Integrators

Hydrodynamics

Initial conditions

Methods for cosmological simulations

Alexander Arth

University Observatory Munich

September 6th, 2018

H. Lesch, K. Dolag, Many collaborators

©Wendelstein: M33

Alexander Arth (USM)

Hydrodynamics

Initial conditions

Outline

Problems	Gravity
000	

Hydrodynamics

Initial conditions

Outline

- What we do we want to solve?
- 2 Gravity: Solvers & Co.
- 3 A quick detour: Integrators
- Is gravity enough?
- **5** Simulation types < > Initial conditions.

Problems	Gravity
000	

Hydrodynamics

Initial conditions

Our aim

Alexander Arth (USM)

Problems	Gravity
000	

Hydrodynamics

Initial conditions

Our aim

Alexander Arth (USM)

Integrators

Hydrodynamics

Initial conditions

Our aim

...it's full of stars

©APOD 21.7.2008, Gemini Observatory Not only, but even full of galaxies!

Space Odysee

Milky Way ©A. Arth

Alexander Arth (USM)

Problems	Gravity
000	

Hydrodynamics

Initial conditions

Our aim

Initial conditions

Huge range of time and spatial scales

© Nasa

oblems	Gravity
	•00000000000000000000000000000000000000

Hydrodynamics

Initial conditions

Outline

- 1 What we do we want to solve?
- 2 Gravity: Solvers & Co.
- 3 A quick detour: Integrators
- Is gravity enough?
- **5** Simulation types < > Initial conditions.

 Integrators

Initial conditions

$L_{box}/v_{GravWave} \ll t_{dyn} \Rightarrow$ Newton sufficient

Different methods: Direct Sum, Tree, PM

©K. Dolag

 Integrators

Hydrodynamics

Initial conditions

Gravity

Cold dark matter \rightarrow only gravitative interaction Many dark matter particles \rightarrow use a single particle distribution function $f(\vec{x}, \vec{v}, t)$ Local interactions negligible, use response to the global gravitational potential Φ

 Integrators

Hydrodynamics

Initial conditions

Problems	Gravity
	000000000000000000000000000000000000000

Hydrodynamics

Initial conditions

Basic equations

Use *N* test "particles" to discretize the medium and write down Newton's law $\forall i$ (basically Monte Carlo method):

$$\ddot{\vec{x}}_i = -\nabla_i \Phi\left(\vec{x}_i\right) \& \Phi\left(\vec{x}\right) = -G \sum_{j=1}^N \frac{m_j}{\left(\left(\vec{x} - \vec{x}_j\right)^2\right)}$$

©V. Springel

Problems	Gravity
	000000000000000000000000000000000000000

Hydrodynamics

Initial conditions

Basic equations

Use *N* test "particles" to discretize the medium and write down Newton's law $\forall i$ (basically Monte Carlo method):

$$\ddot{\vec{x}_i} = -\nabla_i \Phi(\vec{x}_i) \& \Phi(\vec{x}) = -G \sum_{j=1}^N \frac{m_j}{\left((\vec{x} - \vec{x}_j)^2 + \epsilon^2 \right)}$$

Introducing softening e

©V. Springel

Problems	Gravity	Integrate
	000000000000000000000000000000000000000	

Initial conditions

Basic equations

Use *N* test "particles" to discretize the medium and write down Newton's law $\forall i$ (basically Monte Carlo method):

$$\ddot{\vec{x}_i} = -\nabla_i \Phi(\vec{x}_i) \& \Phi(\vec{x}) = -G \sum_{j=1}^N \frac{m_j}{\left((\vec{x} - \vec{x}_j)^2 + \epsilon^2 \right)}$$

Introducing softening ϵ

Problem: 3N coupled non-linear 2nd order differential equations very time consuming to solve

Hydrodynamics

Initial conditions

Reasons for softening

- * Consistent with Plummer potential plugged into Lagrangian
- $* \Rightarrow$ Adhere to global rather than local potential

Reasons for softening

- * Consistent with Plummer potential plugged into Lagrangian
- $* \Rightarrow$ Adhere to global rather than local potential
- * Prevent diverging, unphysical force for close particle pairs
- * Prevent large angle scatterings and bound particle pairs
- * Ensure that two-body relaxation time is sufficiently large

Reasons for softening

- * Consistent with Plummer potential plugged into Lagrangian
- $* \Rightarrow$ Adhere to global rather than local potential
- * Prevent diverging, unphysical force for close particle pairs
- * Prevent large angle scatterings and bound particle pairs
- * Ensure that two-body relaxation time is sufficiently large
- * Allow integration with a low-order integrator

Integrators

Initial conditions

Hierarchical structure formation

Small particle mass

Internal structure

Small scale physics

Small objects

Chttp://astronomy.swin.edu.au

Gravity Problems

Initial conditions

Hierarchical structure formation

Small particle mass

Internal structure

Small scale physics

Small objects

Chttp://astronomy.swin.edu.au Large volume

Representative statistics Rare objects Max simulation time \leftrightarrow large density modes

Problems Gravity

Initial conditions

Hierarchical structure formation

Small particle mass

Internal structure

Small scale physics

Small objects

tp://astronomy.swin.edu.au Large volume

Representative statistics Rare objects Max simulation time \leftrightarrow large density modes

Essentially want to produce a large mass range of haloes

Solving Poisson's equation

Introduce a Green's function:

$$\Phi\left(\vec{x}
ight) = \int g\left(\vec{x} - \vec{x}'
ight)
ho\left(\vec{x}
ight) d\vec{x}'$$

which in Fourier space comes down to a simple multiplication

$$\hat{\Phi}\left(\vec{k}\right) = \hat{g}\left(\vec{k}\right) \cdot \hat{
ho}\left(\vec{k}\right)$$

Example for vacuum boundary conditions:

$$g\left(\vec{x}\right) = -\frac{G}{\left|\left(\vec{x}\right)\right|}$$

Solving Poisson's equation

Introduce a Green's function:

$$\Phi\left(\vec{x}
ight) = \int g\left(\vec{x} - \vec{x}'
ight)
ho\left(\vec{x}
ight) d\vec{x}'$$

which in Fourier space comes down to a simple multiplication

$$\hat{\Phi}\left(ec{k}
ight)=\hat{g}\left(ec{k}
ight)\cdot\hat{
ho}\left(ec{k}
ight)$$

Example for vacuum boundary conditions:

$$g(\vec{x}) = -\frac{G}{|(\vec{x})|}$$

Steps to solution:

- * Forward Fourier transformation of density
- * Multiplication with Green's function
- * Backwards Fourier transformation to obtain potential

 Integrators

Hydrodynamics

Initial conditions

First numerical approach: Particle Mesh

Four basic steps:

- (1) Density assignment to cells
- (2) Computation of potential
- (3) Determination of force field
- (4) Assignment of forces to particles

 ntegrators

Hydrodynamics

Initial conditions

First numerical approach: Particle Mesh

Four basic steps:

- (1) Density assignment to cells
- -(2) Computation of potential-
 - (3) Determination of force field
 - (4) Assignment of forces to particles

Potential from Green's function

(1) Density assignment

Put a mesh over the simulation domain, give each particle a shape $S(\vec{x})$ and assign the overlap mass fraction to each cell (cell coordinates x_m and particles x_i). Overlap function: $W(\vec{x}_m - \vec{x}_i) = \int \Pi\left(\frac{\vec{x}' - \vec{x}_m}{h}\right) \cdot S(\vec{x}' - \vec{x}_i) d\vec{x}'$ (convolution) with $\Pi(x) = \begin{cases} 1 & |x| < 0.5 \\ 0 & \text{otherwise} \end{cases}$

(1) Density assignment

Put a mesh over the simulation domain, give each particle a shape $S(\vec{x})$ and assign the overlap mass fraction to each cell (cell coordinates x_m and particles x_i). Overlap function: $W(\vec{x}_m - \vec{x}_i) = \int \Pi\left(\frac{\vec{x}' - \vec{x}_m}{h}\right) \cdot S\left(\vec{x}' - \vec{x}_i\right) d\vec{x}'$ (convolution) with $\Pi(x) = \begin{cases} 1 & |x| < 0.5 \\ 0 & \text{otherwise} \end{cases}$ Then density: $\rho(\vec{x}_m) = \frac{1}{h^3} \sum_{i=1}^N m_i W(\vec{x}_m - \vec{x}_i)$

Hydrodynamics

Initial conditions

Shape functions

NGP

Delta function

1 cell

Hydrodynamics

Initial conditions

Shape functions

Hydrodynamics

Initial conditions

Shape functions

(3,4) Determination of force field & assignment to particles

In general:
$$\vec{f} = -\nabla \Phi$$

Approximate with a discretization scheme, e.g. finite difference

Interpolate with same overlap function to get back to particle

picture:
$$F(\vec{x}_i) = \sum_m W(\vec{x}_m - \vec{x}_i) f_m$$

Sec. 1		
Sec. 1		

Hydrodynamics 0000000000 Initial conditions

PM: Pros and Cons

- * Fast
- * Straight forward
- * Optimized library usable:
 - FFTW

Hydrodynamics

Initial conditions

PM: Pros and Cons

- * Fast
- * Straight forward
- * Optimized library usable: FFTW

 Force resolution limited to mesh → missing adaptivity for large dynamic range
 Force errors anisotropic on the scale of cell size

Modifications: P³M

- Supplement particle mesh with direct summation (details in a moment)
- * Short range (scale of mesh cells)
- * Larger dynamic range
- * Slow with clustered of particles
- * Straight forward to use with additional force term

Modifications: AP³M

- * Additional mesh refinement on clustered regions
- * Avoid clustering slow down
- * Complex because of interaction region
- * Arbitrary to some degree in mesh placement
- * Typically 2 initial fixed mesh layers
- * Used e.g. for zoom simulations

Hydrodynamics

Initial conditions

Direct sum / Tree based force calculation

- * Calculate \vec{F}_{G} between each particle pair i, j
- * Exploit symmetry
- * Scaling still $\mathcal{O}(N^2)$
- \Rightarrow Very expensive for large N

Initial conditions

Direct sum / Tree based force calculation

- * Calculate \vec{F}_{G} between each particle pair i, j
- * Exploit symmetry
- * Scaling still $\mathcal{O}(N^2)$
- \Rightarrow Very expensive for large N
 - Idea: Group distant particles together and consider them a bound blob (multipole expansion)
- \rightarrow Better scaling $\mathcal{O}(N \log N)$

Hydrodynamics

Initial conditions

Direct sum / Tree based force calculation

- * Calculate \vec{F}_{G} between each particle pair i, j
- * Exploit symmetry
- * Scaling still $\mathcal{O}(N^2)$
- \Rightarrow Very expensive for large N
 - Idea: Group distant particles together
 bound blob (multipole expansion)
- \rightarrow Better scaling $\mathcal{O}(N \log N)$

©V. Springel

Hydrodynamics 00000000000000000 Initial conditions

Direct sum / Tree based force calculation

- \Rightarrow Very expensive for large N
 - Idea: Group distant particles together bound blob (multipole expansion)
- \rightarrow Better scaling $\mathcal{O}(N \log N)$

©V. Springel

Alexander Arth (USM)

Initial conditions

Direct sum / Tree based force calculation

Alexander Arth (USM)

Cosmological Simulations

Integrators

Hydrodynamics

Initial conditions

Different Tree types

Integrators

Hydrodynamics

Initial conditions

Multipole expansion of the potential

$$\Phi\left(\vec{x}\right) = -G \sum_{i} \frac{m_{i}}{\left|\vec{x} - \vec{x}_{i}\right|}$$
$$\left|\vec{x} - \vec{x}_{i}\right| = \left|\left(\vec{x} - \vec{s}\right) - \left(\vec{x}_{i} - \vec{s}\right)\right|$$
$$=: \left|\vec{y} - \left(\vec{x}_{i} - \vec{s}\right)\right| \text{ with } \vec{y} \gg \left(\vec{x}_{i} - \vec{s}\right)$$

Dipole vanishes under \sum_{i} \Rightarrow monopole, quadrupole

CV. Springel

Multipole expansion of the potential

 $\Phi\left(\vec{x}\right) = -G\sum_{i} \frac{m_{i}}{|\vec{x} - \vec{x}_{i}|}$ $|\vec{x} - \vec{x}_i| = |(\vec{x} - \vec{s}) - (\vec{x}_i - \vec{s})|$ $=: |\vec{y} - (\vec{x}_i - \vec{s})|$ with $\vec{y} \gg (\vec{x}_i - \vec{s})$ Dipole vanishes under \sum \Rightarrow monopole, guadrupole Barnes & Hut 1986: Use cell if (cell size > (distance particle \leftrightarrow cell center) / opening angle) Improvement: Use s and r

Resulting potential

$$\Rightarrow \Phi\left(\vec{x}\right) = \cdots = -G\left[\frac{M}{|\vec{y}|} + \frac{1}{2}\frac{\vec{y}^{T}\mathbf{Q}\vec{y}}{|\vec{y}|^{5}}\right]$$

- * No intrinsic restrictions for dynamic range since adaptive
- Accuracy depends on the opening criterion and can be adjusted to a desired level
- * Speed depends only weakly on clustering
- Flexible, different optimal tree structures depending on geometry

Initial conditions

Merging approaches yet again: TreePM

 Split particles potential in Fourier space: long-range PM and short-range tree part:

- * Poisson eq.: $\hat{\Phi}\left(\vec{k}\right) = -\frac{4\pi G}{\vec{k}^2 \rho(\vec{k})}$
- * $\hat{\Phi}_{Long}\left(\vec{k}\right) \propto \exp\left(-A \cdot \vec{k}^2\right)$
 - \Rightarrow CIC, FFT, Overlap, FFT, Solver, Interpolate back to

particles

$$\hat{\Phi}_{Short}\left(\vec{k}\right) \propto 1 - \exp\left(-A \cdot \vec{k}^{2}\right)$$
$$\Rightarrow \Phi\left(\vec{x}\right) = -\frac{Gm}{r} \operatorname{erf}\left(\frac{|\vec{x}|}{2\sqrt{A}}\right) \& \text{ Tree}$$

Integrators

Hydrodynamics

Initial conditions

Final GADGET approach

Three stages of solvers

- (1) PM or APM for long range
- (2) Tree for mid range
- (3) Direct sum for short range

Integrators

Initial conditions

Final GADGET approach

Three stages of solvers

- (1) PM or APM for long range
- (2) Tree for mid range
- (3) Direct sum for short range
- \Rightarrow Trade-of between Accuracy and Computation Time
- \Rightarrow Complex to implement

Hydrodynamics

Initial conditions

Structure formation simulation

Cosmological Simulations

Integrators

Initial conditions

Millenium Simulation

Alexander Arth (USM)

Cosmological Simulations

Integrators ●00000 Hydrodynamics

Initial conditions

Outline

- 1 What we do we want to solve?
- 2 Gravity: Solvers & Co.
- 3 A quick detour: Integrators
- Is gravity enough?
- **5** Simulation types < > Initial conditions.

Problems	Gravity

Consider an ODE like $\vec{x} = f(\vec{x})$. Many ways to solve this. For example:

Integrators

00000

* Explicit Euler: $\vec{x}_{n+1} = \vec{x}_n + f(\vec{x}_n) \Delta t$ (simple, straight

forward, 1st order accurate)

Consider an ODE like $\vec{x} = f(\vec{x})$. Many ways to solve this. For example:

Integrators

00000

- * Explicit Euler: $\vec{x}_{n+1} = \vec{x}_n + f(\vec{x}_n) \Delta t$ (simple, straight forward, 1st order accurate)
- * Implicit Euler: $\vec{x}_{n+1} = \vec{x}_n + f(\vec{x}_{n+1}) \Delta t$ (stable, complicated since implicit)

Consider an ODE like $\vec{x} = f(\vec{x})$. Many ways to solve this. For example:

Integrators

00000

- * Explicit Euler: $\vec{x}_{n+1} = \vec{x}_n + f(\vec{x}_n) \Delta t$ (simple, straight forward, 1st order accurate)
- * Implicit Euler: $\vec{x}_{n+1} = \vec{x}_n + f(\vec{x}_{n+1}) \Delta t$ (stable, complicated since implicit)
- * Implicit Mid-Point: $\vec{x}_{n+1} = \vec{x}_n + f\left(\frac{\vec{x}_n + \vec{x}_{n+1}}{2}\right) \Delta t$ (2nd order accurate, symplectic, implicit)

Consider an ODE like $\vec{x} = f(\vec{x})$. Many ways to solve this. For example:

Integrators

00000

* Runge-Kutta (e.g. 4th order accurate):

$$\vec{k}_{1} = f(\vec{x}_{n}, t_{n})$$

$$\vec{k}_{2} = f\left(\vec{x}_{n} + \vec{k}_{1}\Delta t/2, t_{n} + \Delta t/2\right)$$

$$\vec{k}_{3} = f\left(\vec{x}_{n} + \vec{k}_{2}\Delta t/2, t_{n} + \Delta t/2\right)$$

$$\vec{k}_{4} = f\left(\vec{x}_{n} + \vec{k}_{3}\Delta t/2, t_{n} + \Delta t\right)$$

$$\vec{x}_{n+1} = \vec{x}_{n} + \frac{1}{6}\left(\vec{k}_{1} + 2\vec{k}_{2} + 2\vec{k}_{3} + \vec{k}_{4}\right)\Delta t$$

Consider an ODE like $\vec{x} = f(\vec{x})$. Many ways to solve this. For example:

Integrators

00000

* Runge-Kutta (e.g. 4th order accurate):

$$\vec{k}_{1} = f(\vec{x}_{n}, t_{n})$$

$$\vec{k}_{2} = f\left(\vec{x}_{n} + \vec{k}_{1}\Delta t/2, t_{n} + \Delta t/2\right)$$

$$\vec{k}_{3} = f\left(\vec{x}_{n} + \vec{k}_{2}\Delta t/2, t_{n} + \Delta t/2\right)$$

$$\vec{k}_{4} = f\left(\vec{x}_{n} + \vec{k}_{3}\Delta t/2, t_{n} + \Delta t\right)$$

$$\vec{x}_{n+1} = \vec{x}_{n} + \frac{1}{6}\left(\vec{k}_{1} + 2\vec{k}_{2} + 2\vec{k}_{3} + \vec{k}_{4}\right)\Delta t$$

* Leapfrog (2nd order accurate, explicit and symplectic!)

Problems 000 Initial conditions

Leap frog

We typically deal with a 2nd order ODE: $\ddot{x} = f(\vec{x})$

Drift-Kick-Drift $\vec{x}_{n+1/2} = \vec{x}_n + \vec{v}_n \Delta t/2$ $\vec{v}_{n+1} = \vec{v}_n + f(\vec{x}_{n+1/2}) \Delta t$ $\vec{x}_{n+1} = \vec{x}_{n+1/2} + \vec{v}_{n+1} \Delta t/2$ Problems 000 Integrators

Hydrodynamics

Initial conditions

Leap frog

We typically deal with a 2nd c

Drift-Kick-Drift $\vec{x}_{n+1/2} = \vec{x}_n + \vec{v}_n \Delta t/2$ $\vec{v}_{n+1} = \vec{v}_n + f\left(\vec{x}_{n+1/2}\right) \Delta t$ $\vec{x}_{n+1} = \vec{x}_{n+1/2} + \vec{v}_{n+1} \Delta t/2$

Kick-Drift-Kick $\vec{v}_{n+1/2} = \vec{v}_n + f(\vec{x}_n) \Delta t/2$ $\vec{x}_{n+1} = \vec{x}_n + \vec{v}_{n+1/2} \Delta t/2$ $\vec{v}_{n+1} = \vec{v}_{n+1/2} + f(\vec{x}_{n+1}) \Delta t/2$

For deeper investigation see tutorial today!

Initial conditions

Symplectic Integrators

Formally: Preserve Hamiltonian structure of the system by formulating each integration step as a canonical transformation. ⇒ Time evolution operator applied to the Hamiltonian.

Integrators

000000

Symplectic Integrators

Formally: Preserve Hamiltonian structure of the system by formulating each integration step as a canonical transformation. \Rightarrow Time evolution operator applied to the Hamiltonian. Idea operator splitting: $H = H_{kin} + H_{pot} (+H_{num err})$ Then drift and kick operators: $D\left(\Delta t
ight) := \exp\left(\int\limits_{t}^{t+\Delta t} dt \ H_{kin}
ight)$ $K(\Delta t) := \exp\left(\int_{t}^{t+\Delta t} dt H_{pot}\right)$ $\Rightarrow D(\Delta t/2) K(\Delta t) D(\Delta t/2) \text{ and } K(\Delta t/2) D(\Delta t) K(\Delta t/2)$

Integrators

000000

Problems	Gravity

Timesteps

- * Accuracy Vs Computational cost
- Courant-Friedrichs-Levy criterion for hydro codes (see next section):
 - $\Delta t = C_{CFL} \cdot \frac{I_{res}}{c_s}$ with $C_{CFL} \sim 0.1 0.3$

Problems	Gravity

Timesteps

- * Accuracy Vs Computational cost
- Courant-Friedrichs-Levy criterion for hydro codes (see next section):

$$\Delta t = C_{CFL} \cdot \frac{I_{res}}{C_s}$$
 with $C_{CFL} \sim 0.1 - 0.3$

- * Idea: Individual timesteps
 - Accuracy where required
 - Complex: Interactions of active with inactive particles
 - Additional drifts required

Hydrodynamics 000000000000000 Initial conditions

DM only Code Comparison

Integrators

000000

THE SANTA BARBARA CLUSTER COMPARISON PROJECT: A COMPARISON OF COSMOLOGICAL HYDRODYNAMICS SOLUTIONS

C. S. FRENK,¹ S. D. M. WHITE,² P. BODE,³ J. R. BOND,⁴ G. L. BRYAN,⁵ R. CEN,⁶ H. M. P. COUCHMAN,⁷ A. E. EVRARD,⁸ N. GNEDIN,⁹ A. JENKINS,¹ A. M. KHOKHLOV,¹⁰ A. KLYPIN,¹¹ J. F. NAVARRO,¹² M. L. NORMAN,^{13,14} J. P. OSTRIKER,⁶ J. M. OWEN,^{15,16} F. R. PEARCE,¹ U.-L. PEN,¹⁷ M. STEINMETZ,¹⁸ P. A. THOMAS,¹⁹ J. V. VILLUMSEN,² J. W. WADSLEY,⁴ M. S. WARREN,²⁰ G. XU,²¹ AND G. YEPES²² Received 1998 April 9: accepted 1999 Inter 25

Alexander Arth (USM)

Cosmological Simulations

Integrators 00000● Hydrodynamics

Initial conditions

DM only Code Comparison

Cosmological Simulations

DM only Code Comparison

MNRAS 457, 4063–4080 (2016) Advance Access publication 2016 February 10 doi:10.1093/mnras/stw250

nIFTy galaxy cluster simulations – I. Dark matter and non-radiative models

Federico Sembolini,^{1,2,3}* Gustavo Yepes,^{1,2} Frazer R. Pearce,⁴ Alexander Knebe,^{1,2} Scott T. Kay,⁵ Chris Power,⁶ Weiguang Cui,⁶ Alexander M. Beck,^{7,8,9} Stefano Borgani,^{10,11,12} Claudio Dalla Vecchia,^{13,14} Romeel Davé,^{15,16,17} Pascal Jahan Elahi,¹⁸ Sean February,¹⁹ Shuiyao Huang,²⁰ Alex Hobbs,²¹ Neal Katz,²⁰ Erwin Lau,^{22,23} Ian G. McCarthy,²⁴ Guiseppe Murante,¹⁰ Daisuke Nagai,^{22,23,25} Kaylea Nelson,^{23,25} Richard D. A. Newton,^{5,6} Valentin Perret,²⁶ Ewald Puchwein,²⁷ Justin I. Read,²⁸ Alexandro Saro,^{7,29} Joop Schaye,³⁰ Romain Teyssier²⁶ and Robert J. Thacker³¹

Hydrodynamics

Initial conditions

DM only Code Comparison

Integrators

Alexander Arth (USM)

Cosmological Simulations

Integrators 000000 Initial conditions

Outline

- 1 What we do we want to solve?
- 2 Gravity: Solvers & Co.
- 3 A quick detour: Integrators
- Is gravity enough?
- **5** Simulation types < > Initial conditions.

Integrators

Hydrodynamics ••••••••• Initial conditions

Is gravity enough?

Of course not!

Alexander Arth (USM)

Cosmological Simulations

Is gravity enough?

Of course not!

- * Baryonic matter can collide, dissipate energy, clump, ...
- * Idea: Mainly H, He \Rightarrow Hydrodynamics

Integrators

 Initial conditions

Is gravity enough?

Of course not!

- * Baryonic matter can collide, dissipate energy, clump, ...
- * Idea: Mainly H, He \Rightarrow Hydrodynamics
- * Requirement: Mean free path λ_e small enough:
 - $\lambda_e \approx 22.5 \left(\frac{T_e}{10^8 K}\right)^2 \left(\frac{n_e}{10^{-3} cm^{-3}}\right)^{-1} kpc$ (Spitzer 1956)
 - Influence of magnetic fields (see tomorrow)
 - Typical scales: $r_{g,e} = \frac{m_e cv}{eB} \& \frac{|\vec{B}|}{\nabla .\vec{B}}$
 - $kpc \Rightarrow km$ scale

Hydrodynamics

Initial conditions

Reminder: Basics of Hydrodynamics

Euler:
$$\frac{d\vec{v}}{dt} = -\frac{\vec{\nabla}\rho}{\rho} - \vec{\nabla}\Phi$$

Continuity: $\frac{d\rho}{dt} + \rho\vec{\nabla}\cdot\vec{v} = 0$
1st law t-d: $\frac{du}{dt} = -\frac{p}{\rho}\vec{\nabla}\cdot\vec{v} - \frac{\Lambda(u,\rho)}{\rho}$
Eq of state: $p = (\gamma - 1)\rho u$ (adiabatic $\gamma = \frac{5}{2}$)

Initial conditions

Different Methods

Hydrodynamics

Initial conditions

Different Methods

Eulerian

Discretize volume

Grid cells = volume elements

Solve fluxes, capture shocks

natively

Not Galilean invariant

Mixing implicitly at cell level

Low numerical viscosity

Hydrodynamics

Initial conditions

Different Methods

Eulerian

- Discretize volume Grid cells = volume elements Solve fluxes, capture shocks natively Not Galilean invariant Mixing implicitly at cell level
- Low numerical viscosity

©V. Springel

Hydrodynamics

Initial conditions

Different Methods

Eulerian

Discretize volume Grid cells = volume elementsSolve fluxes, capture shocks natively Not Galilean invariant Mixing implicitly at cell level Low numerical viscosity

Lagrangian

Discretize mass Particles = mass elementsInherent adaptivity through particle movement Galilean invariant Mixing suppressed at particle level Artificial viscosity, conductivity

Hydrodynamics

Initial conditions

Eulerian in a nutshell

- * Godunov method: solve fluxes through cell faces
- * 1st order accurate scheme:
 Riemann problem
- * Exact vs approximate Riemann solvers
- * Typically finite volume

scheme

egrators

 Initial conditions

Eulerian in a nutshell

Alexander Arth (USM)

Cosmological Simulations

Initial conditions

SPH in a nutshell

Sample mass instead of volume \rightarrow "Particles" instead of cells

Fundamental quantity: $\rho(\vec{x}) = \sum_{j=1}^{N_{ngb}} m_j W(|\vec{x} - \vec{x}_j|, h)$

Alexander Arth (USM)

Cosmological Simulations

©Price 2012

Problems	Gravity

Hydrodynamics

Initial conditions

Kernel theory

$$\rho\left(\vec{x}\right) = \sum_{j}^{N_{ngb}} m_{j} W\left(\left|\vec{x} - \vec{x}_{j}\right|, h\right)$$

- * Remember Overlap function earlier
- * Positive
- * Monotonically decreasing
- * Radial symmetry
- * Central plateau
- * Normalised
- * Finite

©K. Dolag

Problems	Gravity

Hydrodynamics

Initial conditions

Kernel theory

Alexander Arth (USM)

Cosmological Simulations

Initial conditions

Discretization in general

$$\rho_i(\vec{x}) = \sum_{j}^{N_{ngb}} m_j W(|\vec{x} - \vec{x}_j|, h_i)$$
$$h_i = \eta \left(\frac{m_i}{\rho_i}\right)^{1/d}$$

Initial conditions

Discretization in general

$$\rho_{i}\left(\vec{x}\right) = \sum_{j}^{N_{ngb}} m_{j} W\left(\left|\vec{x} - \vec{x}_{j}\right|, h_{i}\right)$$
$$h_{i} = \eta \left(\frac{m_{i}}{\rho_{i}}\right)^{1/d}$$

$$\begin{array}{l} A_{i} \approx \sum\limits_{j}^{N_{ngb}} m_{j} \frac{A_{j}}{\rho_{j}} W_{ij}(h_{i}) \\ \mathcal{D}A_{i} \approx \sum\limits_{j}^{N_{ngb}} m_{j} \frac{A_{j}}{\rho_{j}} \mathcal{D}W_{ij}(h_{i}) \end{array}$$

for a differential operator $\ensuremath{\mathcal{D}}$

Initial conditions

Discretization in general

$$\rho_{i}\left(\vec{x}\right) = \sum_{j}^{N_{ngb}} m_{j} W\left(\left|\vec{x} - \vec{x}_{j}\right|, h_{i}\right)$$
$$h_{i} = \eta \left(\frac{m_{i}}{\rho_{i}}\right)^{1/d}$$

$$A_{i} \approx \sum_{j}^{N_{ngb}} m_{j} \frac{A_{j}}{\rho_{j}} W_{ij}(h_{i})$$
$$\mathcal{D}A_{i} \approx \sum_{j}^{N_{ngb}} m_{j} \frac{A_{j}}{\rho_{j}} \mathcal{D}W_{ij}(h_{i})$$

for a differential operator \mathcal{D}

Many modifications possible! E.g. subtracting error terms: $\vec{\nabla}A_i \approx \left\langle \vec{\nabla}A_i \right\rangle - A_i \left\langle \vec{\nabla}1 \right\rangle = \sum_{i}^{N_{ngb}} \frac{m_j}{\rho_j} \left(A_j - A_i\right) W_{ij}(h_i)$

Cosmological Simulations

Initial conditions

Equation of motion in SPH

Can be derived directly from fluid Lagrangian:

$$L=\frac{1}{2}\sum_{i}m_{i}\vec{x}_{i}^{2}-\sum_{i}m_{i}u_{i}$$

* $\frac{d\vec{v}_i}{dt} = -\sum_j m_j \left(\frac{p_i}{\Omega_i \rho_i^2} \vec{\nabla}_i W_{ij}(h_i) + \frac{p_j}{\Omega_j \rho_j^2} \vec{\nabla}_i W_{ij}(h_j) \right)$

with variable smoothing lengthes h:

$$\Omega_i = 1 - rac{\partial h_i}{\partial
ho_i} \sum_{i}^{N_{ngb}} m_j rac{\partial W_{ij}(h_i)}{\partial h_i}$$

*

Hydrodynamics Initial conditions

Equation of motion in SPH

Can be derived directly from fluid Lagrangian:

$$L = \frac{1}{2} \sum_{i} m_i \vec{x}_i^2 - \sum_{i} m_i u_i$$

$$\vec{X}_{t} = -\sum_{j} m_{j} \left(\frac{p_{i}}{\Omega_{i}\rho_{i}^{2}} \vec{\nabla}_{i} W_{ij}(h_{i}) + \frac{p_{j}}{\Omega_{j}\rho_{j}^{2}} \vec{\nabla}_{i} W_{ij}(h_{j}) \right) \left[-\rho_{i} \nabla \vec{\Pi}_{ij} - \vec{\nabla} \Phi \right]$$

$$\Omega_i = 1 - rac{\partial h_i}{\partial
ho_i} \sum_{j}^{N_{ngb}} m_j rac{\partial W_{ij}(h_i)}{\partial h_i}$$

*

 $\frac{d}{d}$ *

Initial conditions

Equation of motion in SPH

* Can be derived directly from fluid Lagrangian:

$$L = \frac{1}{2} \sum_{i} m_i \vec{x}_i^2 - \sum_{i} m_i u_i$$

* $\frac{d\vec{v}_i}{dt} = -\sum_j m_j \left(\frac{p_i}{\Omega_i \rho_i^2} \vec{\nabla}_i W_{ij}(h_i) + \frac{p_j}{\Omega_j \rho_j^2} \vec{\nabla}_i W_{ij}(h_j) \right) \left[-\rho_i \nabla \vec{\Pi}_{ij} - \vec{\nabla} \Phi \right]$ with variable smoothing lengthes *h*:

$$\Omega_i = 1 - \frac{\partial h_i}{\partial \rho_i} \sum_{i}^{N_{ngb}} m_j \frac{\partial W_{ij}(h_i)}{\partial h_i}$$

* Equation of state: $p_i = (\gamma - 1) \rho_i u_i$

* Classical description in terms of density and "entropy":

$$A(S) = rac{P}{
ho^{\gamma}} = (\gamma - 1) rac{u}{
ho^{\gamma - 1}}$$

Initial conditions

Artificial Viscosity (Beck, Arth et al. 2016)

Ideal Euler eq. \rightarrow no dissipative terms \rightarrow problems at

discontinuities e.g. shocks

Remove post-shock oscillations & noise, smooth velocity field

Energy conserving

Artificial Viscosity (Beck, Arth et al. 2016)

Ideal Euler eq. \rightarrow no dissipative terms \rightarrow problems at

discontinuities e.g. shocks

Remove post-shock oscillations & noise, smooth velocity field

Energy conserving

$$\begin{split} \left. \frac{d\mathbf{v}_i}{dt} \right|_{\text{visc}} &= \frac{1}{2} \sum_j \frac{m_j}{\rho_{ij}} \left(\mathbf{v}_j - \mathbf{v}_i \right) \alpha_{ij}^{\text{v}} f_{ij}^{\text{shear}} \mathbf{v}_{ij}^{\text{sig,v}} \overline{F}_{ij} \\ \left. \frac{du_i}{dt} \right|_{\text{visc}} &= -\frac{1}{2} \sum_j \frac{m_j}{\rho_{ij}} \left(\mathbf{v}_j - \mathbf{v}_i \right)^2 \alpha_{ij}^{\text{v}} f_{ij}^{\text{shear}} \mathbf{v}_{ij}^{\text{sig,v}} \overline{F}_{ij} \\ \text{Shear flow limiter } f_i^{\text{shear}} &= \frac{|\nabla \cdot \mathbf{v}|_i}{|\nabla \cdot \mathbf{v}|_i + |\nabla \times \mathbf{v}|_i + \sigma_i} \\ \text{Kernel gradient } \vec{\nabla}_i W_{ii} \left(h_i \right) &= F_{ii} \hat{r}_{ii} \end{split}$$

ntegrators 200000 Initial conditions

Artificial Conductivity (Beck, Arth et al. 2016)

SPH does not mix energy at particle level Discontinuities in internal energy *u* Required in density-entropy formalism, less e.g. in pressure-entropy

ntegrators 200000 Initial conditions

Artificial Conductivity (Beck, Arth et al. 2016)

SPH does not mix energy at particle level

Discontinuities in internal energy u

Required in density-entropy formalism, less e.g. in

pressure-entropy

$$\frac{du_i}{dt}\Big|_{\text{cond}} = \sum_j \frac{m_j}{\rho_{ij}} (u_j - u_i) \alpha_{ij}^{\text{c}} v_{ij}^{\text{sig,c}} \overline{F}_{ij}$$
Coefficient $\alpha_i^{\text{c}} = \frac{h_i}{3} \frac{|\nabla u|_i}{|u_i|}$

Hydrodynamics

Initial conditions

Hydrodynamics

Initial conditions

Integrators

Hydrodynamics

Initial conditions

Hydrodynamics <u>000</u>0000000000000000

Initial conditions

Integrators

Hydrodynamics

Initial conditions

Modern SPH (Beck, Arth et al. 2016)

Alexander Arth (USM)

Cosmological Simulations

Integrators

 Initial conditions

"Modern" approaches: Moving Mesh

- * Arbitrary Lagrangian Eulerian
- * Sample fluid with mass points
- Create non regular mesh around particles using Voronoi tessellation / Delauny triangulation
- * Solve Riemann problem across cell faces similar to grid code

Hydrodynamics

Initial conditions

"Modern" approaches: Moving Mesh

* Let particles move and thereby mesh deform

- * Repair / Recreate mesh
- * See e.g. Springel 2010

Problems Gravity Integrators Hydrodynamics

Initial conditions

"Modern" approaches: Meshless Finite Mass/Volume

* Sample fluid with mass points

 Partition volume around them using an SPH-like weighting for a smooth transition Problems Gravity Integrators Hydrodynamics Initial conditions

"Modern" approaches: Meshless Finite Mass/Volume

- * Solve the Riemann problem with fixed "cells": MFV method
- * Distort Lagrangian volume to keep mass constant: MFM method
- * See e.g. Hopkins 2015

Hydrodynamics

Initial conditions

Code Comparisons

THE SANTA BARBARA CLUSTER COMPARISON PROJECT: A COMPARISON OF COSMOLOGICAL HYDRODYNAMICS SOLUTIONS

C. S. FRENK,¹ S. D. M. WHITE,² P. BODE,³ J. R. BOND,⁴ G. L. BRYAN,⁵ R. CEN,⁶ H. M. P. COUCHMAN,⁷ A. E. EVRARD,⁸ N. GNEDIN,⁹ A. JENKINS,¹ A. M. KHOKHLOV,¹⁰ A. KLYPIN,¹¹ J. F. NAVARRO,¹² M. L. NORMAN,^{13,14} J. P. OSTRIKER,⁶ J. M. OWEN,^{15,16} F. R. PEARCE,¹ U.-L. PEN,¹⁷ M. STEINMETZ,¹⁸ P. A. THOMAS,¹⁹ J. V. VILLUMSEN,² J. W. WADSLEY,⁴ M. S. WARREN,²⁰ G. XU,²¹ AND G. YEPES²² Received 1998 April 9: accepted 1999 Inter 25

Cosmological Simulations

Problems	Gravity

Hydrodynamics

Initial conditions

Code Comparisons

Cosmological Simulations

Problems	Gravity

 Initial conditions

Code Comparisons

Alexander Arth (USM)

Cosmological Simulations

MNRAS 457, 4063–4080 (2016) Advance Access publication 2016 February 10 doi:10.1093/mnras/stw250

nIFTy galaxy cluster simulations – I. Dark matter and non-radiative models

Federico Sembolini,^{1,2,3}* Gustavo Yepes,^{1,2} Frazer R. Pearce,⁴ Alexander Knebe,^{1,2} Scott T. Kay,⁵ Chris Power,⁶ Weiguang Cui,⁶ Alexander M. Beck,^{7,8,9} Stefano Borgani,^{10,11,12} Claudio Dalla Vecchia,^{13,14} Romeel Davé,^{15,16,17} Pascal Jahan Elahi,¹⁸ Sean February,¹⁹ Shuiyao Huang,²⁰ Alex Hobbs,²¹ Neal Katz,²⁰ Erwin Lau,^{22,23} Ian G. McCarthy,²⁴ Guiseppe Murante,¹⁰ Daisuke Nagai,^{22,23,25} Kaylea Nelson,^{23,25} Richard D. A. Newton,^{5,6} Valentin Perret,²⁶ Ewald Puchwein,²⁷ Justin I. Read,²⁸ Alexandro Saro,^{7,29} Joop Schaye,³⁰ Romain Teyssier²⁶ and Robert J. Thacker³¹

Problems	Gravity

Initial conditions

Code Comparisons

Alexander Arth (USM)

Cosmological Simulations

Hydrodynamics

Initial conditions

Gadget timeline

> 200k lines now (CV. Springel)

Alexander Arth (USM)

Cosmological Simulations

Gadget features

- * Symplectic integration
- * Hybrid gravity solver
- * Conservative SPH
- * Modular
- * A lot of subgrid physics
- * Different output styles including HDF5
- * Hybrid parallelization OpenMP / MPI
- * Only fftw and gsl required
- * Built in group and halo finder (FoF and Subfind)

Problems Gravity

Integrators

Hydrodynamics 000000000000000000 Initial conditions

Structure formation simulation with gas

Integrators 000000 Hydrodynamics

Initial conditions •0000000000

Outline

- 1 What we do we want to solve?
- 2 Gravity: Solvers & Co.
- 3 A quick detour: Integrators
- Is gravity enough?
- **5** Simulation types < > Initial conditions.
Hydrodynamics

Initial conditions

Technical aspects

- * No simulation without proper initial conditions!
- * Need $\rho(\vec{x}), u(\vec{x}), \vec{v}(\vec{x}), ...$

Technical aspects

- * No simulation without proper initial conditions!
- * Need $\rho(\vec{x}), u(\vec{x}), \vec{v}(\vec{x}), ...$
- * Easy to translate into a volume discretization, ...
- * Mass discretization not so much: Particle configuration needs to resemble $\rho(\vec{x})$
- * Adjust particle mass or distribution (or both)

egrators

Hydrodynamics

Initial conditions

Typical particle configurations

Grid VS Random VS Glass

Alexander Arth (USM)

Hydrodynamics 00000000000000000 Initial conditions

Typical particle configurations

Grid VS Random VS Glass

Alexander Arth (USM)

Hydrodynamics

Initial conditions

Density fluctuations

Alexander Arth (USM)

rs Hydrody 00000

Initial conditions

Cosmic initial conditions

- Gaussian density perturbation
- Formation of cosmic structures like voids, filaments and collapsed

objects

©K. Dolag

Hydrodynamics

Initial conditions

Zoom simulations

- Parent large scale box
- Re-simulation with higher resolution (factor 100-1000 in mass resolution)
- Study internal structures in zoomed region

©Springel et al. 2001

Hydrodynamics

Initial conditions

Adiabatic gas dynamics

Alexander Arth (USM)

Hydrodynamics

Initial conditions

Moore's law: double every 18 months

Alexander Arth (USM)

Alexander Arth (USM)

Problems 000

Integrators 000000 Hydrodynamics

Initial conditions

Alexander Arth (USM)

Problems

Integrators 000000 Hydrodynamics

Initial conditions

And the rest ...

all volume / very high resolu

Physics:

cooling+sfr+winds Springel & Hernquist 2002/2003 Metals cooling Wiersma et al. 2009 SNIa,SNII,AGB Tornatore et al. 2003/2006

BH+AGN feedback

Springel & Di Matteo 2006 Fabjan et al. 2010 Hirschmann et al. 2014 (std) Steinborn et al. 2015 (new)

Thermal conduction 1/20th Spitzer Dolag et al. 2004

Numerics: New Kernels: WC6 Dehnen et al. 2012

Low visc. scheme mr/hr (time dep. alpha) Dolag et al. 2005 uhr (high order grad.) Beck et al. 2015

©K. Dolag

Alexander Arth (USM)

Problems

Integrators 000000 Hydrodynamics

Initial conditions

And the rest ...

/ very high resol

Physics:

cooling+sfr+winds Springel & Hernquist 2002/2003 Metals cooling Wiersma et al. 2009 SNIa,SNII,AGB Tornatore et al. 2003/2006

BH+AGN feedback

Springel & Di Matteo 2006 Fabjan et al. 2010 Hirschmann et al. 2014 (std) Steinborn et al. 2015 (new)

Thermal conduction 1/20th Spitzer

Dolag et al. 2004

Numerics: New Kornels. WC6 Dehnen et al. 2012

Next lecture...

uhr (high order grad.) Beck et al. 2015

©K. Dolag

oblems	Gravity

Hydrodynamics

Initial conditions

Sources

- * Lecture of Volker Springel
- * Lectures of Klaus Dolag
- * The Encyclopedia of Cosmology
- * My PhD thesis 🙂
- * Several papers as mentioned ...

oblems	Gravity

Hydrodynamics

Initial conditions

Sources

- * Lecture of Volker Springel
- * Lectures of Klaus Dolag
- * The Encyclopedia of Cosmology
- * My PhD thesis 🙂
- * Several papers as mentioned ...

Now, break and tutorials!