About	  Black	  Holes	  

In	  metals,	  a	  charged	  impurity	  gives	  Friedel	  Oscilla9ons	  



Friedel	  Oscilla/ons	  for	  Black	  Holes	  
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distance	  from	  	  
impurity	  

Blake,	  Donos,	  Tong,	  2014	  

See	  also	  Horowitz,	  Iqbal,	  	  
Santos,	  Way	  2014	  
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Pair	  Crea/on	  at	  Weak	  Coupling	  

c.f.	  graphene	  
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Pair	  Crea/on	  at	  Weak	  Coupling	  
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“Pair	  Crea/on”	  at	  Strong	  Coupling	  
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Intui/on	  behind	  this	  remains	  unclear.	  
	  

Is	  there	  also	  a	  lesson	  here	  for	  strongly	  coupled	  electron	  systems?	  	  
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Summary	  of	  Black	  Hole	  Conduc/vity	  

•  Low	  energy	  modes	  at	  finite	  momentum	  
•  But	  not	  a	  Fermi	  surface	  

•  Low	  energy	  pair	  crea/on	  even	  at	  finite	  Q	  	  

Two	  Processes	  



Are	  there	  any	  similari/es?	  



Strange	  Proper/es	  of	  Strange	  Metals	  

Mackenzie	  et	  al	  1997	  

Van	  der	  Marel	  et	  al	  2001	  

DC	  Conduc/vity	  

Hall	  Conduc/vity	  

AC	  Conduc/vity	  
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τ−1
eff ∼ T

τ−1 ∼ kBT

�

σ0 �
�

kBT

σDC ∼ 1/T

σ(ω) ∼ 1/(iω)2/3

21



Lesson	  1:	  Hall	  Angle	  
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Drude	  model	  	  
(or	  Fermi	  liquid	  theory)	  

Experimental	  data	  	  
on	  strange	  metals	  	  

Suggests	  two	  /me	  scales	  at	  play?	   Anderson,	  1991	  
Coleman,	  Schofield,	  Tsvelik,	  1996	  

“Over	  broad	  regions	  of	  doping,	  the	  two	  kinds	  of	  relaxa9on	  rates,	  the	  one	  for	  	  
the	  conduc9vity	  and	  the	  one	  for	  the	  Hall	  rota9on,	  seem	  to	  add	  as	  inverses:	  
	  conduc9vity	  is	  propor9onal	  to	  1/T	  +	  1/T2.	  That	  is,	  it	  obeys	  an	  an9-‐MaGhiessen	  law”	  

P.W.	  Anderson	  



Lesson	  1:	  Hall	  Angle	  
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Drude	  model	  	  
(or	  Fermi	  liquid	  theory)	  

Experimental	  data	  	  
on	  strange	  metals	  	  

Black	  Holes	  
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Blake	  and	  Donos,	  2014	  
If	  this	  term	  dominates	  DC	  transport,	  	  
we	  get	  two	  /me	  scales	  



Lesson	  2:	  (In)coherent	  Transport	  
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There	  is	  another	  interpreta/on	  of	  these	  two	  terms*	  

*actually	  it’s	  slightly	  more	  complicated	   Davison	  and	  Gouteraux	  (last	  week)	  
Blake	  (today)	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Coherent	  Transport	  
	  
due	  to	  (almost)	  conserved	  	  momentum	  

Incoherent	  Transport	  
	  
due	  to	  charge	  diffusion	  
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Hartnoll,	  2014	  

which	  of	  these	  processes	  describes	  actual	  materials?	  



Lesson	  2:	  Incoherent	  Transport	  

Hartnoll	  2014	  (see	  also	  Bruin	  et	  al;	  Sachdev,	  Zaanen)	  

• LSCO, Takenaka et al. ‘03

• BSCCO, Hwang et al. ‘07

• YBCO, Boris et al. ‘04

1

τ
∼ kBT

�

LSCO	  
Takenaka	  et	  al	  	  

τ−1 ∼ T

τ−1
eff ∼ T

τ−1 ∼ kBT

�

21

Conjecture:	  there	  is	  a	  quantum	  bound	  for	  diffusion	  	  

Suggests	  incoherent	  transport	  
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τ−1 ∼ kBT

�
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�

kBT

21

Does	  this	  explain	  linear	  rela/vity?	  Evidence	  far	  from	  conclusive	  



Summary	  

•  We’re	  understanding	  beQer	  the	  conduc/vity	  proper/es	  of	  black	  holes	  

•  Are	  there	  lessons	  here	  for	  strongly	  interac/ng	  electrons?	  



The	  End	  (for	  real	  now)	  


