How does the cosmic web impact assembly bias?

Corentin Cadiou, M. Musso, C. Pichon, S. Todis, K. Kraljic, Y. Dubois

EFFECT OF LARGE SCALE STRUCTURES

Galaxies become redder, more massive, less star forming when flowing from voids to filaments to nodes (e.g. GAMA) survey [2], COSMOS survey [3] and simulations [4]). The biasing effect is an effect beyond mass and local density.

EXCURSION SET THEORY

Let δ_m be the linear matter density (Gaussian Random Field) and

$$\delta(R) \equiv \int_{\mathbf{x}} W(|\mathbf{x}|) \delta_m(\mathbf{x}), \qquad (1)$$

$$\sigma^2(R) \equiv \text{Var}(\delta(R)).$$
 (2)

a given redshift z, a point belongs to a halo of size R if R is the maximum smoothing scale at which the smoothed linear density contrast $\delta(R)$ exceeds the critical density contrast $\delta_c/D(z)$ [5].

In the δ - σ space, we look for the first crossing of $\delta(R) =$ $\delta_c/D(z)$. $\sigma(R)$ is a proxy for mass (larger is less massive), $\delta(R)$ is a proxy for collapse time (larger is earlier).

Inferring Halo Properties

Given z_1 and z_2 , halos will collapse at $\delta_c/D(z_1)$ and $\delta_c/D(z_2)$. We can compute $\langle \sigma(z_i)|\delta=\delta_c/D(z_i)\rangle$ (or similarly expected masses M_1, M_2).

As $z_2 \to z_1$, we find the ac- If $M_2 = M_1/2$, we find the half mass time $z_{1/2}$ s.t. cretion rate

$$\frac{M_2 - M_1}{z_2 - z_1} \to \frac{dM}{dz}$$
. (3) $\delta(\sigma_{1/2}) = \frac{\delta_c}{D(z_{1/2})}$. (4)

Cosmic Web

The center of a filament is a saddle point. compress the information by fixing only the location, height and curvature of the saddle point.

The landscape becomes a constrained GRF.

Anisotropy Vars.

Let ϕ be the reduced potential such that

$$\Delta\phi \propto 4\pi G\delta,$$
 (5)

and $q_{ij} \equiv \nabla_i \nabla_j \phi$. The traceless tidal tensor is

$$\bar{q}_{ij} \equiv q_{ij} - \frac{1}{3} \text{Tr}(q_{ij}) \delta_{ij}.$$
(6)

The anisotropy is encoded by the distance r to the saddle and the reduced anisotropy variable

$$Q \equiv \frac{r_i q_{ij} r_j}{r^2}.$$
 (7)

We note $S = \{r, Q\}$.

Anisotropic E.S.

Large scale structures biases quantities

$$\delta(M) \leftarrow \delta(M, \mathcal{S})^a$$

$$\sigma(M) \leftarrow \sigma(M, \mathcal{S})$$

$$\dot{M}(M) \leftarrow \dot{M}(M,\mathcal{S})$$

$$z_{1/2}(M) \leftarrow z_{1/2}(M, \mathcal{S})$$

A and B are halos in filament, C in void.

^aKaiser bias [6]

ANALYTICAL RESULTS

Typical mass at fixed z, yel- Accretion rate at fixed final Formation time at fixed final low is more massive.

mass, yellow is higher.

mass, yellow is more recent.

Conclusions & Perspectives

- 1. Halos are more massive in filaments than in voids,
- 2. at fixed final mass, they are accreting more and formed more recently in filaments than in voids,
- 3. we find an effect beyond mass and density encoded by r, Q,
- 4. distinct gradients are found for distinct quantities,
- 5. need AGN feedback to recover results for galaxies, in agreement with [7].

In the future we will take into account the elliptical collapse to include the effect of large-scale induced shear following e.g. |8|.

Our results can be found in Musso, Cadiou, et al. [1].

BIBLIOGRAPHY

- ¹M. Musso, C. Cadiou, et al., "How does the cosmic web impact assembly bias?", (2018).
- ²K. Kraljic, S. Arnouts, et al., "Galaxy evolution in the metric of the cosmic web", (2018).
- ³C Laigle, C Pichon, et al., "COS-MOS2015 photometric redshifts probe the impact of filaments on galaxy properties", (2017).
- ⁴K. Kraljic, C. Pichon, et al., "Galaxies" flowing in the oriented saddle frame of the cosmic web", (2018).
- ⁵V. Desjacques, D. Jeong, et al., "Large-Scale Galaxy Bias", (2016).
- ⁶N. Kaiser, "Clustering in real space and in redshift space", (1987).
- Y. Dubois, S. Peirani, et al., "The HORIZON-AGN simulation: morphological diversity of galaxies promoted by AGN feedback", (2016).
- ⁸E. Castorina, A. Paranjape, et al., "Excursion set peaks: the role of shear", en, (2016).