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In the burgeoning era of multimessenger astronomy, incorporating data from different telescopes could dramatically improve classification of events. A prime example of this is
the MeerLICHT a telescope an optical telescope tethered to the radio telescope MeerKAT, resulting in simultaneous optical and radio observations of transients. Alert streams
from telescopes such as Fermib and LSST will also enable rapid coordination for multimessenger observations. Combining these data sources necessitates a new universal
framework for multimessenger machine learning. We outline a method for the automatic classification of radio transients that makes use of multiwavelength data and machine
learning.

ahttp://www.meerlicht.uct.ac.za/
bhttps://fermi.gsfc.nasa.gov/

Data Interpolation and Augmentation
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Wavelet Decomposition

Time series data can be decomposed into a linear combination of basis functions:

f (x) =
∑
k

akφk(x) (1)

Where φk(x) are orthogonal basis functions and ak are the respective coefficients.
This is commonly done in the field of signal processing and can be a powerful tool for
feature extraction as the set of coefficients can be used as the features for a machine
learning algorithm. A critical issue with transient classification is that the transient may
be observed at any point in its light curve and the algorithm must still recognise its class.
Thus we require a decomposition method that is translation invariant but still sensitive to
the intrinsic shape of the curve. A form of decomposition that is approximately scale- and
translation-invariant is known as the stationary wavelet transform

Combining Multiple Data Sources

There are two ways information from other sources can be incorporated:

– Probabilistic Approach: most machine learning classification algorithms are capable
of producing a score that can be interpreted as a probability of an object belonging to a
particular class. To combine this with external information, such as the presence of an
alert in another wavelength, we can calculate the prior probability, P(C), of the object
being in a certain class C, given all prior information. This probability, P(C), would
then be multiplied by the probability given by the classifier to give a final probability of
some object being in class C.

– Extra Features: the second method is to use the information as an extra feature in
the machine learning process. For example, if one has a flux measurement in any other
wavelength, one could add that flux as a feature. The advantage of this approach is
that correlations between the different features are learned automatically by the
machine learning algorithm, potentially resulting in improved classification accuracy.

Results on Representative Training Set
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(a) Confusion Matrix without contextual information
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(b) Confusion matrix with contextual information

Results on Non-representative Training Set
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Results on Training Set with Optical data
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(a) Confusion Matrix without optical feature
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