

Frequentist hypothesis testing

- Warning: frequentist hypothesis testing (e.g., likelihood ratio test) cannot be interpreted as a statement about the probability of the hypothesis!
- Example: to test the null hypothesis $\mathrm{H}_{0}: \theta=0$, draw n normally distributed points (with known variance σ^{2}). The X^{2} is distributed as a chi-square distribution with ($n-1$) degrees of freedom (dof). Pick a significance level a (or p-value, e.g. $a=0.05$). If $P\left(x^{2}\right.$ $>X^{2}$ obs) < a reject the null hypothesis.
- This is a statement about the likelihood of observing data as extreme or more extreme than have been measured assuming the null hypothesis is correct.
- It is not a statement about the probability of the null hypothesis itself and cannot be interpreted as such! (or you'll make gross mistakes)
- The use of p-values implies that a hypothesis that may be true can be rejected because it has not predicted observable results that have not actually occurred. (Jeffreys, 1961)

Exercice: Is the coin fair?

Blue Team: $\mathrm{N}=12$ is fixed, H the random variable
Red Team: $\mathrm{H}=3$ is fixed, N the random variable
Question: What is the p-value for the null hypothesis?

DATA: TTHTHTTTTTTH

The significance of significance

- Important: A 2-sigma result does not wrongly reject the null hypothesis 5\% of the time: at least 29\% of 2-sigma results are wrong!
- Take an equal mixture of $\mathrm{H}_{0}, \mathrm{H}_{1}$
- Simulate data, perform hypothesis testing for H_{0}
- Select results rejecting H_{0} at (or within a small range from) 1-a CL (this is the prescription by Fisher)
- What fraction of those results did actually come from H_{0} ("true nulls", should not have been rejected)?

p -value	sigma	fraction of true nulls	lower bound
0.05	1.96	0.51	0.29
0.01	2.58	0.20	0.11
0.001	3.29	0.024	0.018

Recommended reading:
Sellke, Bayarri \& Berger, The American Statistician, 55, 1 (2001)

Bayesian model comparison

The 3 levels of inference

LEVEL 1

I have selected a model M and prior $\mathrm{P}(\theta \mid \mathrm{M})$

Parameter inference
What are the favourite values of the parameters? (assumes M is true)

$$
P(\theta \mid d, M)=\frac{P(d \mid \theta, M) P(\theta \mid M)}{P(d \mid M)} \quad \text { odds }=\frac{\mathrm{P}\left(\mathrm{M}_{0} \mid \mathrm{d}\right)}{\mathrm{P}\left(\mathrm{M}_{1} \mid \mathrm{d}\right)} \quad P(\theta \mid d)=\sum_{i} P\left(M_{i} \mid d\right) P\left(\theta \mid d, M_{i}\right)
$$

Examples of model comparison questions

ASTROPARTICLE

Gravitational waves detection
Do cosmic rays correlate with AGNs?
Which SUSY model is 'best'?
Is there evidence for DM modulation?
Is there a DM signal in gamma ray/ neutrino data?

COSMOLOGY

Is the Universe flat?
Does dark energy evolve?
Are there anomalies in the CMB?
Which inflationary model is 'best'? Is there evidence for modified gravity?
Are the initial conditions adiabatic?

Many scientific questions are of the model comparison type

ASTROPHYSICS

Exoplanets detection
Is there a line in this spectrum?
Is there a source in this image?

$$
P(\theta \mid d, M)=\frac{P(d \mid \theta, M) P(\theta \mid M)}{P(d \mid M)}
$$

The evidence is the integral of the likelihood over the prior:

$$
P(d \mid M)=\int_{\Omega} d \theta P(d \mid \theta, M) P(\theta \mid M)
$$

Bayes' Theorem delivers the model's posterior:

$$
P(M \mid d)=\frac{P(d \mid M) P(M)}{P(d)}
$$

When we are comparing two models:

$$
\frac{P\left(M_{0} \mid d\right)}{P\left(M_{1} \mid d\right)}=\frac{P\left(d \mid M_{0}\right)}{P\left(d \mid M_{1}\right)} \frac{P\left(M_{0}\right)}{P\left(M_{1}\right)}
$$

$$
B_{01} \equiv \frac{P\left(d \mid M_{0}\right)}{P\left(d \mid M_{1}\right)}
$$

Scale for the strength of evidence

- A (slightly modified) Jeffreys' scale to assess the strength of evidence

$\|\mathrm{nB}\|$	relative odds	favoured model's probability	Interpretation
<1.0	$<3: 1$	<0.750	not worth mentioning
<2.5	$<12: 1$	0.923	weak
<5.0	$<150: 1$	0.993	moderate
>5.0	$>150: 1$	>0.993	strong

Bayesian model comparison of 193 models Higgs inflation as reference model
Martin, RT+14

An automatic Occam's razor

- Bayes factor balances quality of fit vs extra model complexity.
- It rewards highly predictive models, penalizing "wasted" parameter space

The evidence as predictive probability

- The evidence can be understood as a function of d to give the predictive probability under the model M :

Simple example: nested models

- This happens often in practice: we have a more complex model, M_{1} with prior $\mathrm{P}\left(\theta \mid \mathrm{M}_{1}\right)$, which reduces to a simpler model (M_{0}) for a certain value of the parameter, e.g. $\theta=\theta^{*}=0$ (nested models)
- Is the extra complexity of M_{1} warranted by the data?

Simple example: nested models

Define: $\lambda \equiv \frac{\hat{\theta}-\theta^{*}}{\delta \theta}$
For "informative" data:

wasted parameter
space
(favours simpler model)

$$
\begin{aligned}
& \text { mismatch of } \\
& \text { prediction with } \\
& \text { observed data } \\
& \text { (favours more } \\
& \text { complex model) }
\end{aligned}
$$

The rough guide to model comparison

"Prior-free" evidence bounds

- What if we do not know how to set the prior? For nested models, we can still choose a prior that will maximise the support for the more complex model:

Maximum evidence for a detection

- The absolute upper bound: put all prior mass for the alternative onto the observed maximum likelihood value. Then

$$
B<\exp \left(-\chi^{2} / 2\right)
$$

- More reasonable class of priors: symmetric and unimodal around $\Psi=0$, then ($\alpha=$ significance level)

$$
B<\frac{-1}{\exp (1) \alpha \ln \alpha}
$$

If the upper bound is small, no other choice of prior will make the extra parameter significant.

Sellke, Bayarri \& Berger, The American Statistician, 55, 1 (2001)

How to interpret the "number of sigma's"

a sigma	Absolute bound on InB (B)	"Reasonable" bound on InB (B)	
0.05	2	2.0 $(7: 1)$ weak	0.9 $(3: 1)$ undecided
0.003	3	4.5 $(90: 1)$ moderate	3.0 $(21: 1)$ moderate
0.0003	3.6	6.48 $(650: 1)$ strong	5.0 $(150: 1)$ strong

Rule of thumb:
 interpret a n-sigma result as a (n-1)-sigma result

Figure 4. Comparison of $\underline{B}\left(x, G_{u s}\right)$ and P Values.
Sellke, Bayarri \& Berger, The American Statistician, 55, 1 (2001)

Computing the model likelihood

$$
\begin{array}{lc}
\text { Model likelihood: } & P(d \mid M)=\int_{\Omega} d \theta P(d \mid \theta, M) P(\theta \mid M) \\
\text { Bayes factor: } & B_{01} \equiv \frac{P\left(d \mid M_{0}\right)}{P\left(d \mid M_{1}\right)}
\end{array}
$$

- Usually computational demanding: it's a multi-dimensional integral, averaging the likelihood over the (possibly much wider) prior
- I'll present two methods used by cosmologists:
- Savage-Dickey density ratio (Dickey 1971): Gives the Bayes factor between nested models (under mild conditions). Can be usually derived from posterior samples of the larger (higher D) model.
- Nested sampling (Skilling 2004): Transforms the D-dim integral in 1D integration. Can be used generally (within limitations of the efficiency of the sampling method adopted).

The Savage-Dickey density ratio

Dickey J. M., 1971, Ann. Math. Stat., 42, 204

- This method works for nested models and gives the Bayes factor analytically.
- Assumptions:
- Nested models: M_{1} with parameters (Ψ, ω) reduces to Mo_{0} for e.g. $\omega=\omega_{*}$
- Separable priors: the prior $\pi_{1}\left(\Psi, \omega \mid \mathrm{M}_{1}\right)$ is uncorrelated with $\pi_{0}\left(\Psi \mid \mathrm{M}_{0}\right)$
- Result:

$$
B_{01}=\frac{p\left(\omega_{\star} \mid d\right)}{\pi_{1}\left(\omega_{\star}\right)}
$$

- The Bayes factor is the ratio of the normalised (1D) marginal posterior on the additional parameter in M_{1} over its prior, evaluated at the value of the parameter for which M_{1} reduces to M_{0}.

$\omega=\omega_{*}$

Marginal posterior under \mathbf{M}_{1}

Derivation of the SDDR

RT, Mon.Not.Roy.Astron.Soc. 378 (2007) 72-82
$P\left(d \mid M_{0}\right)=\int d \Psi \pi_{0}(\Psi) p\left(d \mid \Psi, \omega_{\star}\right) \quad P\left(d \mid M_{1}\right)=\int d \Psi d \omega \pi_{1}(\Psi, \omega) p(d \mid \Psi, \omega)$
Divide and multiply B_{01} by:

$$
\begin{aligned}
& p\left(\omega_{\star} \mid d\right)=\frac{p\left(\omega_{\star}, \Psi \mid d\right)}{p\left(\Psi \mid \omega_{\star}, d\right)} \\
& B_{01}=p\left(\omega_{\star} \mid d\right) \int d \Psi \frac{\pi_{0}(\Psi) p\left(d \mid \Psi, \omega_{\star}\right)}{P\left(M_{1} \mid d\right)} \frac{p\left(\Psi \mid \omega_{\star}, d\right)}{p\left(\omega_{\star}, \Psi \mid d\right)}
\end{aligned}
$$

Since:
$p\left(\omega_{\star}, \Psi \mid d\right)=\frac{p\left(d \mid \omega_{\star}, \Psi\right) \pi_{1}\left(\omega_{\star}, \Psi\right)}{P\left(M_{1} \mid d\right)}$

$$
B_{01}=p\left(\omega_{\star} \mid d\right) \int d \Psi \frac{\pi_{0}(\Psi) p\left(\Psi \mid \omega_{\star}, d\right)}{\pi_{1}\left(\omega_{\star}, \Psi\right)}
$$

Assuming separable priors:

$$
\pi_{1}(\omega, \Psi)=\pi_{1}(\omega) \pi_{0}(\Psi)
$$

$$
B_{01}=\frac{p\left(\omega_{\star} \mid d\right)}{\pi_{1}\left(\omega_{\star}\right)} \int d \Psi p\left(\Psi \mid \omega_{\star}, d\right)=\frac{p\left(\omega_{\star} \mid d\right)}{\pi_{1}\left(\omega_{\star}\right)}
$$

SDDR: Some comments

- For separable priors (and nested models), the common parameters do not matter for the value of the Bayes factor
- No need to spend time/resources to average the likelihoods over the common parameters
- Role of the prior on the additional parameter is clarified: the wider, the stronger the Occam's razor effect (due to dilution of the predictive power of model 1)
- Sensitivity analysis simplified: only the prior/scale on the additional parameter between the models needs to be considered.
- Notice: SDDR does not assume Gaussianity, but it does require sufficiently detailed sampling of the posterior to evaluate reliably its value at $\omega=\omega_{*}$.

$\omega=\omega_{*}$

$\omega=\omega_{*}$

Accuracy tests (Normal case)

- Tests with variable dimensionality (D) and number of MCMC samples
- λ is the distance of peak posterior from ω_{*} in units of posterior std dev
- SDDR accurate with standard MCMC sampling up to 20-D and $\lambda=3$
- Accurate estimates further in the tails might required dedicated sampling schemes

$$
\lambda=\left(\omega_{\mathrm{ML}}-\omega_{*}\right) / \sigma
$$

RT, MNRAS, 378, 72-82 (2007)

- Proposed by John Skilling in 2004: the idea is to convert a D-dimensional integral in a 1D integral that can be done easily.
- As a by-product, it also produces posterior samples: model likelihood and parameter inference obtained simultaneously

Nested Sampling basics

Skilling, AIP Conf.Proc. 735, 395 (2004); doi: 10.1063/1.1835238
Define $X(\lambda)$ as the prior mass associated with likelihood values above λ

$$
X(\lambda)=\int_{\mathcal{L}(\theta)>\lambda} P(\theta) d \theta
$$

This is a decreasing function of λ :

$X(0)=1 \quad X\left(\mathcal{L}_{\max }\right)=0$
dX is the prior mass associated with likelihoods $[\lambda, \lambda+\mathrm{d} \lambda]$
An infinitesimal interval $d X$ contributes $\lambda d x$ to the evidence, so that:

$$
P(d)=\int d \theta L(\theta) P(\theta)=\int_{0}^{1} L(X) d X
$$

where $L(X)$ is the inverse of $X(\lambda)$.

Nested Sampling basic

Suppose that we can evaluate $L_{j}=L\left(X_{j}\right)$, for a sequence:

$$
0<X_{m}<\cdots<X_{2}<X_{1}<1
$$

Then the model likelihood $\mathrm{P}(\mathrm{d})$ can be estimated numerically as:

$$
P(d)=\sum_{j=1}^{m} w_{j} L_{j}
$$

with a suitable set of weights, e.g. for the trapezium rule:

$$
w_{j}=\frac{1}{2}\left(X_{j-1}-X_{j+1}\right)
$$

(animation courtesy of David Parkinson)

$$
P(d)=\int d \theta L(\theta) P(\theta)=\int_{0}^{1} L(X) d X
$$

$X=$ Prior fraction

MultiNest sampling approach

(Slide courtesy of Mike Hobson)

Nested sampling approach to summation:

1. Set $i=0$; initially $X_{0}=1, E=0$
2. Sample N points $\left\{\theta_{j}\right\}$ randomly from $\pi(\theta)$ and calculate their likelihoods
3. Set $i \rightarrow i+1$
4. Find point with lowest likelihood value (L_{i})
5. Remaining prior volume $X_{i}=t_{i} X_{i-1}$ where $\operatorname{Pr}\left(t_{i} \mid N\right)=N t_{i}^{N-1}$; or just use $\left\langle t_{i}\right\rangle=N /(N+1)$
6. Increment evidence $E \rightarrow E+L_{i} w_{i}$
7. Remove lowest point from active set
8. Replace with new point sampled from $\pi(\theta)$ within hard-edged region $L(\theta)>L_{i}$
9. If $L_{\max } X_{i}<\alpha E$ (where some tolerance)
$\Rightarrow E \rightarrow E+X_{i} \sum_{j=1}^{N} L\left(\theta_{j}\right) / N$; stop
else goto 3

Nested Sampling: Sampling Step

- The hardest part is to sample uniformly from the prior subject to the hard constraint that the likelihood needs to be above a certain level.
- Many specific implementations of this sampling step:
- Single ellipsoidal sampling (Mukherjee+06)
- Metropolis nested sampling (Sivia\&Skilling06)
- Clustered and simultaneous ellipsoidal sampling (Shaw+07)
- Ellipsoidal sampling with k-means (Feroz\&Hobson08)
- Rejection sampling (MultiNest, Feroz\&Hobson09)
- Diffusion nested sampling (Brewer+09)
- Artificial neural networks (Graff+12)
- Galilean Sampling (Betancourt11; Feroz\&Skilling13)
- Simultaneous ellipsoidal sampling with X-means (DIAMONDS, Corsaro\&deRidder14)
- Slice Sampling Nested Sampling (PolyChord, Handley+15)

Sampling Step: Ellipsoid Fit

- Simple MCMC (e.g. Metropolis-Hastings) works but can be inefficient
- Mukherjee+06: Take advantage of the existing live points. Fit an ellipsoid to the live point, enlarge it sufficiently (to account for non-ellipsoidal shape), then sample from it using an exact method:

- This works, but is problematic/inefficient for multi-modal likelihoods and/or strong, non-linear degeneracies between parameters.

Sampling Step: Multimodal Sampling

- Feroz\&Hobson08; Feroz+08: At each nested sampling iteration
- Partition active points into clusters
- Construct ellipsoidal bounds to each cluster
- Determine ellipsoid overlap
- Remove point with lowest L_{i} from active points; increment evidence.
- Pick ellipsoid randomly and sample new point with $L>L_{i}$ accounting for overlaps
- Each isolated cluster gives local evidence
- Global evidence is the sum of the local evidences

Test: Gaussian Mixture Model

(Slide courtesy of Mike Hobson)

- Likelihood = five 2-D Gaussians of varying widths and amplitudes; prior = uniform
- Analytic evidence integral $\log E=-5.27$
- Multimodal ellipsoidal nested sampling: $\log E=-5.33 \pm 0.11, N_{\text {like }} \approx 10^{4}$
- Metropolis nested sampling: $\log E=-5.22 \pm 0.11, N_{\text {like }} \approx 10^{5}$
- Thermodynamic integration (+ error): $\log E=-5.24 \pm 0.12, N_{\text {like }} \approx 4 \times 10^{6}$

Test: Egg-Box Likelihood

- A more challenging example is the egg-box likelihood:
(Animation: Farhan Feroz)

$$
\mathcal{L}\left(\theta_{1}, \theta_{2}\right)=\exp \left(2+\cos \left(\frac{\theta_{1}}{2}\right) \cos \left(\frac{\theta_{2}}{2}\right)\right)^{5}
$$

- Prior: $\quad \theta_{i} \sim U(0,10 \pi) \quad(i=1,2)$

$$
\log P(d)=235.86 \pm 0.06 \quad(\text { analytical }=235.88)
$$

ICIC
Likelihood

Sampling (30k likelihood evaluations)

Test: Multiple Gaussian Shells

Likelihood

D	Nike	Efficiency
2	7000	70%
5	18000	51%
10	53000	34%
20	255000	15%
30	753000	8%

Aside: Posterior Samples

- Samples from the posterior can be extracted as (free) by-product: take the sequence of sampled points θ_{j} and weight sample j by $p_{j}=L_{j} \omega_{j} / P(d)$
- MultiNest has only 2 tuning parameters: the number of live points and the tolerance for the stopping criterium (stop if $L_{\max } X_{i}<t o l P(d)$, where tol is the tolerance)
- It can be used (and routinely is used) as fool-proof inference black-box: no need to tune e.g. proposal distribution as in conventional MCMC.

Multi-Modal marginal posterior distributions in an 8 D supersymmetric model, sampled with MultiNest (Feroz,RT+11)

(a)

Aside: Profile Likelihood

- With higher number of live points and smaller tolerance (plus keeping all discarded samples) MultiNest also delivers good profile likelihood estimates (Feroz,RT+11):

8D Gaussian Mixture Model -
Profile Likelihood

$$
L\left(\theta_{1}\right)=\max _{\theta_{2}} L\left(\theta_{1}, \theta_{2}\right)
$$

Parallelisation and Efficiency

- Sampling efficiency is less than unity since ellipsoidal approximation to the isolikelihood contour is imperfect and ellipsoids may overlap
- Parallel solution:
- At each attempt to draw a replacement point, drawn $\mathrm{N}_{\text {CPU }}$ candidates, with optimal number of CPUs given by $1 / \mathrm{N}_{\mathrm{CPU}}=$ efficiency

- Limitations:

- Performance improvement plateaus for $\mathrm{N}_{\text {cpu }} \gg$ 1/efficiency
- For D>>30, small error in the ellipsoidal decomposition entails large drop in efficiency as most of the volume is near the surface
- MultiNest thus (fundamentally) limited to $\mathrm{D}<=30$ dimensions

Neural Network Acceleration

Graff+12 (BAMBI) and Graff+14 (SkyNet); Johannesson,RT+16

- A relatively straightforward idea: Use MultiNest discarded samples to train on-line a multi-layer Neural Network (NN) to learn the likelihood function.
- Periodically test the accuracy of predictions: when the NN is ready, replace (possibly expensive) likelihood calls with (fast) NN prediction.
- SkyNet: a feed-forward $N N$ with N hidden layers, each with M_{n} nodes.
- BAMBI (Blind Accelerated Multimodal Bayesian Inference): SkyNet integration with MultiNest
- In cosmological applications, BAMBI typically accelerates the model likelihood computation by $\sim 30 \%$ - useful, but not a game-changer.
- Further usage of the resulted trained network (e.g. with different priors) delivers speed increases of a factor 4 to 50 (limited by error prediction calculation time).

PolyChord: Nested Sampling in high-D

Handley et al, Mon.Not.Roy.Astron.Soc. 450 (2015)1, L61-L65

- A new sampling step scheme is required to beat the limitations of the ellipsoidal decomposition at the heart of MultiNest
- Slice Sampling (Neal00) in 1D:
- Slice: All points with $L(x)>L_{0}$
- From starting point x_{0}, set initial bounds L/R by expanding from a parameter w
- Draw x_{1} randomly from within L / R

- If x_{1} not in the slice, contract bound down to x_{1} and re-sample x_{1}

High-D Slice Sampling

- A degenerate contour is transformed into a contour with dimensions of order $\mathrm{O}(1)$ in all directions ("whitening")
- Linear skew transform defined by the inverse of the Cholesky decomposition of the live points' covariance matrix
- Direction selected at random, then slice sampling in 1D performed ($w=1$)
- Repeat N times, with N of order $\mathrm{O}(\mathrm{D})$, generating a new point x_{N} decorrelated from x_{0}

Handley+15

PolyChord: Performance

- PolyChord number of likelihood evaluations scales at worst as $O\left(D^{3}\right)$ as opposed to exponential for MultiNest in high-D

Information criteria

- Several information criteria exist for approximate model comparison $\mathrm{k}=$ number of fitted parameters
$\mathrm{N}=$ number of data points,
$-2 \ln \left(L_{\text {max }}\right)=$ best-fit chi-squared
- Akaike Information Criterium (AIC): $\quad \mathrm{AIC} \equiv-2 \ln \mathcal{L}_{\max }+2 k$
- Bayesian Information Criterium (BIC): $\quad \mathrm{BIC} \equiv-2 \ln \mathcal{L}_{\max }+k \ln N$
- Deviance Information Criterium (DIC): $\quad \mathrm{DIC} \equiv-2 \widehat{D_{\mathrm{KL}}}+2 \mathcal{C}_{b}$.

Notes on information criteria

- The best model is the one which minimizes the AIC/BIC/DIC
- Warning: AIC and BIC penalize models differently as a function of the number of data points N .
For $\mathrm{N}>7$ BIC has a more strong penalty for models with a larger number of free parameters k.
- BIC is an approximation to the full Bayesian evidence with a default Gaussian prior equivalent to $1 / \mathrm{N}$-th of the data in the large N limit.
- DIC takes into account whether parameters are measured or not (via the Bayesian complexity, see later).
- When possible, computation of the Bayesian evidence is preferable (with explicit prior specification).

A "simple" example: how many sources?
Feroz and Hobson (2007)

Signal + Noise

A "simple" example: how many sources?

Feroz and Hobson (2007)

Signal: 8 sources

A "simple" example: how many sources?

Feroz and Hobson (2007)

Bayesian reconstruction

7 out of 8 objects correctly identified. Mistake happens because 2 objects very close.

Cluster detection from Sunyaev-Zeldovich effect in cosmic microwave background maps

Feroz et al 2009

Bayesian model comparison:
R = P(cluster | data)/P(no cluster | data)

$$
R=0.35 \pm 0.05
$$

$$
R \sim 10^{33}
$$

Cluster parameters also recovered (position, temperature, profile, etc)

Model complexity

- "Number of free parameters" is a relative concept. The relevant scale is set by the prior range
- How many parameters can the data support, regardless of whether their detection is significant?
- Bayesian complexity or effective number of parameters:

$$
\begin{aligned}
\mathcal{C}_{b} & =\overline{\chi^{2}(\theta)}-\chi^{2}(\hat{\theta}) \\
& =\sum_{i} \frac{1}{1+\left(\sigma_{i} / \Sigma_{i}\right)^{2}}
\end{aligned}
$$

Kunz, RT \& Parkinson, astro-ph/0602378, Phys. Rev. D 74, 023503 (2006)
Following Spiegelhalter et al (2002)

- Data generated from a model with $\mathrm{n}=6$:

GOOD DATA
Max supported complexity ~9

INSUFFICIENT DATA
Max supported complexity ~4

need?

$$
P(\theta \mid d)=\sum i P\left(\theta \mid d, M_{i}\right) P\left(M_{i} \mid d\right)
$$

An application to dark energy:

Model IV

Model V

Model averaged inferences

BMA: all 5 models

Key points

- Bayesian model comparison extends parameter inference to the space of models
- The Bayesian evidence (model likelihood) represents the change in the degree of belief in the model after we have seen the data
- Models are rewarded for their predictivity (automatic Occam's razor)
- Prior specification is for model comparison a key ingredient of the model building step. If the prior cannot be meaningfully set, then the physics in the model is probably not good enough.
- Bayesian model complexity can help (together with the Bayesian evidence) in assessing model performance.

