Linear boundary value problems described by Drazin invertible operators

KHALDI Nassima
kh nassima@hotmail.fr

MESSIRDI Bekkai
messirdi.bekkai@univ-oran.dz Laboratory of Fundamental and Applied Mathematics of Oran "LMFAO"

University of science and Technology of Oran , Mohamed BOUDIAF

1.Initial boundary operator corresponding to Drazin invertible operators

Let X, and E be a complex Banach spaces. Denoted $\mathcal{C}(X)$ the set of all closed linear operators from X into X. The identity operator on a Banach space E is denoted by I_{E}.
We consider the following boundary value problem for unknown $x \in \mathcal{D}(A)$ by the system

$$
(\mathcal{P})\left\{\begin{array}{l}
(A-\lambda I) x=f \tag{1}\\
\Gamma x=\varphi
\end{array}\right.
$$

where $f \in X, \varphi \in E$ and $\lambda \in \mathbb{C}$.
1.1. Definition. An operator $\Gamma: X \rightarrow E$ is said to be an initial boundary operator for a Drazin invertible operator (resp. right Drazin invertible operator) T corresponding to its Drazin inverse T^{D} (resp. to its right Drazin inverse $S \in \mathcal{B}(X))$ if,
(i) $\Gamma T^{D}=0$ on $\mathcal{D}\left(T^{D}\right)($ resp. $\Gamma S=0$ on $X)$;
(ii) There exists an operator $\Pi: E \rightarrow X$ such that $\Gamma \Pi=I_{E}$ and

$$
\begin{aligned}
& \mathcal{R}(\Pi)=\mathcal{N}\left(T^{m}\right), \text { with } m=a(T)=d(T)\left(\text { resp. } \mathcal{R}(\Pi)=\mathcal{N}\left(T^{m+1}\right),\right. \text { with } \\
& d(T)=m)
\end{aligned}
$$

1.2. Definition. An operator $\Gamma: X \rightarrow E$ is said to be an initial boundary operator for a left Drazin invertible operator T corresponding to its left Drazin inverse $S \in \mathcal{B}(X)$ if
(i) $\Gamma T=0$ on $\mathcal{D}(T)$;
(ii) There exists an operator $\Pi: E \rightarrow X$ such that $\Gamma \Pi=I_{E}$ and
$\mathcal{R}(\Pi)=\mathcal{N}(S) \cap \mathcal{R}\left(T^{m}\right)$, with $m=a(T)$.

2. Main results

The following results are given to establish the existence and uniqueness of the solution for the boundary value problem (\mathcal{P}).
It well known that there is a useful explicit formula for the Drazin inverse A^{D} of a closed operator A in terms of the spectral projection P of A at

$$
\begin{equation*}
A^{D}=(A+\xi P)^{-1}\left(I_{X}-P\right) \quad \text { for any } \xi \neq 0 \tag{2}
\end{equation*}
$$

We also observe that $P=I_{X}-A A^{D}$. If $A=A_{1} \oplus A_{2}$ is the decomposition of a Drazin invertible operator $A \in \mathcal{C}(X)$ described in the preceding section, then

$$
A^{D}=A_{1}^{-1} \oplus 0
$$

So we can assert that there exists $\epsilon>0$ such that $\mu I_{X}-A^{D}$ is invertible operator for $|\mu|<\epsilon$. Now, in the case where A is Drazin invertible, the problem (\mathcal{P}) is well-posed and its unique solution is explicitly obtained.
2.1. Theorem. Let $A \in \mathcal{C}(X)$ be Drazin invertible operator with Drazin inverse $A^{D} \in \mathcal{B}(X)$. Then there exists $\epsilon>0$ such that $\left(I_{X}-\lambda A^{D}\right)$ is invertible for $\left|\lambda^{-1}\right|<\epsilon$ and the boundary value problem (\mathcal{P}) has a unique solution given by

$$
x_{\lambda}^{f, \varphi}=A^{D}\left(I_{X}-\lambda A^{D}\right)^{-1} f+\left(I_{X}-\lambda A^{D}\right)^{-1} \Pi \varphi
$$

for every $f \in \mathcal{R}\left(A^{m}\right)$, with $a(A)=d(A)=m$.

2.2. Theorems

1. If A be left Drazin inverse of the operator $T \in \mathcal{C}(X)$ with $a(T)=m<\infty$ and $I_{X}-\lambda T$ is invertible where $\lambda \neq 0$, then the boundary value problem (\mathcal{P}) has unique solution given by:

$$
x_{\lambda}^{f, \varphi}=T\left(I_{X}-\lambda T\right)^{-1} f+\left(I_{X}-\lambda T\right)^{-1} \Pi \varphi
$$

for $f \in \mathcal{R}\left(T^{m}\right)$.
2. If $A \in \mathcal{C}(X)$ is right Drazin invertible with right Drazin inverse R such that $d(A)=m<\infty$ and $\left(I_{X}-\lambda R\right)$ is invertible where $\lambda \neq 0$, then the boundary value problem (\mathcal{P}) has unique solution:

$$
x_{\lambda}^{f, \varphi}=R\left(I_{X}-\lambda R\right)^{-1} f+\left(I_{X}-\lambda R\right)^{-1} \Pi \varphi
$$

for $f \in \mathcal{R}\left(A^{m}\right)$.

3. Example

We consider second order Cauchy problem

$$
\left\{\begin{array}{l}
\frac{d^{2} u(x)}{d x^{2}}=\lambda u(x)+f(x) \tag{3}\\
u(0)=u_{0}
\end{array}\right.
$$

where $\lambda \in \mathbb{C} . U C B(\Omega)$ denote the family of all bounded, uniformly continuous complex valued functions on an interval Ω. Let $U C B^{k}(\Omega)$ denote the set of all k times differentiable functions in $U C B(\Omega)$ whose derivatives belongs to $U C B(\Omega)$. Let $X=U C B(\mathbb{R})$ equipped with the uniform norm $\|f\|=\sup _{x \in \mathbb{R}}|f(x)|$. We consider the operator $A=\frac{d^{2}}{d x^{2}}$ on X with the domain

$$
\mathcal{D}(A)=U C B^{2}(\mathbb{R})
$$

The null space $\mathcal{N}(A)$ of the operator A is the set of all constant functions on \mathbb{R} (any such function belongs to $U C B(\mathbb{R})$).
In [2], P.L. Butzer and J.J.Koliha showed that $A=\frac{d^{2}}{d x^{2}}$ is Drazin invertible with $a(A)=d(A)=1$, and it's Drazin inverse A^{D} is given by :

$$
A^{D} f(x)=\left(I_{X}-P\right) h(x)-(Q h)(x), \text { for } f \in X
$$

where

$$
\begin{gathered}
P f=\lim _{\zeta \rightarrow \infty} \frac{1}{2 \xi} \int_{-\xi}^{\xi} f(t) d t, \text { for } \xi>0 \\
h(x)=\int_{0}^{x} \int_{0}^{s}(f(t)-P f) d t d s
\end{gathered}
$$

and

$$
Q h=\lim _{|x| \rightarrow \infty} \frac{h(x)}{x}
$$

whenever the (finite) limit exists for $h: \mathbb{R} \rightarrow \mathbb{C}$. See [2] for more details.
Let $E=\mathbb{R}$, we define the initial boundary operator Γ by $\Gamma u(x)=u_{0}$ and the maps Π by $\left(\Pi u_{0}\right)(x)=u_{0}$. Then $\Gamma \Pi=1, \Gamma A^{D} f(x)=0$ on X and $\mathcal{R}(\Pi)=\mathcal{N}(A)$. Now, due to Theorem 1, we have,
Theorem. There exists $\epsilon>0$ such that $\left(I_{X}-\lambda A^{D}\right)$ is invertible for $\left|\lambda^{-1}\right|<\epsilon$ and the boundary value problem (3) has unique solution given by

$$
u(x)=\left(I_{X}-\lambda A^{D}\right)^{-1}\left(A^{D} f+\Pi u_{0}\right)(x)
$$

References

J. Behrndt and M. Langer, Boundary value problems for elliptic partial differential operators on bounded domains, J. Funct. Anal. 243 (2007), 536-565.
a P.L. Butzer, J.J. Koliha, The a-Drazin inverse and ergodic behaviour of semigroups and cosine operator functions, J. Operator theory 62; 2(2009), 297-326.
N. Khaldi, M. Benharrat, B. Messirdi, On the Spectral Boundary Value Problems and Boundary Approximate Controllability of Linear Systems. Rend. Circ. Mat. Palermo, 63 (2014) 141-153.
J.J. Koliha, T.D. Tran, The Drazin inverse for closed linear operators, preprint, 1998.

- J.J. Koliha, Trung Dinh Tran, The Drazin inverse for closed linear operators and the asymptotic convergence of C-semigroups, J. Operator theory 46(2001), 323-336.
-M.Z. Nashed, Y. Zhao, The Drazin inverse for singular evolution equations and paratial differential operators, World Sci. Ser. Appl. Anal. 1(1992), $441-456$.

