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Dynamic Range
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Which goals can we not reach yet?

Andromeda, c©Robert Gendler

Star formation

Supernovae

Radiative cooling

AGN feedback

Chemical enrichment
Magnetic fields

Cosmic rays

Thermal conduction

Anything you can think of

Things might be more complicated than you think!
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But how?

Gravity

Hydrodynamics

Electromagnetism

Particle physics

Atomic physics

Quantum mechanics
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But how?

Gravity

Hydrodynamics

Electromagnetism

Particle physics

Atomic physics

Quantum mechanics

Huge magnitude of scales to

consider!

⇒ Subgrid models
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Subgrid modelling

Andromeda, c©Robert Gendler

R.N. Bailey, Wikimedia Commons

∗ Input: Simulation state

∗ Statistical approach

∗ Below particle / cell level

∗ Output: Model evolution
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Star formation & evolution

R.N. Bailey, Wikimedia Commons
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Star formation & evolution

R.N. Bailey, Wikimedia Commons

∗ Gas cooling (see later)

∗ Instabilities

∗ Multiphase ISM

∗ Winds and outflows (stellar

and galactic)

Alexander Arth (USM) Numerical treatment of physical processes



Subgrid models Star formation Cooling AGN Magnetic Fields Conduction Overview

Springel & Hernquist 2002

Cooling

Evaporation

Star formationSupernovae

Star formation

Cloud evaporation

Cloud growth

dρ?
dt = (1− β) ρct?
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dt
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dρc
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TI
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Stellar density

Hot density

Cold density

SN mass fraction

SF timescale

Radiative losses
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The full equations of S&H 2002

c©V. Springel

McKee & Ostriker 1977

Parameter

More complex modelling:

See e.g. Tornatore et al. 2003, 2007
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The full equations of S&H 2002

c©V. Springel

McKee & Ostriker 1977

Parameter

More complex modelling:

See e.g. Tornatore et al. 2003, 2007
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Callibration of SF model: Kennicutt-Schmidt relation

c©V. Springel

Kennicutt 1998

ΣSFR = (2.5± 0.7) · 10−4
(

Σgas

M�pc−2

)1.4±0.15
M�

yr kpc2
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Callibration of SF model: More ingredients

Life-time: Maeder & Meynet 1989; Padovani & Mat-

teucci 1993

IMF:
Salpeter; Kroupa; Chabrier; Arimoto &

Yoshi

Stellar yields:
AGB (Groenewegen; Karakas), SNIa

(Thielemann), SNII (Woosly & Weaver;

Romano; Kobayashi; . . . )

c©JohannesBuchner, Wikimedia Commons

Alexander Arth (USM) Numerical treatment of physical processes



Subgrid models Star formation Cooling AGN Magnetic Fields Conduction Overview

Callibration of SF model: More ingredients

Life-time: Maeder & Meynet 1989; Padovani & Mat-

teucci 1993

IMF:
Salpeter; Kroupa; Chabrier; Arimoto &

Yoshi

Stellar yields:
AGB (Groenewegen; Karakas), SNIa

(Thielemann), SNII (Woosly & Weaver;

Romano; Kobayashi; . . . )

c©JohannesBuchner, Wikimedia Commons

Alexander Arth (USM) Numerical treatment of physical processes



Subgrid models Star formation Cooling AGN Magnetic Fields Conduction Overview

Callibration of SF model: More ingredients

Life-time: Maeder & Meynet 1989; Padovani & Mat-

teucci 1993

IMF:
Salpeter; Kroupa; Chabrier; Arimoto &

Yoshi

Stellar yields:
AGB (Groenewegen; Karakas), SNIa

(Thielemann), SNII (Woosly & Weaver;

Romano; Kobayashi; . . . )

c©JohannesBuchner, Wikimedia Commons

Alexander Arth (USM) Numerical treatment of physical processes



Subgrid models Star formation Cooling AGN Magnetic Fields Conduction Overview

Callibration of SF model: More ingredients

Life-time: Maeder & Meynet 1989; Padovani & Mat-

teucci 1993

IMF:
Salpeter; Kroupa; Chabrier; Arimoto &

Yoshi

Stellar yields:
AGB (Groenewegen; Karakas), SNIa

(Thielemann), SNII (Woosly & Weaver;

Romano; Kobayashi; . . . )

c©JohannesBuchner, Wikimedia Commons

Alexander Arth (USM) Numerical treatment of physical processes



Subgrid models Star formation Cooling AGN Magnetic Fields Conduction Overview

Feedback processes

c©www.noao.edu

c©NASA

c©D. de Mello et al.

Different origin

AGB stars

Supernovae type Ia

Supernovae type II

Different form

Thermal heating

Kinetic wind
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Exemplary galactic wind model

∗ Observations by Martin 1998, 1999: ṀW = ηṀ?

∗ Relate to SN energy: 1
2ṀW v2

W = χεSNṀ?

∗ Typically η ∼ 2, χ ∼ 0.25, vW ∼ 250km/s

∗ Star formation quenching by strong winds

∗ Popular approach to produce thin disks in simulations

∗ Recent observations hint to weaker feedback (Genzel et al. in

prep.)

⇒ Deposit energy and metals in the halo

Alexander Arth (USM) Numerical treatment of physical processes
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SN driven galactic fountain

c©V. Springel
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Basic process and assumptions

∗ Sampled gas contains multiple particle species: H, He

(& higher?)

∗ Spontaneous & driven (de-) excitation

⇒ Photons

∗ Following photon field (radiative transfer) very expensive

⇒ Ionization equilibrium

n = 1

n = 2

n = 3
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H & He Cooling function

c©Wang et al. 2014

H ionisation

He ionisation
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H & He Cooling function

c©Wang et al. 2014

H ionisation

He ionisation
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Adding heavier elements

∗ Cool below 104K

∗ Produced in stars

∗ Distributed by

supernovae

∗ Metal diffusion

(transport processes, see

later)

Alexander Arth (USM) Numerical treatment of physical processes
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Cooling function with redshift

c©S. Lueders BA thesis
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Cooling function with metallicity

c©S. Lueders BA thesis

Alexander Arth (USM) Numerical treatment of physical processes



Subgrid models Star formation Cooling AGN Magnetic Fields Conduction Overview

History of Gadget

∗ Katz et al. 1996: Basic modelling

∗ Springel & Hernquist 2002++: Primordial composition,

ionization equilibrium, UV background (e.g. Haardt & Madau)

∗ Yoshida et al. 2003++: H2 cooling at low T

∗ Scannapieco et al. 2005++: Multiphase model, metals

∗ Tornatore et al. 2004:++: Complex stellar evolution and

metal model

∗ Maio et al. 2007: H2, HD and metals at low T

∗ Schaye et al. 2009++: Metals using detailed Cloudy tables

∗ Murante et al. 2010: Dynamical sub scale model Muppi

Alexander Arth (USM) Numerical treatment of physical processes
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Excursion: Cloudy → cooling tables

∗ See Ferland er al. 2013 and https://www.nublado.org/

∗ Open source!

∗ Spherical symmetric model

∗ Central ionisation source, UV background

∗ Depends on ρ, T , z , Zs

⇒ Fraction per species

Alexander Arth (USM) Numerical treatment of physical processes
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Effects of cooling in cluster simulations

∗ Gravitational collapse

∗ Cooling

∗ Collapse due to energy loss

∗ Cooling flow

∗ Entropy loss
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Chemical Enrichment (Tornatore et al. 2004/2007)

∗ Model rate of SNIa

∗ Adopt stellar lifetime function τ (m)

∗ Adopt metal yields pZi
(m,Z )

∗ Fix IMF for number stars / mass bin

∗ Follow evolution equations for SNIa, SNII, AGB stars along

with metal production

∗ Let feedback enrich surrounding medium with H, He, Fe, O,

C, Mg, S

Alexander Arth (USM) Numerical treatment of physical processes
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Code Comparisons: Feedback models
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Code Comparisons: Feedback models
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AGN Basics

c©Wikimedia Commons
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Aspects of AGN models

Seeding

Accretion

Feedback

Merging

Positioning
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Aspects of AGN models

Seeding

Accretion

Feedback

Merging

Positioning

∗ Seeding in galaxies with M? > 2.3 · 1010M�

∗ Constant seed mass ∼ 105M�

∗ M − σ relation seeding

c©Wikimedia Commons
Alexander Arth (USM) Numerical treatment of physical processes
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Aspects of AGN models

Seeding

Accretion

Feedback

Merging

Positioning

∗ α-Bondi (Springel et al. 2005):

Spherical ṀB = α · 4πR2
Bρcs ≈ α ·

4πG2M2
•ρ

(cs+v2)3/2

Ṁ• = min
(
ṀB , ṀEddington

)
Eddington limit: prad stops infall

∗ β-Bondi (Booth & Schaye 2009)

α =


1 for nh < nCh(

nh
nCh

)β
else

∗ Cold / Hot (Steinborn et al. 2015)

Ṁ• = min
(
ṀB,hot + ṀB,cold, ṀEddington

)
αhot = 10, αcold = 100

Alexander Arth (USM) Numerical treatment of physical processes
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Aspects of AGN models

Seeding

Accretion

Feedback

Merging

Positioning

∗ Thermal (Springel et al. 2005):

Ėfeed = εf · Lr = εf · εrṀ•c2

with εr ∼ 0.1, εf ∼ 0.05 to fix M − σ

∗ Bubbles (Sijacki et al. 2007):

Radio mode (thermal) −→
z→0

quasar mode

(kinetic bubble injection)

∗ Mass dependent (Steinborn et al. 2015):

Mechanical and radiative as thermal due to

resolution

ε0 = η P0/LEdd

Ṁ•/ṀEdd
, εr = η L/LEdd

Ṁ•/ṀEdd

∗ . . .→ Jet modelling

Alexander Arth (USM) Numerical treatment of physical processes
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with εr ∼ 0.1, εf ∼ 0.05 to fix M − σ
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Fermi bubble?

c©NASA

∗ Mass dependent (Steinborn et al. 2015):

Mechanical and radiative as thermal due to
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Ṁ•/ṀEdd
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Aspects of AGN models

Seeding

Accretion

Feedback

Merging

Positioning

∗ Based on distance:

|~r1 − ~r2| < h

∗ Based on velocity:

|~v1 − ~v2| < cs

∗ Instant merging:

2 particles become 1

∗ . . .

Alexander Arth (USM) Numerical treatment of physical processes
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Aspects of AGN models

Seeding

Accretion

Feedback

Merging

Positioning

∗ Free floating

∗ Pinning to potential minimum

Alexander Arth (USM) Numerical treatment of physical processes
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Black Hole Growth

c©Steinborn et al. 2015

Rapid Growth

Cooling ∼ Feedback

⇒ Slow growth

Alexander Arth (USM) Numerical treatment of physical processes



Subgrid models Star formation Cooling AGN Magnetic Fields Conduction Overview

AGN Jets

c©V. Springel
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AGN Jets

c©V. Springel
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Observational evidence: Radio clusters

c©K. Dolag

Diffuse Synchrotron emission

Radio halo

⇒ Relativistic electrons

⇒ Cluster magnetic fields

Cosmic rays (transport see

later)

Alexander Arth (USM) Numerical treatment of physical processes
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Observational evidence: Radio clusters

Peripheral Synchrotron emission

Radio relic

⇒ Related to merger or accretion

shock

⇒ Shock acceleration

Alexander Arth (USM) Numerical treatment of physical processes
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Observational evidence: Rotation Measure

c©Wikimedia Commons

RM = β
λ2 ∝

∫
dz neB‖

Alexander Arth (USM) Numerical treatment of physical processes
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Observational evidence: Rotation Measure

c©Wikimedia Commons

RM = β
λ2 ∝

∫
dz neB‖
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Ideal MHD equations

∗ Hydro equations (remember yesterday)

+ Magnetic pressure terms pB = B2/8π

∗ Maxwell’s equations

+ Infinite conductivity

⇒ Ideal induction equation ∂ ~B
∂t = ~∇×

(
~v × ~B

)
& No magnetic monopoles ~∇ · ~B = 0 (more in a bit)

⇒ Field lines flux frozen in fluid

Alexander Arth (USM) Numerical treatment of physical processes



Subgrid models Star formation Cooling AGN Magnetic Fields Conduction Overview

Ideal MHD equations

∗ Hydro equations (remember yesterday)

+ Magnetic pressure terms pB = B2/8π

∗ Maxwell’s equations

+ Infinite conductivity

⇒ Ideal induction equation ∂ ~B
∂t = ~∇×

(
~v × ~B

)
& No magnetic monopoles ~∇ · ~B = 0 (more in a bit)

⇒ Field lines flux frozen in fluid

Alexander Arth (USM) Numerical treatment of physical processes



Subgrid models Star formation Cooling AGN Magnetic Fields Conduction Overview

Ideal MHD equations

∗ Hydro equations (remember yesterday)

+ Magnetic pressure terms pB = B2/8π

∗ Maxwell’s equations

+ Infinite conductivity

⇒ Ideal induction equation ∂ ~B
∂t = ~∇×

(
~v × ~B

)
& No magnetic monopoles ~∇ · ~B = 0 (more in a bit)

⇒ Field lines flux frozen in fluid

Alexander Arth (USM) Numerical treatment of physical processes



Subgrid models Star formation Cooling AGN Magnetic Fields Conduction Overview

Origin of magnetic fields

∗ Primordial seed field

∗ Biermann battery

∗ Dynamo (turbulence)

∗ Stars

∗ Supernovae

∗ Galactic Winds

∗ AGN, Jets

∗ Shocks

+ Structure formation

- Dissipation c©Rees 1994
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Origin of magnetic fields

∗ Primordial seed field

∗ Biermann battery

∗ Dynamo (turbulence)

∗ Stars

∗ Supernovae

∗ Galactic Winds

∗ AGN, Jets

∗ Shocks

+ Structure formation

- Dissipation c©Rees 1994

Relative motion of electrons and ions:

∂ ~B
∂t = ~∇×

(
~v × ~B

)
+ const · ~∇p×~∇ρ

ρ2

Alexander Arth (USM) Numerical treatment of physical processes
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Galactic Wind Seeding

c©Donnert et al. 2009

Alexander Arth (USM) Numerical treatment of physical processes
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Supernova Seeding

∗ Attach to supernova feedback of star formation model

∗ Bubbles around supernova events

∗ Inject dipoles to satisfy vanishing divergence

Alexander Arth (USM) Numerical treatment of physical processes
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Supernova Seeding

∗ Attach to supernova feedback of star formation model

∗ Bubbles around supernova events

∗ Inject dipoles to satisfy vanishing divergence

c©Beck et al. 2013

Alexander Arth (USM) Numerical treatment of physical processes
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Supernova Seeding

∗ Attach to supernova feedback of star formation model

∗ Bubbles around supernova events

∗ Inject dipoles to satisfy vanishing divergence

c©Beck et al. 2013Primordial seed
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The ∇ · ~B problem

∗ Physics: ~∇ · ~B = 0 always given

∗ Numerics: Discretisation & finite computation accuracy

⇒ ∇ · ~B > 0; Small error but accumulates!

⇒ Cleaning scheme of some sorts

- Powell 1999: Source in momentum, induction and energy eqs.

- Dedner et al. 2002: Evolve scalar potential which contains ~∇ · ~B and

subtract it’s gradient; pump difference in internal energy

- Mocz et al. 2014: Constrained transport technique
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Subgrid models Star formation Cooling AGN Magnetic Fields Conduction Overview

Non-ideal MHD

Three additional source terms ∂ ~B
∂t :

∗ Ohmic resistivity: Drift electrons - ions; Collisionally coupled

to neutral gas

∗ Hall effect: Drift electrons - ions; Electrons tied to ~B, ions

collisionally coupled to neutral gas

∗ Ambipolar diffusion: Drift ions - neutrals: Electrons & ions

tied to ~B

Possibly important if Pm = νvisc
νM

= Rem
Reh
≈ 10−5 T [K ]4

nH [cm−3]
< 1

⇒ cold, dense systems

Consistent with low ionisation fractions from Saha-Boltzmann

equation
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Subgrid models Star formation Cooling AGN Magnetic Fields Conduction Overview

Galaxy simulations with SPMHD (Gadget3)
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Galaxy simulations with SPMHD (Gadget3)
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Galaxy simulations with SPMHD (Gadget3)
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Galaxy simulations with SPMHD (Gadget3)
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Cosmological simulations with SPMHD (Gadget3)

c©K. Dolag
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Outline

1 Recap and overview: Subgrid models

2 Star formation and SN feedback

3 Cooling and Metallicity

4 AGN feedback

5 Magnetic Fields

6 Thermal Conduction

7 Final overview
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Subgrid models Star formation Cooling AGN Magnetic Fields Conduction Overview

Basics of thermal conduction

∗ Macroscopic: Transport of heat energy along a

temperature gradient without movement of gas

∗ Microscopic: Exchange of energy due to

collisions of particles

∗ Isotropic transport if particle movement is

unrestricted

∗ Consider charged particles in magnetic field:

Movement along field lines introduces an

anisotropy

∗ ⇒Suppressed conduction perpendicular to ~B

~B

Alexander Arth (USM) Numerical treatment of physical processes
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Subgrid models Star formation Cooling AGN Magnetic Fields Conduction Overview

The conduction equation

General diffusion equation

∂Φ
∂t = ~∇ ·

(
−κ~∇A

)
∗ κ = const

∗ κ ≡ κ (~x) : R3 7→ R

∗ κ ≡ κ (~x) : R3 7→ R3×3

∂Φ
∂t = −κ∆A

∂Φ
∂t = −~∇ ·

(
κ~∇A

)
∂Φ
∂t = −~∇ ·

(
κ~∇A

)
Jubelgas et al. 2004

∂u
∂t ∝ −~∇ ·

[
T 5/2~∇T

] Arth et al. 2014

∂u
∂t ∝ −~∇ ·

[
T 5/2 ~B

(
~B · ~∇T

)]
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Adding a perpendicular component

Final conduction equation

∂u
∂t ∝ −~∇ ·

normal︷ ︸︸ ︷[
κ‖~∇‖T +

suppressed︷ ︸︸ ︷
κ⊥~∇⊥T︸ ︷︷ ︸

collisional

+

vanish for large ~B︷ ︸︸ ︷
κΛ
~Bnorm × ~∇T

]
︸ ︷︷ ︸

non collisional

with Spitzer like coefficients κ ∝ T 5/2

How are these coefficients related?

κ‖/κ⊥ ≈ [(ωgτ)α + 1]−1 ∝ B−α

with α = 1 or 2 and ωg = eB
mc

Alexander Arth (USM) Numerical treatment of physical processes
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Temperature maps for different settings
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Radial temperature profiles

Cool Core VS Non-Cool Core

Treatment of perpendicular conduction promotes bimodality
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Temperature fluctuations
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Temperature fluctuations
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Observational evidence

X-Ray image of

Hydra
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Other examples for diffusion equations

c©Shen et al. 2012
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Other examples for diffusion equations

c©Shen et al. 2012
c©S. Lafebre, Wikimedia Commons
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Overview

c©K. Dolag
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Galaxy formation over time

c©D. Schlachtberger
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Fly through simulation

c©K. Dolag
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Sources

∗ Lecture of Volker Springel

∗ Lectures of Klaus Dolag

∗ The Encyclopedia of Cosmology

∗ My PhD thesis ,

∗ Several papers as mentioned . . .

Now, break and tutorials!
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