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Lecture 1.

INTRODUCTION TO EFFECTIVE FIELD THEORY

1. MOTIVATION

Nature comes with many scales:

Planck
scale

Observable
universeLHC usAtoms GalaxiesPlanets

Cells
BacteriaNuclei

Gravitation, Astrophysics, CosmologyParticle
physics

BiophysicsQuantum
gravity

Atomic physics,
Nanoscience

Subatomic
physics

Condensed matter physics

Science progresses because we can treat one scale at a time.

Coarse-graining over short scales (high energies) leads to an

effective field theories (EFTs) at long distances (low energies).

Even if we don’t know the full microscopic theory,

we can parameterize our ignorance as an EFT.

Natural units: [see Nima Arkani-Hamed PIRSA/09080035]

Setting
c = 3× 108 m/s ≡ 1

~ = 10−34 J · s ≡ 1
we have [L] = [T ] = [E−1].

A useful conversion is mp ∼ 1 GeV ∼ (10−16 m)−1 ∼ (10−24 s)−1.
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• Examples of EFTs:

- Hydrogen atom

Recall that H =
p2

2me
− α

r
⇒ En = −meα

2

n2
+ Corrections

• Proton recoil: O(me/mp)

• Fine structure: O(α2)

•Weak interactions: O(mp/MW )

- Multipole expansion

V (r) =
1

r

∑
l,m

clm

(a
r

)l
Ylm(Ω)

- High-energy physics

Fermi Theory Standard Model String Theory         QG

+

Gravity
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- Hydrodynamics

∂ρ

∂t
= − ∂

∂xi
(ρvi)

∂

∂t
(ρvi) = − ∂

∂xj
Πij

↑

Πij = Pδij + ρvivj + η

(
∂(ivj) −

2

3
δij(∂kvk)

)
+O(∂2)

2. PRINCIPLES OF EFT

I will illustrate the basic principles of EFTs with the following toy model:

L[φ,Ψ] =
− 1

2
(∂φ)2 − 1

2
m2φ2 − 1

4!
λφ4

− 1

2
(∂Ψ)2 − 1

2
M 2Ψ2 ,

− 1

4
gφ2Ψ2

where m�M and g � 1.

• Integrating out

We can integrate out the heavy fields to get an EFT for the light fields:

eiSeff [φ] =

∫
DΨ eiS[φ,Ψ] .

• Matching

In practice, the effective action is usually found by matching:

Effective theory Full theory

φ0 = + · · ·

φ2 = + + · · ·

φ4 = + + · · ·
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φ6 = + · · ·

• Renormalization

Heavy fields renormalize the IR couplings

∆m2 = = +
g

32π2

(
Λ2 −M 2 log

(
Λ2

µ2

))

∆λ = = − 3g2

32π2
log

(
Λ2

µ2

)

• Non-renormalizable interactions

Heavy fields also add new non-renormalizable interactions:

∼ g3 φ
6

M 2

• Decoupling

These new higher-dimensional interactions decouple for M →∞.

• Power counting

EFTs are expansions in powers of δ ≡ E/M � 1.

Only a finite number of terms are relevant for observations with finite precision.

• Effective actions

“Everything that is allowed is compulsory.”

For example, in the toy model we generate all terms that are consistent with

the φ→ −φ symmetry of the full theory:

Leff [φ] =− 1

2
(∂φ)2 − 1

2
m2

R −
1

4!
λRφ

4

−
∞∑
i=1

(
ci
M 2i

φ4 + 2i+
di
M 2i

(∂φ)2φ2i + · · ·
)
.
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Even if the full theory is not known, we can still parameterize the EFT:

Leff [φ] = L0[φ] +
∑
i

ci
Oi[φ]

Λδi−4
.

Wilson coefficient
cutoff
operator
dimension

• EFT approach

- Identify the relevant degrees of freedom.

- Determine the relevant symmetries.

- Write all operators compatible with the symmetries.

- Compute observables.

- Measure parameters.

3. EXAMPLES OF EFTS

• Photon-photon scattering

Consider γγ scattering at energies E � me.

The only dynamical degrees of freedom in the EFT are photons.

Photons can interact via electron loops:

Full theory Effective theory

The EFT Lagrangian is

Leff [Aµ] = −1

4
FµνF

µν +
α2

m4
e

c1(FµνF
µν)2 + · · · ,

where c1 = 1/90.
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• Rayleigh scattering

Consider the scattering of photons off atoms at low energies.

Let ψ(x) denote a field operator that creates an atom at the point x.

The effective Lagrangian for the atom is

Leff [ψ] = ψ†
(
i∂t −

∂2

2M

)
ψ + Lint .

At low energies, the dominant interaction with photons is

Lint = a3
0 ψ
†ψFµνF

µν

↑
size of the atom

The corresponding cross section is

σ ∝ a6
0 ω

4 .

That is why the sky is blue!

• Gravity

Like Fermi’s theory, Einstein’s gravity requires a UV completion.

However, at low energies, E �Mpl, gravity is described by an EFT:

Leff [gµν] =
√
−g

[
M 2

pl

2
R + c1R

2 + c2RµνR
µν +

1

Λ2

(
d1R

3 + · · ·
)

+ · · ·

]
,

where Λ .Mpl.

• Particle physics

The most conservative way to described BSM physics is as an EFT:

Leff [ψ,Aµ, H] = LSM +
∑
i

ci
Oi

Λδi−4
.

- Dim-0: CC problem.

- Dim-2: Hierarchy problem.

- Dim-5: Neutrino masses.

∆L ∼ 1

Λ
(LH)(LH)

H=v−−−−→ mν =
v2

Λ
∼ 10−2 eV , for Λ ∼ 1015 GeV.

- Dim-6: Proton decay.

∆L ∼ 1

Λ2
QQQL

τp>1033 yrs−−−−−−−→ Λ > 1015 GeV .
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• Inflation

The most conservative way to described the physics of inflation is as an EFT:

Leff [φ,Ψ, g] =
√
−g

[
M 2

pl

2
R− 1

2
(∂φ)2 − V0(φ) +

∑
i

ci
Oi[φ,Ψ]

Λδi−4

]
.

- Dim-6: Eta problem.

∆V = V0
φ2

Λ2

Λ<Mpl−−−−−→ ∆η ≡M2
pl

V ′′

V
≈
M2

pl

Λ2
> 1.

- Dim-8: Non-Gaussianity.

∆L =
(∂φ)4

Λ4

Λ2<φ̇−−−−→ fNL ∼
φ̇2

Λ4
< 1 .

- Dim-∞: Lyth bound.

∆φ ∼
( r

0.01

)1/2

Mpl
r>0.01−−−−−→ ∆φ > Mpl .

4. OUTLOOK

In the rest of the lectures, I will describe two important EFTs in more detail:

1. EFT of Inflation

2. EFT of Large-Scale Structure

References

A. Manohar, Introduction to Effective Field Theories, [arXiv:1804.05863]

D. Baumann and L. McAllister, Inflation and String Theory, [arXiv:1404.2601]
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Lecture 2.

EFFECTIVE FIELD THEORY OF INFLATION

1. MOTIVATION

The origin of structure in the universe is one of the biggest open questions in

cosmology:

Although there is growing evidence that the primordial fluctuations originated

from quantum fluctuations during inflation, the physics of inflation remains a

mystery.

In this lecture, I will describe inflation as a symmetry breaking phenomenon

and derive an effective action for the inflationary perturbations.

2. SPONTANEOUS SYMMETRY BREAKING

• Broken global symmetries

Consider

L = −∂µφ†∂µφ+

(
µ2φ†φ− 1

4
λ(φ†φ)2

)
,

which is invariant under the U(1) symmetry φ→ eiβφ.

For µ2 > 0, the symmetry is spontaneously broken:

9



Substituting

φ =
1√
2

(v + ρ(x)) eiπ(x) , with v ≡ µ√
λ
,

we find

L = −1

2
(∂µρ)2 − µ2ρ2 −

√
λµρ3 − λρ4 − 1

2
(v + ρ)2(∂µπ)2 .

↑
massless

Goldstone boson

Integrating out the massive field ρ, we get an effective Lagrangian for π

Lπ = −1

2
(∂µπc)

2 + c1
(∂µπc)

4

v4
+ · · · ,

where πc ≡ vπ and c1 = v2/µ2.

From the bottom up, we can write the effective action of π as a derivative

expansion of U(x) ≡ eiπ(x):

Lπ = −f
2
π

2
∂µU

†∂µU + c1(∂µU
†∂µU)2 + c2(∂µU

†∂νU)(∂µU †∂νU) + · · · ,

where fπ is the symmetry breaking scale.

If a symmetry G is broken to a subgroup H, we obtain one massless Gold-

stone boson πa for each broken generator T a. The effective Lagrangian of the

Goldstone bosons is

Lπ = −f
2
π

2
Tr[∂µU

†∂µU ] + c1Tr[(∂µU
†∂µU)2] + · · · ,

where U(x) ≡ eiπa(x)T a.

• Broken gauge symmetries

Consider scalar electrodynamics

L = −Dµφ
†Dµφ− V (φ)− 1

4
F 2
µν ,

with Dµ = ∂µ + igAµ. Let

φ =
1√
2

(v + ρ(x)) eiπ(x) .
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and use the gauge symmetry to set π ≡ 0 (unitary gauge). After the SSB, the

gauge field has become massive

L = −1

4
F 2
µν −

1

2
m2A2

µ + · · · ,

where m2 = g2v2. The Goldstone boson has become the longitudinal mode of

the massive vector field (= Higgs mechanism).

• Stückelberg trick

To understand the behavior of the theory at high energies, it is useful to rein-

troduce the Goldstone boson. This is achieved by imposing the following trans-

formation on the vector field (i.e. by ‘undoing’ the gauge fixing)

Aµ → Aµ +
∂µπ

g
≡ i

g
UDµU

† ,

where U(x) ≡ eiπ(x). The Lagrangian then becomes

L = −1

4
F 2
µν −

f 2
π

2
DµU

†DµU ,

where fπ ≡ m/g.

At quadratic order, this can be written as

L2 = −1

4
F 2
µν −

1

2
(∂µπc)

2 − 1

2
m2A2

µ +m∂µπcA
µ ,

where πc ≡ fππ.

• Decoupling limit

Because the mixing term ∂µπcA
µ has one fewer derivative than (∂µπc)

2, we

expect it to become irrelevant at high energies.

To see this, we take the so-called decoupling limit

g → 0 , m→ 0 , for fπ ≡ m/g = const.

In this limit, there is no mixing between π and Aµ.

For E > Emix = m, the scattering1 of the longitudinal modes of the gauge

fields is therefore described by the scattering of the Goldstone bosons, up to

corrections of order m/E and g2 (= Goldstone boson equivalence theorem).

1For non-Abelian gauge bosons, interactions of the form f2
ππ

2(∂µπ)2 = π2
c (∂µπc)

2/f2
π arise from expanding

the universal kinetic term f2
πTr[DµU

†DµU ], while for Abelian gauge bosons they only arise from the non-

universal higher-derivative terms.
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3. EFT OF INFLATION

• Broken time translations

Time-dependent matter fields, ψm(t), break time translation invariance,

i.e. the action isn’t invariant under

t→ t+ π(x) ≡ U(x) .

The field π is the Goldstone boson of the broken symmetry.

• Adiabatic perturbations

The field π parameterizes adiabatic perturbations

δψm(t,x) = ψ̄m(t+ π(t,x))− ψ̄m(t) .

In spatially flat gauge, gij = a2(t)δij, all metric perturbations are related to

π(x) by the Einstein equations.

• Unitary gauge

For purely adiabatic fluctuations, we can perform a local time shift, t → t −
π(x), to remove all matter fluctuations, δψm → δψm ≡ 0 (unitary gauge).

This induces the following metric perturbation

δgij = a2(t)e2ζ(t,x)δij ,

where ζ = −Hπ is the comoving curvature perturbation.

• Effective action

The effective action after gauge fixing includes all terms that are invariant

under spatial diffeomorphisms, e.g. g00, Kij, Rij.

At leading order in derivatives, we have

S =

∫
d4x
√
−g

[
M 2

pl

2
R +

∞∑
n=0

M 4
n(t)

n!
(δg00)n

]
,

where δg00 = g00 + 1. During inflation, we have Mn(t) ≈ const.

This is an expansion around the correct FRW background iff

M 4
0 = −M 2

pl(3H
2 + 2Ḣ) ,

M 4
1 = M 2

plḢ .
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• Slow-roll inflation

The universal part of the action is

S0 =

∫
d4x
√
−g

[
M 2

pl

2
R−M 2

pl(3H
2 + Ḣ) +M 2

plḢg
00

]
.

For Ḣ � H2, this is just single-field slow-roll inflation in disguise.

To see this, consider

L0 = −1

2
gµν∂µφ∂νφ− V (φ)

φ=φ̄(t)−−−−−→ − 1

2
˙̄φ2g00 − V (φ̄)

= M 2
plḢg

00 −M 2
pl(3H

2 + Ḣ) .

• Stückelberg trick

We introduce the Goldstone boson by performing the transformation

t→ t+ π ≡ U ,

g00 → gµν∂µU∂νU ,

so that the effective action becomes

S =

∫
d4x
√
−g

[
M 2

pl

2
R +

∞∑
n=0

M 4
n(U)

n!
(gµν∂µU∂νU + 1)n

]
,

or, more explicitly,

S =

∫
d4x
√
−g

[
M 2

pl

2
R−M 2

pl

(
3H2(t+ π) + Ḣ(t+ π)

)
+M 2

plḢ
(
g00 + 2∂µπg

0µ + ∂µπ∂νπg
µν
)

+
∞∑
n=2

M 4
n

n!

(
1 + g00 + 2∂µπg

0µ + ∂µπ∂νπg
µν
)n ]

.

• Decoupling limit

The mixing with metric perturbations vanishes in the decoupling limit:

Mpl →∞ , Ḣ → 0 , for M 2
plḢ = const.
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For ω2 > ω2
mix = |Ḣ|, we can therefore evaluate the action in the unperturbed

spacetime. The Goldstone action then becomes

S =

∫
d4x
√
−g

[
M 2

plḢ(∂µπ)2 +
∞∑
n=2

M 4
n

n!

(
−2π̇ + (∂µπ)2

)n]
.

↑ ↑
slow-roll inflation DBI, P (X), etc.

• Speed of Sound

At quadratic order, the Goldstone Lagrangian is

L(2)
π = M 2

plḢ(∂µπ)2 + 2M 4
2 π̇

2 =
M 2

plḢ

c2
s

(
π̇2 − c2

s

a2
(∂iπ)2

)
,

where we have introduced a non-trivial speed of sound

c2
s ≡

M 2
plḢ

M 2
plḢ − 2M 4

2

≤ 1 .

The rescaling xi → x̃i ≡ c−1
s xi allows us to write

L̃(2)
π ≡ c3

sL(2)
π =

f 4
π

2

(
π̇2 − (∂̃iπ)2

a2

)
= −1

2
(∂̃µπc)

2 ,

where f 4
π ≡ 2M 2

pl|Ḣ|cs is the symmetry breaking scale and πc ≡ f 2
ππ is the

canonically normalized field.

• Power spectrum

The dimensionless power spectrum of curvature perturbations, ζ = −Hπ, is

∆2
ζ =

1

4π2

(
H

fπ

)4

.

The observed value, ∆2
ζ = 2× 10−9, implies fπ ≈ 58H.

• Non-Gaussianity

Small cs (or large M2) implies large interactions

L̃(3)
π = − 1

2Λ2

π̇c(∂̃iπc)
2

a2
+ · · · ,

where Λ2 ≡ f 2
π c

2
s/(1− c2

s) is the strong coupling scale.
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At the single-derivative level, the complete cubic action is

L̃(3)
π = − 1

2Λ2

[
π̇c(∂̃iπc)

2

a2
+ A π̇3

c

]
,

where

A ≡
(
−1 +

2

3

M 4
3

M 4
2

)
c2
s .

Naturalness demands A = O(1).

The typical size of the non-Gaussianity is

fNL ∼
(
fπ
Λ

)2

. 50 .

• Energy scales

A nice way to summarize all single-field inflation models is in terms of the

relevant energy scales:

superhorizon

strongly coupled

background

weakly coupled

(freeze-out)

(strong coupling)

(symmetry breaking)

(quantum gravity)

The hierarchy of scales is determined by observations.
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4. COSMOLOGICAL COLLIDER PHYSICS

In particle physics, the masses and spins of new particles are determined by

measuring the positions and angular dependences of resonances.

In cosmology, we can do something similar.

Extra massive particles during inflation can have two types of effects:

• (H/M)n :

They can lead to new self-interactions in the Goldstone effective action.

These effects are captured by the EFT of inflation.

• e−M/H :

They can spontaneously be created by the expansion of the spacetime.

This particle production is not captured by the EFT.

The late-time decay of these massive particles leads to distinct imprints in

the Goldstone correlation functions:

The masses and spins of the new particles are encoded in the momentum

dependence of the correlators (like in particle physics).

These signals will be hard to observe. Having said that, their detection would

be a direct probe of the UV completion of inflation (SUSY, strings, . . .).
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5. OUTLOOK

• The EFT approach is the most conservative way to describe inflation.

• It is directly related to cosmological observables:

π → ζ → δT → δg .

• The UV completion of inflation is encoded in subtle correlations inherited by

the effective action of the Goldstone boson of broken time translations

Ψ → π .

•We hope to measure these effects in future large-scale structure observations.

References

C. Cheung et al., The Effective Field Theory of Inflation, [arXiv:0709.0293]

D. Baumann and L. McAllister, Inflation and String Theory, [arXiv:1404.2601]

F. Piazza and F. Vernizzi, EFT of Cosmological Perturbations, [arXiv:1307.4350]

L. Senatore, Lectures on Inflation, [arXiv:1609.00716]

N. Arkani-Hamed and J. Maldacena, Cosmological Collider Physics, [arXiv:1503.08043]

17



Lecture 3.

EFT OF LSS

1. MOTIVATION

Late-time observables are related to the primordial fluctuations through non-

linear evolution:

At short distances, k > kmax, standard perturbation theory breaks down.

It is essential to understand how nonlinearities on short scales feed into the

evolution of long-wavelength modes. This is what an EFT does for a living.

The EFT of LSS extends perturbative control to larger kmax, allowing more

modes to be used in the analysis, N ∼ V k3
max. This greatly enhances our

ability to probe fundamental physics with LSS observations.
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2. STANDARD PERTURBATION THEORY

The evolution of dark matter particles is described by the collisionless Boltz-

mann equation. The first two moments are

continuity δ̇ + ∇ · [v(1 + δ)] = 0 ,

Euler v̇i +Hvi + v ·∇vi = −∇iΦ−
1

ρ
∂jτij .

In SPT, we set w ≡∇× v ≡ 0 and τij ≡ 0.

Going to Fourier space, and introducing θ ≡ ∂iv
i, we get

δ̇ + θ = −
∫

d3p

(2π)3
α(k,p) θp δk−p ≡ [θ ? δ]k ,

θ̇ +Hθ +
3

2
ΩmH2 δ = −

∫
d3p

(2π)3
β(k,p) θp θk−p ≡ [θ ? θ]k ,

where the kernel functions are

α(k,p) ≡ k · (k + p)

k2
,

β(k,p) ≡ 1

2
(k + p)2 k · p

k2p2
.

Schematically, we can write

Dφ = φ ? φ , where φ ≡
(
δ

θ

)
.

We solve this iteratively

φ = φ(1) + φ(2) + φ(3) + · · ·

where

φ(1)(τ) = G(τ, τi)φi ,

φ(2)(τ) =

∫ τ

τi

dτ ′G(τ, τ ′)φ(1)(τ ′) ? φ(1)(τ ′) ,

φ(3)(τ) =

∫ τ

τi

dτ ′G(τ, τ ′)φ(1)(τ ′) ? φ(2)(τ ′) .
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Diagrammatically, this can be represented as

• DM in EdS

For Ωm = 1, the Green’s function simplifies and we can perform the time

integrals:

δ(k, τ) =
∞∑
n=1

δ(n)(k, τ) =
∞∑
n=1

an(τ) δn(k) ,

with

δn(k) ≡
∫
p1

. . .

∫
pn

δD(p1 + . . .+ pn − k)Fn(p1, . . . ,pn) δin(p1) · · · δin(pn) .

The kernel functions satisfy

lim
q→∞

Fn(p1, . . . ,pn−2,q,−q) ∝ p2

q2
,

where p ≡ p1 + . . .+ pn−2.

• One-loop power spectrum

The power spectrum has the following perturbative expansion

tree level one-loop

〈δδ〉 = 〈δ(1)δ(1)〉+ 〈δ(2)δ(2)〉+ 2 〈δ(1)δ(3)〉+ · · ·

≡ P11(k) + P22(k) + 2P13(k) + · · ·

20



where

P11(k) = ∼

≡ P (k)

P22(k) = ∼

=

∫
d3q

(2π)3
P (q)P (|k− q|) |F2(q,k− q)|2

P13(k) = ∼

= 3P (k)

∫
d3q

(2π)3
P (q)F3(k,q,−q)
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• Scaling universe

For purposes of illustration, let us use scale-invariant initial conditions

P (k) ∝ kn .

Using the q →∞ limit of the kernel functions, we find

momentum cutoff

↓
P13(k) ∝ k2P (k)Λn+1

P22(k) ∝ k4Λ2n−1

↑
contact term

which are both divergent for n > −1.

In the real universe, the result is finite, but cutoff dependent.

The theory needs to be renormalized.

• Renormalized dark matter

For k < Λ, we define a new perturbative expansion

δ = δ(1) + δ(2) + δ(3) − c2
s(Λ)k2δ(1) + δJ .

The renormalized power spectrum is

P13(k) = 〈δ(1)δ(3)〉 − c2
s(Λ)k2〈δ(1)δ(1)〉

P22(k) = 〈δ(2)δ(2)〉+ 〈δJδJ〉

Where do these counterterms come from?
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3. EFFECTIVE FIELD THEORY APPROACH

Coarse-graining the Boltzmann equation for the dark matter gives an effective

stress tensor τij which includes the necessary counterterms:

To construct the effective theory, we split all fields into long and short modes

X = XL +XS ,

with

XL ≡ [X]Λ =

∫
d3x′WΛ(|x− x′|)X(x′) .

The effective stress tensor is made out of products of short modes:

τij = ρ̄vSi v
S
j −

1

8πG

[
ΦS
,kΦ

S
,kδij − 2ΦS

,iΦ
S
,j

]
.

The short modes are in the nonlinear regime and therefore not computable in

perturbation theory.

We “integrate out” the short modes by writing

[τij]Λ = 〈[τij]Λ〉 + ∆τij

↑ ↑
expectation value stochastic term
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The expectation value depends on the presence of the long-wavelength fields

and can be written as

∂i∂j〈[τij]Λ〉 = ρ̄

[
c2
s(Λ) ∂2δL − η(Λ)

∂2θL
H

+ · · ·
]
.

sound speed viscosity

The effective theory for the long-wavelength fields includes precisely the terms

required for renormalization:

θ̇L +HθL +
3

2
ΩmH2δL = θL ? θL −

1

ρ
∂i∂jτij

= θL ? θL − c2
s ∂

2δL −∆J + · · ·

The finite parts of the coefficients of the EFT have to measured (from simula-

tions or data).

After renormalization, the theory is better-behaved in the UV:

linear

1-loop SPT

2-loop SPT

1-loop EFT

2-loop EFT

N-body
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4. OUTLOOK

The EFT of LSS is the right way to describe the effects on short-scale nonlin-

earities on quasi-linear modes.

It has been extended to include

• Biasing

• Redshift space distortions

• IR resummation

• Primordial non-Gaussianity

• Neutrinos

• Modified gravity

Its application to data analysis remains to be explored.
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