Gravitational Waves from Binary Black Hole Mergers Inside of Stars

Joseph M. Fedrow
C.D. Ott, U. Sperhake, R. Haas, J. Blackman, C. Reisswig, and A. De Felice

August 3, 2017
EINSTEIN IN VIETNAM

[Image of two postage stamps featuring Einstein and E=mc²]
LIGO, NSF, Illustration: A. Simonnet (SSU)
INTRODUCTION
GRAVITATIONAL WAVES
NUMERICAL RELATIVITY
BINARIES
BINARY BLACK HOLES IN STARS
SUMMARY

Joseph M. Fedrow
GWs from BBH Mergers Inside of Stars
August 3, 2017
DB: admbase-lapse.xyz.file_0.h5
Cycle: 38656 Time: 113.25
INTRODUCTION

GRAVITATIONAL WAVES

NUMERICAL RELATIVITY

BINARY BLACK HOLES

IN STARS

SUMMARY

Joseph M. Fedrow

GWs from BBH Mergers Inside of Stars

August 3, 2017
INTRODUCTION

GRAVITATIONAL WAVES

NUMERICAL RELATIVITY

BINARY BLACK HOLES

IN STARS

SUMMARY

Joseph M. Fedrow

GWs from BBH Mergers Inside of Stars
The era of gravitational wave astronomy has truly just started!
GW150914

Why was this observation so important?

- It is our first direct observation of gravitational waves.
- It is our first direct detection of black holes in the Universe.
- It has opened a new observational window on the Universe.

This was the first time humans observed the Universe through the lens of gravitational waves.
Gravitational Waves

Gravitational information takes time to propagate

Einstein Equation

\[G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu} \]

Beautiful, but non-linear beast

with line element

\[ds^2 = g_{\mu\nu} dx^\mu dx^\nu \]
CONSTRUCTING THE WAVES

Gravitational waves as small perturbations to flat space

\[ds^2 = (\eta_{\mu\nu} + h_{\mu\nu})dx^\mu dx^\nu \]

Applying this linear approximation to the Einstein Equation produces a wave equation for the metric perturbations \(h_{\mu\nu} \)

\[\left(-\frac{\partial^2}{\partial t^2} + \nabla^2 \right) h_{\mu\nu} = 0 \]

\[\Box h_{\mu\nu} = 0 \]

with plane wave solutions

\[h_{\mu\nu} = A_{\mu\nu} e^{ik_\nu x^\alpha} \]
CHOOSING THE GAUGE

\[\Box h_{\mu\nu} = 0 \]

\[h_{\mu\nu} = A_{\mu\nu} e^{i k_\alpha x^\alpha} \]

This simple form is a result of the Lorentz gauge.

The transverse-traceless gauge removes the remaining degrees of freedom.

All that remains are 2 independent components for the amplitude \(A_{\mu\nu} \)

\[A_{\mu\nu}^{TT} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & A_{xx} & A_{xy} & 0 \\ 0 & A_{xy} & -A_{xx} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \]
Symmetries Become Observables

\[A_{\mu\nu}^{TT} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & A_{xx} & A_{xy} & 0 \\ 0 & A_{xy} & -A_{xx} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \]

Gravitational waves give rise to geodesic motion

\textit{plus} and \textit{cross} polarization states
Detecting Gravitational Waves
Detecting Gravitational Waves

Hanford, Washington

Livingston, Louisiana
Detecting Gravitational Waves

Advanced LIGO

Strain noise amplitude $/Hz^{-1/2}$ vs Frequency $/Hz$

- Early (2015–16, 40–80 Mpc)
- Mid (2016–17, 80–120 Mpc)
- Late (2017–18, 120–170 Mpc)
- Design (2019, 200 Mpc)
- BNS-optimized (215 Mpc)
Detection: September 14, 2015!
The detection relied upon matched filtering of gravitational waveforms from numerical relativity simulations.
NUMERICAL RELATIVITY

\[G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu} \]

- 12 first-order hyperbolic *evolution* equations.
- 4 elliptic *constraint* equations.
- 4 coordinate gauge degrees of freedom: \(\alpha, \beta_i \).
The ADM equations

\[\partial_t \gamma_{ij} = -2\alpha K_{ij} + \beta_{j;i} + \beta_{i,j} \]
\[\partial_t K_{ij} = -\alpha_{;ij} + \alpha \left[R_{ij} K K_{ij} - 2K_{im} K^m_{\ j} \right. \]
\[\left. - 8\pi \left(S_{ij} - \frac{1}{2} \gamma_{ij} S \right) - 4\pi \rho_{ADM} \gamma_{ij} \right] \]
\[+ \beta^m K_{ij;m} + K_{im} \beta^m_{\ ;j} + K_{mj} \beta^m_{\ ;i} \]

\[S^i = -\gamma^{i\mu} n^\nu T_{\mu\nu} \]
\[\rho_{ADM} = n_\mu n_\nu T^{\mu\nu} \]
\[S_{ij} = \gamma_{i\mu} \gamma_{j\nu} T^{\mu\nu} \]

Constraint Equations:

Hamiltonian
\[R + K^2 - K_{ij} K^{ij} - 16\pi \rho_{ADM} = 0 \]

Momentum
\[K_{ij;\ j} - \gamma^{ij} K_{;i} - 8\pi S^i = 0 \]
ALTERNATIVE FORMULATIONS OF ADM

- ADM is ill posed and boundary conditions unclear. (Kidder+01, Nagy+04)
 (-> ADM is called “weakly hyperbolic” in PDE theory).
- Want evolution system that is symmetric/strongly hyperbolic
 (well posed + clear boundary conditions)

BSSN Formulation
Nakamura+87, Shibata & Nakamura 95, Baumgarte & Shapiro 99
- Conformal-traceless reformulation of ADM.
- Additional evolution equations, conditionally strongly hyperbolic.
- Sensitive to gauge choice.
- Most widely used evolution system today.

Generalized Harmonic Formulation
- Choice of coordinates that reduces Einstein equations to
 a set of inhomogeneous wave equations. Symmetric hyperbolic.
- Used primarily by Caltech/Cornell SXS code SpEC.
EINSTEINTOOLKIT.ORG!

- A collection of open-source software components for simulating extreme general-relativistic systems.
- Roughly 110 users worldwide, spread across over 50 groups, with about 10 active maintainers.
- Built upon the Cactus framework and you choose which 'thorns' you need to achieve the science goals you are after.

arXiv:1305.5299
Joseph M. Fedrow

arXiv:1111.3344
GWs from BBH Mergers Inside of Stars
Once you have the Einstein Toolkit configured for your simulation, you can relax on the beach while the supercomputers do all the hard work!
The MRI2 (Zwicky) Cluster at Caltech

Specially configured for simulating black holes and other extreme spacetimes

- 2244 Intel X5650 compute cores plus 320 Intel E5-2670 cores
- Uses the Torque batch system for processing jobs
Stampede at University of Texas

Joseph M. Fedrow
Stampede at University of Texas
Stampede at University of Texas

- ~10 Petaflops (~10 quadrillion calculations per second)
- 6400 Dell C8220 compute nodes
- Each node has two Intel E5 8-core processors
- Uses the SLURM batch system for processing jobs

Joseph M. Fedrow
Detection: September 14, 2015!
Introduction

Gravitational Waves

Numerical Relativity

Binary Black Holes

In Stars

Summary

Joseph M. Fedrow

GWs from BBH Mergers Inside of Stars
GW150914 EM COUNTERPART?

Loeb arXiv:1602.04735
Electromagnetic Counterparts to Black Hole Mergers Detected by LIGO

What was the progenitor system?

Joseph M. Fedrow
Binary Black Hole Simulations with Gas

Motivation

Investigate the feasibility of Loeb arXiv:1602.04735: Electromagnetic Counterparts to Black Hole Mergers Detected by LIGO

- Set up a BBH simulation in vacuum
- Extract the waveform
- Re-run the simulation with stellar environment level gas
- Extract the new waveform
- Compare the two

What effect, if any, would the presence of accreting matter have on the GW strain we measure?
IN VACUUM

DB: admbase-lapse.xyz.file_0.h5
Cycle: 17152 Time:50.25

Pseudocolor:
Var: ADMBASE-olp
-0.9974
-0.7520
-0.5067
-0.2613
0.01595
Max: 0.9974
Min: 0.01595

X

Y

Z

Joseph M. Fedrow

GWs from BBH Mergers Inside of Stars

August 3, 2017
Orbital Trajectory
COORDINATE SEPARATION

Time [s]

Coordinate Separation [10^8 cm]

Vacuum
Gravitational Wave Strain:

Scaled to $60 \, M_\odot$
Gravitational Wave Frequency:

- **60M⊙ BBH**
- **Merger at 0.49 s**

Instantaneous Frequency [Hz]:
- 26 Hz
- 294 Hz

Time [s]:
- 0.0
- 0.1
- 0.2
- 0.3
- 0.4
- 0.5

Summary
Binary Black Holes in Stars:

- Add gas to simulation using GR hydrodynamics
 - Use stellar densities common to massive stars
 - Invoke a density tapering function
 - Resolve the Hamiltonian constraint
 - Check numerical convergence for each case

- Compare the vacuum and gas cases looking for differences
 - Calculate the mismatch between waveforms
 - Check if these differences would be detectable by current and upcoming GW detectors!
COORDINATE SEPARATION WITHIN THE STAR:

- Vacuum
- $\rho = 10^4 \text{ g cm}^{-3}$
- $\rho = 10^5 \text{ g cm}^{-3}$
- $\rho = 10^6 \text{ g cm}^{-3}$
- $\rho = 10^7 \text{ g cm}^{-3}$

Coordinate Separation [108 cm] vs. Time [s]
RESULTS:
CALCULATING THE MISMATCH

The match, \mathcal{M}, is a weighted scalar product in frequency space

$$\langle h_1 | h_2 \rangle = 4\text{Re} \int_0^\infty df \frac{\tilde{h}_1(f)\tilde{h}_2^*(f)}{S_h(f)}$$

where $\tilde{h}_1(f)$ is the power spectral density of $h_1(t)$, and $S_h(f)$ is the noise power spectral density of a given detector.

The overlap is a normalized scalar product of the match

$$\mathcal{O}[h_1, h_2] = \frac{\langle h_1 | h_2 \rangle}{\sqrt{\langle h_1 | h_1 \rangle \langle h_2 | h_2 \rangle}}$$

The mismatch is defined as one minus the match

$$\mathcal{M}_{\text{mis}} = 1 - \mathcal{M}$$
RESULTS:

Scaled to 60 M_{\odot}

Mismatch = 0.0073

Vacuum

\[\rho = 1.72 \times 10^4 \text{ g cm}^{-3} \]

Joseph M. Fedrow

GWs from BBH Mergers Inside of Stars

August 3, 2017 42 / 47
RESULTS:

Scaled to 60 M_\odot

Mismatch = 0.0960

Vacuum $\rho = 1.72 \times 10^5$ g cm$^{-3}$
RESULTS:

Scaled to 60 M_\odot

Mismatch = 0.3085

$h_{+}^{22}[10^{-21}]$

Vacuum

$\rho = 1.72 \times 10^6 \text{ g cm}^{-3}$

Time [s]
RESULTS:

Scaled to 60 M_\odot

Mismatch = 0.4234

Vacuum

$\rho = 1.72 \times 10^7$ g cm$^{-3}$
CONCLUSION:

It would appear that the presence of stellar density gas around coalescing black holes can have a measurable effect on the gravitational waveform!

The dynamical fragmentation stellar progenitor model for GW150914 looks highly unlikely.

Even the most ideal configurations lead to observable differences.
THANK YOU!
cảm ơn bạn!