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1. Introduction

As we look back in time we see that to de-
scribe the evolution of the Universe it is not
enough to follow the equations of General Rela-
tivity, as at some point quantum e�ects appear
in the picture. One of the fundamental obstacles
to overcome in merging relativistic and quan-
tum theories is the problem of time [2-5]. In
short, the time-reparametrization invariance in
relativistic theories con�icts with the absolute
status of Newtonian time we use in quantum
theories.
The question is whether one can intro-
duce a relativistic time-reparametrization
to classical and quantum mechanics?

5. Conclusions

In this work, we have proposed a reformulation
of classical and quantum mechanics in such a
way as to remove the absolute time from its for-
malism and replace it with an arbitrarily chosen
internal degree of freedom, the internal clock [1].

• In the case of classical mechanics we �nd
an entirely consistent description of inter-
nal clock transformations.

• The choice of di�erent internal clocks does
not a�ect the Schrödinger equation.

• In purely quantum systems we �nd that
the descriptions in di�erent clocks are in-
equivalent. We call it the clock e�ect.

• In systems composed of classical and quan-
tum degrees of freedom, the choice of dif-
ferent internal clock is equivalent.

• For the early quantum universe, there may
be a fundamental obstacle (the inconsis-
tency of di�erent choices of internal clocks)
which will prohibit us from inferring what
happened near the initial singularity.

• When the universe is well approximated
by classical picture all the discrepancies
related to the clock e�ect converge to the
unambiguous description.
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2. Internal clocks

Figure 1: Di�erent choice of time-slicing corresponds to di�erent choice of internal clock.

The phase space formalism of general relativ-
ity involves a Hamiltonian constraint C which
is constrained to vanish. The Hamiltonian con-
straint plays two roles in this formalism: (i) gen-
erating the dynamics and (ii) constraining the
space of physically admissible states,

d

dτ
O(qi, p

i) = {O(qi, p
i), C(qi, p

i)},

C(qi, p
i) = 0.

(1)

The Hamiltonian constraint formalism can be

brought to the ordinary canonical formalism
upon identifying the constraint surface C= 0
with a contact manifold made of a lower-
dimensional phase space and a time manifold.
This procedure is called the reduced phase space
approach. Due to time-reparametrization invari-
ance, the choice of time parameter is arbitrary
and corresponds to the time-slicing of the man-
ifold. The degree of freedom with respect
to which we describe the evolution of the
system is called an internal clock.

3. Change of internal clocks in classical theories

Recalling the basic framework of classical me-
chanics, a phase space (qi, p

i) is equipped with a
symplectic form ω = dqi∧dpi and a Hamiltonian
H(qi, p

i) which generates dynamics in t. The
natural symmetry of a such system is the canoni-
cal symmetry allowing the change of phase-space
variables

qi 7→ q̃i(qj , p
j)

pi 7→ p̃i(qj , p
j)

in such a way, that the symplectic form stays the
same

ω = dqi ∧ dpi = dq̃i ∧ dp̃i = ω̃

In order to implement the time-
reparametrization in classical mechanics one has
to realize that the symplectic form description
corresponds to the system after the choice of
internal clock t (after phase space reduction). If
we replace the symplectic form with the more
general contact form ωC = ω − dt ∧ dH(qj , p

j)
[6], the canonical symmetry is lifted to
the symmetry (ωC = ω̃C) which includes
choices of the internal clock,

qi 7→ q̃i(qj , p
j , t),

pi 7→ p̃i(qj , p
j , t),

t 7→ t̃(qj , p
j , t),

4. Change of internal clocks in quantum mechanics
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Figure 2: Probability distribution Pψ = |〈q|ψ〉|2 of position eigenvalues for a gaussian state in the old clock
t (on the left) and in the new clock t̃ = t+ qp (on the right). On the right: the probability for eigenvalues is
marked with dots. The spectrum is discrete.

First we set the internal clock transformations
in such a way that the non-dynamical operators
have the same form in any clock. Now we can
see how the dynamical information about quan-
tum states transforms when the internal clock
is changed. Investigating speci�c examples (see
Figure 2) suggests that not only the shape of

the wavefunctions change in di�erent quantum
clocks, but also the spectrum of the dynamical
operators (like position in non-trivially evolving
systems) can change its character (from continu-
ous to discrete). The description of quantum
mechanical systems in di�erent quantum
clocks are not equivalent.


