
Analytics, Inference and Computation in

Cosmology: Exercises on Bayesian Inference

Roberto Trotta, Imperial College London

Sept 2018

Contents

1 Bayesian Reasoning 1

2 Bayesian Parameter Estimation 2
2.1 Coin Tossing: Binomial Distribution . . . . . . . . . . . . . . . . 2
2.2 The Gaussian Linear Model . . . . . . . . . . . . . . . . . . . . . 2

2.2.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2.2 Two-dimensional Example . . . . . . . . . . . . . . . . . . 3

2.3 Poisson counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3.1 Maximum Likelihood Approach . . . . . . . . . . . . . . . 5
2.3.2 The On/Off Problem . . . . . . . . . . . . . . . . . . . . . 5
2.3.3 On/Off Problem: Bayesian version . . . . . . . . . . . . . 6

3 Toy Cosmological Parameter Inference (Harder) 7

1 Bayesian Reasoning

A cohort chemistry undergraduates are screened for a dangerous medical con-
dition called Bacillum Bayesianum (BB). The incidence of the condition in the
population (i.e., the probability that a randomly selected person has the disease)
is estimated at about 1%. If the person has BB, the test returns positive 95% of
the time. There is also a known 5% rate of false positives, i.e. the test returning
positive even if the person is free from BB. One of your friends takes the test
and it comes back positive. Here we examine whether your friend should be
worried about her health.

(i) Translate the information above in suitably defined probabilities. The two
relevant propositions here are whether the test returns positive (denote
this with a + symbol) and whether the person is actually sick (denote this
with the symbol BB = 1. Denote the case when the person is healthy as
BB = 0).
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(ii) Compute the conditional probability that your friend is sick, knowing that
she has tested positive, i.e., find P (BB = 1|+).

(iii) Imagine screening the general population for a very rare disease, whose
incidence in the population is 10−6 (i.e., one person in a million has the
disease on average, i.e. P (BB = 1) = 10−6). What should the reliability
of the test (i.e., P (+|BB = 1)) be if we want to make sure that the
probability of actually having the disease after testing positive is at least
99%? Assume first that the false positive rate P (+|BB = 0) (i.e, the
probability of testing positive while healthy), is 5% as in part (a). What
can you conclude about the feasibility of such a test?

2 Bayesian Parameter Estimation

2.1 Coin Tossing: Binomial Distribution

A coin is tossed N times and heads come up H times.

(i) What is the likelihood function? Identify clearly the parameter, θ, and
the data.

(ii) What is a reasonable, non-informative prior on θ?

(iii) Compute the posterior probability for θ. Recall that θ is the probability
that a single flip will give heads. This integral will prove useful:∫ 1

0

dθθN (1− θ)M =
Γ(N + 1)Γ(M + 1)

Γ(N +M + 2)
. (1)

(iv) Determine the posterior mean and standard deviation of θ.

(v) Plot your results as a function of H for N = 10, 100, 1000.

2.2 The Gaussian Linear Model

This problem takes you through the steps to derive the posterior distribution for
a quantity of interest θ, in the case of a Gaussian prior and Gaussian likelihood,
for the 1-dimensional case.

2.2.1 Theory

Let us assume that we have madeN independent measurements, x̂ = {x̂1, x̂2, . . . , x̂N}
of a quantity of interest θ (this could be the temperature of an object, the dis-
tance of a galaxy, the mass of a planet, etc). We assume that each of the
measurements in independently Gaussian distributed with known experimental
standard deviation σ. Let us denote the sample mean by x̄, i.e.

x̄ =
1

N

N∑
i=1

x̂i. (2)
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Before we do the experiment, our state of knowledge about the quantity of
interest θ is described by a Gaussian distribution on θ, centered around 0 (we
can always choose the units in such a way that this is the case). Such a prior
might come e.g. from a previous experiment we have performed. The new
experiment is however much more precise, i.e. Σ � σ. Our prior state of
knowledge be written in mathematical form as the following Gaussian pdf:

p(θ) ∼ N (0,Σ2). (3)

(i) Write down the likelihood function for the measurements and show that
it can be recast in the form:

L(θ) = L0 exp

(
−1

2

(θ − x̄)2

σ2/N

)
, (4)

where L0 is a constant that does not depend on θ.

(ii) By using Bayes theorem, compute the posterior probability for θ after the
data have been taken into account, i.e. compute p(θ|x̂). Show that it is

given by a Gaussian of mean x̄ Σ2

Σ2+σ2/N and variance
[

1
Σ2 + N

σ2

]−1
.

Hint: you may drop the normalization constant from Bayes theorem, as it
does not depend on θ

(iii) Show that as N → ∞ the posterior distribution becomes independent of
the prior.

(iv) Show that as N → ∞ the mean of the posterior distribution converges
to the MLE of the mean for θ. This means that for a large number of
measurements, the Bayesian result matches the frequentist MLE result.

2.2.2 Two-dimensional Example

Now we specialize to the case n = 2, i.e. we have two parameters of interest,
θ = {θ1, θ2} and the linear function we want to fit is given by

y = θ1 + θ2x. (5)

(In the formalism above, the basis vectors are X1 = 1, X2 = x).
Table 1 gives an array of d = 10 measurements y = {y1, y2, . . . , y10}, together

with the values of the independent variable xi. Assume that the uncertainty in
the same for all measurements, i.e. τi = 0.1 (i = 1, . . . , 10). You may further
assume that measurements are uncorrelated. The data set is shown in the left
panel of Fig. 1

(i) Assume a Gaussian prior with Fisher matrix P = diag
(
10−2, 10−2

)
for θ.

Find the posterior distribution for θ given the data, and plot it in 2 di-
mensions in the (θ1, θ2) plane (see right panel of Fig. 1).

Use the appropriate contour levels to demarcate 1, 2 and 3 sigma joint
credible intervals of the posterior.
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Table 1: Data sets for the Gaussian linear model exercise. You may assume
that all data points are independently and identically distributed with standard
deviation of the noise σ = 0.1.

x y
0.8308 0.9160
0.5853 0.7958
0.5497 0.8219
0.9172 1.3757
0.2858 0.4191
0.7572 0.9759
0.7537 0.9455
0.3804 0.3871
0.5678 0.7239
0.0759 0.0964

x

y

Example data set
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Figure 1: Left panel: data set for the Gaussian linear problem. The solid line
shows the true value of the linear model from which the data have been gener-
ated, subject to Gaussian noise. Right panel: 2D credible intervals from the pos-
terior distribution for the parameters. The the blue diamond is the Maximum
Likelihood Estimator, whose value for this data set is x = −0.0136, y = 1.3312.
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(ii) In a language of your choice, write an implementation of the Metropolis-
Hastings Markov Chain Monte Carlo algorithm, and use it to obtain sam-
ples from the posterior distribution.

(iii) If you are already familiar with Metropolis-Hastings, write an implemen-
tation of Hamiltonian Monte Carlo instead.

(iv) Plot equal weight samples in the (θ1, θ2) space, as well as marginalized
1-dimensional posterior distributions for each parameter.

(v) Compare the credible intervals that you obtained from the MCMC with
the analytical solution.

2.3 Poisson counts

2.3.1 Maximum Likelihood Approach

An astronomer measures the photon flux from a distant star using a very sensi-
tive instrument that counts single photons. After one minute of observation, the
instrument has collected r̂ photons. One can assume that the photon counts,
r̂, are distributed according to the Poisson distribution. The astronomer wishes
to determine λ, the emission rate of the source.

(i) What is the likelihood function for the measurement? Identify explicitly
what is the unknown parameter and what are the data in the problem.

(ii) If the true rate is λ = 10 photons/minute, what is the probability of
observing r̂ = 15 photons in one minute?

(iii) Find the Maximum Likelihood Estimate for the rate λ (i.e., the number
of photons per minute). What is the maximum likelihood estimate if the
observed number of photons is r̂ = 10?

2.3.2 The On/Off Problem

Upon reflection, the astronomer realizes that the photon flux is the superposition
of photons coming from the star plus “background” photons coming from other
faint sources within the field of view of the instrument. The background rate
is supposed to be known, and it is given by λb photons per minute. This can
be estimated e.g. by pointing the telescope away from the source (the “off”
measurement) and measuring the photon counts there, where the telescope is
only picking up background photons. This estimate of the background comes
with an uncertainty, of course, but we’ll ignore this for now. She then points to
the star again, measuring r̂t photons in a time tt (this is the “on” measurement).

(i) What is her maximum likelihood estimate of the rate λs from the star in
this case? Hint: The total number of photons r̂t is Poisson distributed
with rate λ = λs + λb, where λs is the rate for the star.
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(ii) What is the source rate (i.e., the rate for the star) if r̂t = 30, tt = 2 mins,
and λb = 12 photons per minute?

(iii) Is it possible that the measured average rate from the source (i.e., r̂t/tt)
is less than λb? Discuss what happens in this case and comment on the
physicality of this result.

2.3.3 On/Off Problem: Bayesian version

We revisit the On/Off problem but this time from a Bayesian perspective, which
fully and automatically accounts for uncertainty in the background rate esti-
mate.

We consider first the “off” measurement, which collects noff photons in a
time toff.

(i) Assuming a uniform prior on the background rate b, find the posterior
distribution for b from the off measurement.

(ii) Now consider the “on” measurement, which collects a number non of pho-
tons during a time ton. This is a measurement for the combined rate s+ b
(where s denotes the source rate). Write down the likelihood function for
this measurement.

(iii) Assume again a uniform prior on s, and a prior on b given by the pos-
terior of the “off” measurement1, find the (unnormalized) joint posterior
distribution for s, b, and show that is is given by the expression:

p(s, b|non, ton) ∝ (s+ b)nonbnoff exp(−ston) exp(−b(ton + toff)) for s, b ≥ 0.
(6)

(iv) Compute analytically the marginal posterior pdf for the signal, s, by in-
tegrating the joint posterior over b, i.e.

p(s|non, ton) =

∫ ∞
0

p(s, b|non, ton)db. (7)

. Plot the resulting marginal distribution for the signal s for the following
two cases, and compare the result with the MLE result:

(a) non = 5, ton = 1, noff = 2, toff = 1

(b) non = 2, ton = 2, noff = 3, toff = 1

(c) non = 8, ton = 1, noff = 2, toff = 4

1The posterior for the “off” measurement can be used as prior on b for the “on” mea-
surement. Alternatively, you can write down the joint posterior on s, b conditional on both
measurements, with an ur-prior on b that is just the uniform prior (i.e., the prior that you
used for the “off” measurement). Both procedures will give the same result, as they should
(consistency of Bayesian reasoning is always in-built). Convince yourself that this is indeed
the case!
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Hint: use the binomial expansion: (s+ b)non =
∑non

k=0

(
non

k

)
snon−kbk.

(v) Write a code to perform MCMC sampling of the joint posterior for s, b
(in Python you may want to use the PyMC package). Plot equal-weight
samples from the posterior in parameter space for non = 10, ton = 2,
noff = 3, toff = 1. Marginalize over b numerically and compare the resulting
numerical estimate with the analytical result above.

3 Toy Cosmological Parameter Inference (Harder)

Supernovae type Ia can be used as standardizable candles to measure distances
in the Universe. This series of problems explores the extraction of cosmological
information from a simplified SNIa toy model.

The cosmological parameters we are interested in constraining are

C = {Ωm,ΩΛ, h} (8)

where Ωm is the matter density (in units of the critical energy density) and ΩΛ

is the dark energy density, assumed here to be in the form of a cosmological
constant, i.e. w = −1 at all redshifts. In the following, we will fix h = 0.72 for
simplicity, where the Hubble constant today is given by H0 = 100hkm/s/Mpc.

In an FRW cosmology defined by the parameters C , the distance modulus µ
(i.e., the difference between the apparent and absolute magnitudes, µ = m−M)
to a SN at redshift z is given by

µ(z,C ) = 5 log

[
DL(z,Ωm,ΩΛ, h)

Mpc

]
+ 25, (9)

where DL denotes the luminosity distance to the SN. Recalling that DL =
cdL/H0, We can rewrite this as

µ(z,C ) = η + 5 log dL(z,Ωm,ΩΛ), (10)

where

η = −5 log
100h

c
+ 25 (11)

and c is the speed of light in km/s. We have defined the dimensionless luminosity
distance

dL(z,Ωm,ΩΛ) =
(1 + z)√
|Ωκ|

sinn{
√
|Ωκ|

∫ z

0

dz′[(1+z′)3Ωm+ΩΛ+(1+z′)2Ωκ]−1/2}.

(12)
The curvature parameter is given by the constraint equation

Ωκ = 1− Ωm − ΩΛ (13)

and the function

sinn(x) =

 x for a flat Universe (Ωκ = 0);
sin(x) for a closed Universe (Ωκ < 0);
sinh(x) for an open Universe (Ωκ > 0).

(14)
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We now assume that from each SNIa in our sample we get a measurement
of the distance modulus with Gaussian noise2, i.e., that the likelihood function
for each SN i (i = 1, . . . , N) is of the form

Li(zi,C ,M) =
1√

2πσi
exp

(
−1

2

(µ̂i − µ(zi,C ))2

σ2
i

)
. (15)

The observed distance modulus is given by µ̂i = m̂i − M , where m̂i is the
observed apparent magnitude and M is the intrinsic magnitude of the SNIa.
We assume that each SN observation is independent of all the others.

The provided data file3 (SNe simulated.dat) contains simulated observa-
tions from the above simplified model of N = 300 SNIa. The two columns give
the redshift zi and the observed apparent magnitude m̂i. The observational
error is the same for all SNe, σi = σ = 0.4 mag for i = 1, . . . , N .

A plot of the data set is shown in the left panel of Fig. 2. The characteristics
of the simulated SNe are designed to mimic currently available datasets (see [6,
1, 5, 7, 3]).

(i) We assume that the intrinsic magnitude4 is known and fix M = M0 =
−19.3 and that h = 0.72. We also assume that the observational error is
known, given by the value above.

Using a language of your choice, write a code to carry out an MCMC
sampling of the posterior probability for (Ωm,ΩΛ) and plot the resulting
68% and 95% posterior regions, both in 2D and marginalized to 1D, using
uniform priors on (Ωm,ΩΛ) (be careful to define them explicitly).

You should obtain a result similar to the 2D plot shown in the right panel
of Fig. 2.

(ii) † Add the quantity σ (the observational error) to the set of unknown
parameters and estimate it from the data along with C . Notice that since
σ is a “scale parameter”, the appropriate (improper) prior is p(σ) ∝ 1/σ
(see [4] for a justification).

(iii) The location of the peaks in the CMB power spectrum gives a precise
measurement of the angular diameter distance to the last scattering sur-
face, divided by the sound horizon at decoupling. This approximately
translates into an effective constraint (see [8], Fig. 20) on the following
degenerate combination of Ωm and ΩΛ:

1.41ΩΛ + Ωm = 1.30± 0.04. (16)

2We neglect the important issue of applying the empirical corrections known as Phillip’s
relations to the observed light curve. This is of fundamental important in order to reduce
the scatter of SNIa within useful limits for cosmological distance measurements, but it would
introduce a technical complication here without adding to the fundamental scope of this
exercise.

3Thanks to Marisa March for help with the simulation.
4In reality the SNe intrinsic magnitude is not fixed, but there is an “intrinsic disper-

sion” (even after Phillips’ corrections) reflecting perhaps intrinsic variability in the explosion
mechanism, or environmental parameters which are currently poorly understood.
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Figure 2: Left: Simulated SNIa dataset, SNe simulated.dat. The solid line is
the true underlying cosmology. Right: constraints on Ωm,ΩΛ from this dataset,
with contours delimiting 2D joint 68% and 95% credible regions (uniform priors
on the variables Ωm,ΩΛ, assuming M = M0 fixed and h = 0.72). The red cross
denotes the true value.

Add this constraint (assuming a Gaussian likelihood, with the above mean
and standard deviation) to the SNIa likelihood and plot the ensuing com-
bined 2D and 1D limits on (Ωm,ΩΛ).

(iv) The measurement of the baryonic acoustic oscillation scale in the galaxy
power spectrum at small redshift gives an effective constraint on the an-
gular diameter distance DA out to z ∼ 0.3. This measurement can be
summarized as [2]:

DA(z = 0.57) = (1408± 45) Mpc. (17)

Add this constraints (again assuming a Gaussian likelihood) to the above
CMB+SNIa limits and plot the resulting combined 2D and 1D limits on
(Ωm,ΩΛ).
Hint: recall that DL(z) = (1 + z)2DA(z).
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