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To Bayes or Not To Bayes 



The Theory That 
Would Not Die 
Sharon Bertsch McGrayne 

How Bayes' Rule Cracked the 
Enigma Code, Hunted Down 
Russian Submarines, and 
Emerged Triumphant from Two 
Centuries of Controversy



Probability Theory: 
The Logic of Science  
E.T. Jaynes  



Information Theory, 
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Learning Algorithms  
David MacKay   
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Expanding Knowledge 
“Doctrine of chances” (Bayes, 1763)

“Method of averages” (Laplace, 1788)
Normal errors theory (Gauss, 1809)

Bayesian model comparison (Jaynes, 
1994)

Metropolis-Hasting (1953)

Hamiltonian MC (Duane et al, 1987)

Nested sampling 
(Skilling, 2004)



Category # known
Stars 455,167,598

Galaxies 1,836,986

Asteroids 780,525

Quasars 544,103

Supernovae 17,533

Artificial satellites 5,524

Comets 3,511

Exoplanets 2564

Moons 169

Black holes 62

Solar system large 
bodies 13



“Bayesian” papers in 
astronomy (source: ads) 2000s: The age of Bayesian 

astrostatistics 

SN discoveries Exoplanet discoveries
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Bayes Theorem

• Bayes' Theorem follows from the basic laws of probability: For two propositions A, B 
(not necessarily random variables!)

P(A|B) P(B) = P(A,B) = P(B|A)P(A)

P(A|B) = P(B|A)P(A) / P(B)

• Bayes' Theorem is simply a rule to invert the order of conditioning of 
propositions. This has PROFOUND consequences! 
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The equation of knowledge

P (�|d, M) = P (d|�,M)P (�|M)
P (d|M)

Consider two propositions A, B. 
A = it will rain tomorrow, B = the sky is cloudy 
A = the Universe is flat, B = observed CMB temperature map

P(A|B)P(B) = P(A,B) = P(B|A)P(A)
Bayes’ Theorem  

Replace A → θ (the parameters of model M) and B → d (the data):

posterior  = likelihood x prior 
evidence

information 
from the data

state of knowledge 
before

state of knowledge 
after
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Why does Bayes matter?

 P(hypothesis|data)  

This is what our scientific 
questions are about 

(the posterior)

This is what classical 
statistics is stuck with 

(the likelihood)

≠ P(data|hypothesis)

Example: is a randomly selected person female?  (Hypothesis)

Data: the person is pregnant (d = pregnant)

P(pregnant | female ) = 0.03 P(female | pregnant ) = 1 
“Bayesians address the question everyone is interested in by using 
assumptions no–one believes, while frequentists use impeccable 

logic to deal with an issue of no interest to anyone”  
Louis Lyons 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Bayesian methods on the rise
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The real reasons to be Bayesian... 

• Efficiency: exploration of high-dimensional parameter spaces (e.g. with 
appropriate Markov Chain Monte Carlo) scales approximately linearly with 
dimensionality.


• Consistency: uninteresting (but important) parameters (e.g., instrumental 
calibration, unknown backgrounds) can be integrated out from the posterior with 
almost no extra effort and their uncertainty propagated to the parameters of 
interest.


• Insight: having to define a prior forces the user to think about their assumptions! 
Whenever the posterior is strongly dependent on them, this means the data are 
not as constraining as one thought. “There is no inference without assumptions”. 

... because it works! 



Roberto Trotta 

The matter with priors 

• In parameter inference, prior dependence will in principle vanish for strongly 
constraining data.  
A sensitivity analysis is mandatory for all Bayesian methods! 

Priors 

Likelihood (1 datum) 

Posterior after 1 datum Posterior after 100 data 
points 

Prior 

Likelihood 

Posterior 

Data 
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All the equations you’ll ever need!  

P (A|B) =
P (B|A)P (A)

P (B)

P (A) =
X

B

P (A,B) =
X

B

P (A|B)P (B)

(Bayes Theorem)

“Expanding the 
discourse” or 

marginalisation rule

Writing the joint in 
terms of the 
conditional 
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What does x=1.00±0.01 mean?

• Frequentist statistics (Fisher, Neymann, Pearson):  
E.g., estimation of the mean μ of a Gaussian distribution from a list of observed 
samples x1, x2, x3... 
The sample mean is the Maximum Likelihood estimator for μ: 
 
μML = Xav = (x1 + x2  + x3 + ... xN)/N


• Key point: 
in P(Xav), Xav is a random variable, i.e. one that takes on different values across an 
ensemble of infinite (imaginary) identical experiments.  Xav is distributed according to 
Xav ~ N(μ, σ2/N) for a fixed true μ 
The distribution applies to imaginary replications of data.

P (x) = 1⇥
2⇥⇤

exp
�
� 1

2
(x�µ)2

⇤2

⇥

Notation : x � N(µ, ⇥2)
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What does x=1.00±0.01 mean?

• Frequentist statistics (Fisher, Neymann, Pearson):  
The final result for the confidence interval for the mean 
 
P(μML - σ/N1/2 < μ < μML + σ/N1/2) = 0.683


• This means:  
If we were to repeat this measurements many times, and obtain a 1-sigma distribution 
for the mean, the true value μ would lie inside the so-obtained intervals 68.3% of the 
time


• This is not the same as saying: “The probability of μ to lie within a given interval is 
68.3%”. This statement only follows from using Bayes theorem.
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What does x=1.00±0.01 mean?
• Bayesian statistics (Laplace, Gauss, Bayes, Bernouilli, Jaynes):  
 
After applying Bayes therorem P(μ |Xav) describes the distribution of our degree of 
belief about the value of μ given the information at hand, i.e. the observed data. 


• Inference is conditional only on the observed values of the data. 

• There is no concept of repetition of the experiment. 
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Inference in many dimensions

Marginal posterior:
P (�1|D) =

�
L(�1, �2)p(�1, �2)d�2

Profile likelihood: 

L(�1) = max�2L(�1, �2)

Usually our parameter space is multi-dimensional: how 
should we report inferences for one parameter at the 
time?

FREQUENTISTBAYESIAN
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The Gaussian case 

• Life is easy (and boring) in Gaussianland: 

Profile likelihood Marginal posterior
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The good news 
• Marginalisation and profiling give exactly identical results for the linear Gaussian 

case. 

• This is not surprising, as we already saw that the answer for the Gaussian case is 

numerically identical for both approaches

• And now the bad news: THIS IS NOT GENERICALLY TRUE!

• A good example is the Neyman-Scott problem: 


• We want to measure the signal amplitude μi of N sources with an uncalibrated 
instrument, whose Gaussian noise level σ is constant but unknown.  


• Ideally, measure the amplitude of calibration sources or measure one source 
many times, and infer the value of σ 
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Neyman-Scott problem
• In the Neyman-Scott problem, no calibration source is available and we can only 

get 2 measurements per source. So for N sources, we have N+1 parameters and 
2N data points. 


• The profile likelihood estimate of σ converges to a biased value σ/sqrt(2) for N → 
∞


• The Bayesian answer has larger variance but is unbiased
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Neyman-Scott problem

Joint & Marginal Results for σ = 1

The marginal p(σ|D) and Lp(σ) differ dramatically!
Profile likelihood estimate converges to σ/

√
2.

The total # of parameters grows with the # of data.
⇒ Volumes along µi do not vanish as N → ∞.

11 / 15

Tom Loredo, talk at Banff 2010 workshop:

true value

Bayesian marginal
Profile likelihoodσ

μ

Joint posterior
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Confidence intervals: 
Frequentist approach
• Likelihood-based methods: determine the best fit parameters by finding the 

minimum of -2Log(Likelihood) = chi-squared 


• Analytical for Gaussian likelihoods 


• Generally numerical 


• Steepest descent, MCMC, ...  


• Determine approximate confidence intervals:  
Local Δ(chi-squared) method

θ

�2

��2 = 1

≈ 68% CL
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Credible regions: 
Bayesian approach
• Use the prior to define a metric on parameter space. 


• Bayesian methods: the best-fit has no special status. Focus on region of large 
posterior probability mass instead. 


• Markov Chain Monte Carlo (MCMC) 


• Nested sampling


• Hamiltonian MC 


• Determine posterior credible regions:  
e.g. symmetric interval around the  
mean containing 68% of samples 

SuperBayeS
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Marginalization vs Profiling
• Marginalisation of the posterior pdf (Bayesian) and profiling of the likelihood 

(frequentist) give exactly identical results for the linear Gaussian case. 

• But: THIS IS NOT GENERICALLY TRUE!

• Sometimes, it might be useful and informative to look at both.
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Marginalization vs profiling (maximising) 
Marginal posterior:

P (�1|D) =
�

L(�1, �2)p(�1, �2)d�2

Profile likelihood: 

L(�1) = max�2L(�1, �2)

θ2

θ1

Best-fit  
(smallest chi-squared)

(2D plot depicts likelihood contours - prior assumed flat over wide range)

⊗Profile  
likelihood

Best-fit Posterior  
mean

Marginal posterior

} Volume effect
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Marginalization vs profiling (maximising) 

θ2

θ1

Best-fit  
(smallest chi-squared)

(2D plot depicts likelihood contours - prior assumed flat over wide range)

⊗Profile  
likelihood

Best-fit Posterior  
mean

Marginal posterior

} Volume effect

Physical analogy:  (thanks to Tom Loredo) 

P �
�

p(�)L(�)d�

Q =
�

cV (x)T (x)dVHeat: 

Posterior: Likelihood  = hottest hypothesis 
Posterior = hypothesis with most heat



Markov Chain Monte Carlo 
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Exploration with “random scans”

• Points accepted/rejected in a in/out 
fashion (e.g., 2-sigma cuts)


• No statistical measure attached to 
density of points: no probabilistic 
interpretation of results possible, 
although the temptation cannot be 
resisted...


• Inefficient in high dimensional 
parameters spaces (D>5) 


• HIDDEN PROBLEM: Random scan 
explore only a very limited portion of 
the parameter space! 

One example:  
Berger et al (0812.0980) 

pMSSM scans  
(20 dimensions)
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Random scans explore only a small fraction of the 
parameter space

• “Random scans” of a high-
dimensional parameter space only 
probe a very limited sub-volume: 
this is the concentration of 
measure phenomenon.


• Statistical fact: the norm of D 
draws from U[0,1] concentrates 
around (D/3)1/2 with constant 
variance 

1

1
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Geometry in high-D spaces

• Geometrical fact: in D dimensions, most of the volume is near the boundary. The 
volume inside the spherical core of D-dimensional cube is negligible. 

Volume of cube

Volume of sphere

Ratio Sphere/Cube

1

1

Together, these two facts mean that random scan only explore a very small 
fraction of the available parameter space in high-dimesional models.
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Key advantages of the Bayesian approach
• Efficiency: computational effort scales ~ N rather than kN as in grid-scanning 

methods. Orders of magnitude improvement over grid-scanning.

• Marginalisation: integration over hidden dimensions comes for free.  

• Inclusion of nuisance parameters: simply include them in the scan and 

marginalise over them.  
• Pdf’s for derived quantities: probabilities distributions can be derived for any 

function of the input variables
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The general solution

• Once the RHS is defined, how do we evaluate the LHS?

• Analytical solutions exist only for the simplest cases (e.g. Gaussian linear model)

• Cheap computing power means that numerical solutions are often just a few clicks 

away! 

• Workhorse of Bayesian inference: Markov Chain Monte Carlo (MCMC) methods. A 

procedure to generate a list of samples from the posterior. 

P (�|d, I) � P (d|�, I)P (�|I)
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MCMC estimation

• A Markov Chain is a list of samples θ1, θ2, θ3,... whose density reflects the 
(unnormalized) value of the posterior 


•  A MC is a sequence of random variables whose (n+1)-th elements only depends on 
the value of the n-th element 


• Crucial property: a Markov Chain converges to a stationary distribution, i.e. one that 
does not change with time. In our case, the posterior. 


• From the chain, expectation values wrt the posterior are obtained very simply: 

P (�|d, I) � P (d|�, I)P (�|I)

⇥�⇤ =
⇥

d�P (�|d)� � 1
N

�
i �i

⇥f(�)⇤ =
⇥

d�P (�|d)f(�) � 1
N

�
i f(�i)
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Reporting inferences

• Once P(θ|d, I) found, we can report inference by: 


• Summary statistics (best fit point, average, mode)


• Credible regions (e.g. shortest interval containing 68% of the posterior probability 
for θ). Warning: this has not the same meaning as a frequentist confidence interval! 
(Although the 2 might be formally identical)


• Plots of the marginalised distribution, integrating out nuisance parameters (i.e. 
parameters we are not interested in). This generalizes the propagation of errors: 

P (�|d, I) =
�

d⇥P (�, ⇥|d, I)
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Gaussian case
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MCMC estimation

• Marginalisation becomes trivial: create bins along the dimension of interest and 
simply count samples falling within each bins ignoring all other coordinates 


• Examples (from superbayes.org) : 

2D distribution of samples  
from joint posterior

SuperBayeS

500 1000 1500 2000 2500 3000 3500

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

m0 (GeV)
Pr

ob
ab

ilit
y

SuperBayeS

500 1000 1500 2000 2500 3000 3500

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

m1/2 (GeV)

Pr
ob

ab
ilit

y

1D marginalised  
posterior  
(along y)

1D marginalised  
posterior  
(along x)

SuperBayeS

m1/2 (GeV)

0

500 1000 1500 2000

500

1000

1500

2000

2500

3000

3500



Roberto Trotta 

Non-Gaussian example

Bayesian posterior 
(“flat priors”)

Bayesian posterior 
(“log priors”)

Profile likelihood

Constrained Minimal Supersymmetric Standard Model (4 parameters)  
Strege, RT et al (2013)
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Fancier stuff 

SuperBayeS

500 1000 1500 2000

500

1000

1500

2000

2500

3000

3500

m1/2 (GeV)
 

 

ta
n 
β

10

20

30

40

50



Roberto Trotta 

The simplest MCMC algorithm

• Several (sophisticated) algorithms to build a MC are available: e.g. Metropolis-
Hastings, Hamiltonian sampling, Gibbs sampling, rejection sampling, mixture 
sampling, slice sampling and more... 


• Arguably the simplest algorithm is the Metropolis (1954) algorithm:  

• pick a starting location θ0 in parameter space, compute P0 = p(θ0|d)


• pick a candidate new location θc according to a proposal density q(θ0, θ1)


• evaluate Pc = p(θc|d) and accept θc with probability


• if the candidate is accepted, add it to the chain and move there; otherwise stay 
at θ0 and count this point once more.

� = min
�

Pc
P0

, 1
⇥
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Practicalities 
• Except for simple problems, achieving good MCMC convergence (i.e., sampling 

from the target) and mixing (i.e., all chains are seeing the whole of parameter space) 
can be tricky


• There are several diagnostics criteria around but none is fail-safe. Successful 
MCMC remains a bit of a black art! 


• Things to watch out for:


• Burn in time


• Mixing 


• Samples auto-correlation 
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MCMC diagnostics 

Burn in Mixing Power spectrum

10−3 10−2 10−1 100

10−4

10−2

100

k
m1/2 (GeV)

P(
k)

(see astro-ph/0405462 for details)
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MCMC samplers you might use 

• PyMC Python package: https://pymc-devs.github.io/pymc/  
Implements Metropolis-Hastings (adaptive) MCMC; Slice sampling; Gibbs sampling. 
Also has methods for plotting and analysing resulting chains. 


• emcee (“The MCMC Hammer”): http://dan.iel.fm/emcee  
Dan Foreman-Makey et al. Uses affine invariant MCMC ensemble sampler. 


• Stan (includes among others Python interface, PyStan): http://mc-stan.org/  
Andrew Gelman et al. Uses Hamiltonian MC.


• Practical example of straight line regression, installation tips and comparison 
between the 3 packages by Jake Vanderplas: http://jakevdp.github.io/blog/
2014/06/14/frequentism-and-bayesianism-4-bayesian-in-python/  
(check out his blog, Pythonic Preambulations) 

https://pymc-devs.github.io/pymc/
http://dan.iel.fm/emcee
http://mc-stan.org/
http://jakevdp.github.io/blog/2014/06/14/frequentism-and-bayesianism-4-bayesian-in-python/
http://jakevdp.github.io/blog/2014/06/14/frequentism-and-bayesianism-4-bayesian-in-python/
http://jakevdp.github.io/blog/2014/06/14/frequentism-and-bayesianism-4-bayesian-in-python/
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Bayesian hierarchical models

“True” values of 
observables

Population parameters 

Prior

Parameters of 
interest

Prior

INTRINSIC VARIABILITY

NOISE, SELECTION EFFECTS

Nuisance  
parameters

Latent variables

Data Observed values Calibration data

See Daniela Huppenkothen’s lecture on Wed! 
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Why “Hierarchical”? 
• In cosmology, we have many problems of interest 

where the “objects” of study are used as tracers for 
underlying phenomena


• Eg: 


• SNIa’s to measure d_L


• Galaxies to measure velocity fields, BAOs, growth 
of structure, lensing, … 


• Galaxy properties to measure scaling 
relationships 


• Stars to measure Milky Way gravitational 
potential/dark matter 


• …

• In many cases, we might or might not be interested 

in the objects themselves — insofar as they give us 
accurate (and unbiased) tracers for the physics we 
want to study 

Parameters

DATA
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Why “Models”? 
• By “model” in this context I mean a probabilistic representation of how the 

measured data arise from the theory

• We always need models: They incorporate our understanding of how the 

measurement process (and its subtleties, e.g. section effects) “filters” our view of 
the underlying physical process 


• The more refined the model, the more information we can extract from the data: 
measurement noise is unavoidable (at some level), but supplementing our inferential 
setup with a probabilistic model takes some “heavy lifting” away from the data 


• The key is to realise that there is a difference between “measurement noise” and 
intrinsic variability — and each needs to be modelled individually 

Params

Objects Data 

N O D 
In general:

N + O > D  
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Mathematical formulation

p(params | data) ∝ p(data | params)p(params)

p(data|params) ∝ ∫p(data, true, pop | params) dtrue dpop

                          =  ∫p(data | true) p(true | pop) p(pop) dtrue drop

Measurement errors

Intrinsic variability

Population-level priors

The posterior distribution can be expanded in the usual Bayesian way:
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Gaussian linear model 
• Intuition can be gained from the “simple” problem of linear regression in the 

presence of measurement errors on both the dependent and independent variable 
and intrinsic scatter in the relationship (e.g., Gull 1989, Gelman et al 2004, Kelly 
2007):  

yi = b+ axi

x

i

⇠ p(x| ) = N
xi(x?

, R

x

) POPULATION 
DISTRIBUTION

yi|xi ⇠ Nyi(b+ axi,�
2) INTRINSIC VARIABILITY

x̂

i

, ŷ

i

|x
i

, y

i

⇠ N
x̂i,ŷi([xi

, y

i

],⌃2) MEASUREMENT ERROR

Model: unknown 
parameters of 
interest (a,b) 
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Malmquist bias revisited 

• Malmquist (1925) bias: intrinsically brighter objects are easier to detect, hence 
quantities derived from a magnitude (brightness) limited sample are biased high.

log(distance)

lo
g(

Lu
m

in
os

ity
)

Unobservable

1. Observed objects 
have mean luminosity 
biased high


2. Noise more likely to 
up-scatter lower 
luminosity object into 
detection threshold 
than vice-versa (as 
less luminous objects 
are more frequent)

☆

☆
☆

☆
☆

☆
☆

☆

☆ ☆

☆

☆

☆

☆

log(frequency)



latent x

lat
en

t y
INTRINSIC VARIABILITY

observed x

ob
se
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ed

 y

+ MEASUREMENT ERROR

observed x

Ke
lly

 (2
00

7)

latent  
distrib’on

PD
F

• Modeling the latent distribution of the 
independent variable accounts for “Malmquist 
bias” of the second kind 


• An observed x value far from the origin is more 
probable to arise from up-scattering of a lower 
latent x value (due to noise) than down-
scattering of a higher (less frequent) x value 

Flux 
limit

TRUE VALUES “SMALL” ERRORS

“LARGE” ERRORS



The key parameter is noise (σx) to population (Rx) 
characteristic variability scale ratio 

σx/Rx <<1

Bayesian (black) marginal 
posterior identical to Chi-

Squared (blue)

tru
e

σx/Rx ~1

Bayesian marginal posterior 
broader but less biased than 

Chi-Squared M
ar

ch
, R

T 
et

 a
l (2

01
1)tru

e

yi = b+ axi

σx σx Rx

Rx
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Slope reconstruction
Rx = σx2/Var(x): ratio of the covariate measurement variance to observed variance  

Kelly, Astr. J., 665, 1489-1506 (2007)

Ordinary Least 
Square

Maximum 
Likelihood

BIASSED 
LOW

BIASSED 
HIGH

Chi-Square 
incl variance

APPROX 
UNBIASSED
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Why should you care? 
Rx = σx2/Var(x) = 1 in this example: Comparing the MLE (dashed) with  

the Bayesian Hierarchical Model Posterior (histogram)

Kelly, Astr. J., 665, 1489-1506 (2007)
Slope

True 

Bayesian 

MLE 

Standard MLE (or 
Least Squares/
Chi-Squared) fits 
are biased! 

(even if you 
artificially inflate the 
errors to get Chi-
Squared/dof ~ 1)
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Supernovae Type Ia Cosmology example
• Coverage of Bayesian 1D marginal posterior CR and of 1D Chi2 profile likelihood CI 

computed from 100 realizations


• Bias and mean squared error (MSE) defined as 
 
   is the posterior mean (Bayesian) or the  
   maximum likelihood value (Chi2).
✓̂

Co
ve

ra
ge

Red: Chi2 Blue: Bayesian Results: 

Coverage: generally improved 
(but still some undercoverage 
observed)


Bias: reduced by a factor ~ 2-3 
for most parameters


MSE: reduced by a factor 1.5-3.0 
for all parameters
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Adding object-by-object classification
• “Events” come from two different populations (with different intrinsic scatter around 

the same linear model), but we ignore which is which: 

LATENT OBSERVED



Roberto Trotta 

Reconstruction (N=400)
Parameters of interest

Classification of objects Population-level properties


