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Abstract These notes aim at presenting an overview of Bayesian statistics, the un-
derlying concepts and application methodology that will be useful to astronomers
seeking to analyse and interpret a wide variety of data about the Universe. The level
starts from elementary notions, without assuming any previous knowledge of statis-
tical methods, and then progresses to more advanced, research-level topics. After an
introduction to the importance of statistical inference for the physical sciences, el-
ementary notions of probability theory and inference are introduced and explained.
Bayesian methods are then presented, starting from the meaning of Bayes Theo-
rem and its use as inferential engine, including a discussion on priors and posterior
distributions. Numerical methods for generating samples from arbitrary posteriors
(including Markov Chain Monte Carlo and Nested Sampling) are then covered. The
last section deals with the topic of Bayesian model selection and how it is used to
assess the performance of models, and contrasts it with the classical p-value ap-
proach. A series of exercises of various levels of difficulty are designed to further
the understanding of the theoretical material.
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1 Introduction

The purpose of physics is to learn about regularities in the natural phenomena in
the world, which we call “Laws of Physics”. Theoretical models expressed in math-
ematical form (e.g., Newton’s theory of gravitation) have to be validated through
experiments or observations of the phenomena they aim to describe (e.g., measure-
ment of the time it takes for an apple to fall). Thus an essential part of physics is
the quantitative comparison of its theories (i.e., models, equations, predictions) with
observations (i.e., data, measurements). This leads to confirm theories or to refute
them.

Measurements often have uncertainties associated with them. Those could orig-
inate in the noise of the measurement instrument, or in the random nature of the
process being observed, or in selection effects. Statistics is the tool by which we
can extract information about physical quantities from noisy, uncertain and/or in-
complete data. Uncertainties however are more general than that. There might be
uncertainty in the relationship between quantities in a model (as a consequence of
limited information or true intrinsic variability of the objects being studied); uncer-
tainty in the completeness of the model itself; and uncertainty due to unmodelled
systematics (to name but a few).

The purpose of these lectures is to provide an appreciation of the fundamental
principles underpinning statistical inference, i.e., the process by which we recon-
struct quantities of interest from data, subject to the various sources of uncertainty
above. The lectures will also endeavour to provide the conceptual, analytical and
numerical tools required to approach and solve some of the most common inference
problems in the physical sciences, and in particular in cosmology. References are
provided so that the reader can further their understanding of the more advanced
topics, at research level and beyond.

Probability theory, as a branch of mathematics, is concerned with studying the
properties of sampling distributions, i.e., probability distributions that describe the
relative frequency of occurrence of random phenomena. In this sense, probability
theory is “forward statistics”: given the properties of the underlying distributions, it
predicts the outcome of data drawn from such distributions.

Statistical inference, by contrast, asks the question of what can be learnt about
the underlying distributions from the observed data. It therefore is sometimes called
“inverse probability”, in that it seeks to reconstruct the parameters of the distribu-
tions out of which the data are believed to have been generated.

Statistics addresses several relevant questions for physicists:
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(i) How can we learn about regularities in the physical world given that any mea-
surement is subject to a degree of randomness?

(ii) How do we quantify our uncertainty about observed properties in the world?
(iii) How can we make predictions about the future from past experience and theoret-

ical models?.

Inference and statistics are today at the heart of the scientific process, not merely
an optional nuisance. Ernest Rutherford is reported to have said, over a century ago:
“If you need statistics, you did the wrong experiment”. While this might have had
some merit at the time, it completely misses the point of what science has become
today. All scientific questions at the forefront of research involve increasingly com-
plicated models that try to explain subtle effects in complex, multidimensional data
sets. The sheer amount of data available to astrophysicists and cosmologists has
increased by orders of magnitudes in the last 20 years. Correspondingly, the sophis-
tication of our statistical analysis tools has to keep up: increasingly, the limiting
factor of our knowledge about the Universe is not the amount of data we have, but
rather our ability of analyse, interpret and make sense of them.

To paraphrase Rutherford, in 21st Century astrophysics f you do not need statis-
tics, it’s because you are doing the wrong kind of physics! There are (at least) five
good reasons why every professional astrophysicist and cosmologist ought to have
a solid training in advanced statistical methods:

(i) The complexity of the modelling of both our theories and observations will al-
ways increase, thus requiring correspondingly more refined statistical and data
analysis skills. In fact, the scientific return of the next generation of surveys will
be limited by the level of sophistication and efficiency of our inference tools.

(ii) The discovery zone for new physics is when a potentially new effect is seen
at the 2–3σ level, i.e., with a nominal statistical significance somewhere in the
region of 95% to 99.7%. This is when tantalizing suggestions for an effect start
to accumulate but there is no firm evidence yet. In this potential discovery region
a careful application of statistics can make the difference between claiming or
missing a new discovery.

(iii) If you are a theoretician, you do not want to waste your time trying to explain an
effect that is not there in the first place. A better appreciation of the interpretation
of statistical statements might help in identifying robust claims from spurious
ones.

(iv) Limited resources mean that we need to focus our efforts on the most promising
avenues. Experiment forecast and optimization will increasingly become promi-
nent as we need to use all of our current knowledge (and the associated uncer-
tainty) to identify the observations and strategies that are likely to give the highest
scientific return in a given field.

(v) Sometimes we don’t have the luxury to be able to gather better or further data.
This is the case for the many problems associated with cosmic variance limited
measurements on large scales, for example in the cosmic background radiation,
where the small number of independent directions on the sky makes it impossible
to reduce the error below a certain floor.
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2 Elementary notions

2.1 The notion of probability

There are two different ways of understanding what probability is. The classical
(so-called “frequentist”) notion of probability is that probabilities are tied to the
frequency of outcomes over a long series of trials. Repeatability of an experiment is
the key concept.

The Bayesian outlook1 is that probability expresses a degree of belief in a propo-
sition, based on the available knowledge of the experimenter. Information is the key
concept. Bayesian probability theory is more general than frequentist theory, as the
former can deal with unique situations that the latter cannot handle (e.g., “what is
the probability that it will rain tomorrow?).

Let A,B,C, . . . denote propositions (e.g., that a coin toss gives tails). Let Ω de-
scribe the sample space (or state space) of the experiment, i.e., Ω is a list of all the
possible outcomes of the experiment.

Example 1. If we are tossing a coin, Ω = {T,H}, where T denotes “tails” and H
denotes “head”. If we are rolling a regular die, Ω = {1,2,3,4,5,6}. If we are draw-
ing one ball from an urn containing white and black balls, Ω = {W,B}, where W
denotes a white ball and B a black ball.

Frequentist definition of probability: The number of times an event occurs
divided by the total number of events in the limit of an infinite series of
equiprobable trials.

Definition 1. The joint probability of A and B is the probability of A and B happen-
ing together, and is denoted by P(A,B). The conditional probability of A given B is
the probability of A happening given that B has happened, and is denoted by P(A|B).

The sum rule:
P(A)+P(A) = 1, (1)

where A denotes the proposition “not A”.
The product rule:

P(A,B) = P(A|B)P(B). (2)

By inverting the order of A and B we obtain that

P(B,A) = P(B|A)P(A) (3)

1 So-called after Rev. Thomas Bayes (1701(?)–1761), who was the first to introduce this idea in
a paper published posthumously in 1763, “An essay towards solving a problem in the doctrine of
chances” [3].
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and because P(A,B) = P(B,A), we obtain Bayes theorem by equating Eqs. (2) and
(3):

P(A|B) = P(B|A)P(A)
P(B)

. (4)

The marginalisation rule follows from the two rules above and it reads:

P(A) = P(A,B1)+P(A,B2)+ · · ·= ∑
i

P(A,Bi) = ∑
i

P(A|Bi)P(Bi), (5)

where the sum is over all possible outcomes for proposition B.

Definition 2. Two propositions (or events) are said to be independent if and only if

P(A,B) = P(A)P(B). (6)

2.2 Random variables, parent distributions and samples

Definition 3. A random variable (RV) is a function mapping the sample space Ω of
possible outcomes of a random process to the space of real numbers.

Example 2. When tossing a coin once, the RV X can be defined as

X =

{
0, if coin lands T
1, if coin lands H.

(7)

When rolling a regular, 6-sided die, the RV X can be defined as

X =



1, if a 1 is rolled
2, if a 2 is rolled
3, if a 3 is rolled
4, if a 4 is rolled
5, if a 5 is rolled
6, if a 6 is rolled.

(8)

When drawing one ball from an urn containing black and white balls, the RV X can
be defined as

X =

{
0, if the ball drawn is white
1, if the ball drawn is black.

(9)

A RV can be discrete (only a countable number of outcomes is possible, such
as in coin tossing) or continuous (an uncountable number of outcomes is possible,
such as in a temperature measurement). It is mathematically subtle to carry out
the passage from a discrete to a continuous RV, although as physicists we won’t
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bother too much with mathematical rigour here. Heuristically, we simply replace
summation sums over discrete variables with integrals over continuous variables.

Definition 4. Each RV has an associated probability distribution to it. The proba-
bility distribution of a discrete RV is called probability mass function (pmf), which
gives the probability of each outcome: P(X = xi) = Pi gives the probability of the
RV X assuming the value xi. In the following we shall use the shorthand notation
P(xi) to mean P(X = xi).

Example 3. If X is the RV of Eq. (8), and the die being tossed is fair, then Pi = 1/6
for i = 1, . . . ,6, where xi is the outcome “a the face with i pips comes up”.

The probability distribution associated with a continuous RV is called the proba-
bility density function (pdf), denoted by p(X). The quantity p(x)dx gives the prob-
abilty that the RV X assumes the value between x and x+dx.

The choice of probability distribution to associate to a given random process is
dictated by the nature of the random process one is investigating (a few examples
are given below).

For a discrete pmf, the cumulative probability distribution function (cdf) is given
by

C(xi) =
i

∑
j=1

P(x j). (10)

The cdf gives the probabilty that the RV X takes on a value less than or equal to xi,
i.e. C(xi) = P(X ≤ xi).

For a continuous pdf, the cdf is given by

P(x) =
∫ x

−∞

p(y)dy, (11)

with the same interpretation as above, i.e. it is the probability that the RV X takes a
value smaller than x.

When we make a measurement, (e.g., the temperature of an object, or we toss a
coin and observe which face comes up), nature selects an outcome from the sample
space with probability given by the associated pmf or pdf. The selection of the
outcome is such that if the measurement was repeated an infinite number of times the
relative frequency of each outcome is the same as the the probability associated with
each outcome under the pmf or pdf. This is another formulation of the frequentist
definition of probability given above.

Outcomes of measurements realized by nature are called samples2. They are a se-
ries of real (or integer) numbers, {x̂1, x̂2, . . . , x̂N}. In this notes, I will denote samples
(i.e., measured values) with a hat symbol, ˆ.

Definitions and background material on some of the most important and most
commonly-encountered sampling distributions (the uniform, Poisson, Binomial, ex-
ponential and Gaussian distributions) are given in Appendix 4.6.

2 The probability theory notion of sample encountered here is not to be confused with the idea of
MCMC (posterior) samples, which we will introduce later in section 3.6.
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2.3 The Central Limit Theorem

The Central Limit Theorem (CLT) is a very important result justifying why the
Gaussian distribution is ubiquitous.

Theorem 1. Simple formulation of the CLT: Let X1,X2, . . . ,XN be a collection of
independent RV with finite expectation value µ and finite variance σ2. Then, for
N→ ∞, thir sum is Gaussian distributed with mean Nµ and variance Nσ2.

Note: it does not matter what the detailed shape of the underlying pdf for the
individual RVs is!

Consequence: whenever a RV arises as the sum of several independent effects
(e.g., noise in a temperature measurement), we can be confident that it will be very
nearly Gaussian distributed.

Theorem 2. More rigorous (and more general) formulation of the CLT: Let X1,X2, . . . ,XN
be a collection of independent RV, each with finite expectation value µi and finite
variance σ2

i . Then the variable

Y =
∑

N
i=1 Xi−∑

N
i=1 µi

∑
N
i=1 σ2

i
(12)

is distributed as a Gaussian with expectation value 0 and unit variance.

2.4 The likelihood function

The problem of inference can be stated as follows: given a collection of samples,
{x̂1, x̂2, . . . , x̂N}, and a generating random process, what can be said about the prop-
erties of the underlying probability distribution?

Example 4. You toss a coin 5 times and obtain 1 head. What can be said about the
fairness of the coin?

Example 5. With a photon counter you observe 10 photons in a minute. What can
be said about the average photon rate from the source?

Example 6. You measure the temperature of an object twice with two different in-
struments, yielding the following measurements: T = 256±10 K and T = 260±5
K. What can be said about the temperature of the object?
Schematically, we have that:

pdf - e.g., Gaussian with a given (µ,σ )→ Probability of observation
Underlying (µ,σ)← Observed events

(13)

The connection between the two domains is given by the likelihood function.
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Definition 5. Given a pdf or a pmf p(X |θ), where X represents a random variable
and θ a collection of parameters describing the shape of the pdf3 and the observed
data x̂ = {x̂1, x̂2, . . . , x̂N}, the likelihood function L (or “likelihood” for short) is
defined as

L (θ) = p(X = x̂|θ). (14)

On the right-hand side of the above equation, the probability (density) of observing
the data that have been obtained (X = x̂) is considered as a function of the parame-
ters θ . A very important – and often misunderstood! – point is that the likelihood is
not a pdf in θ . This is why it’s called likelihood function! It is normalised over X ,
but not over θ .

Example 7. In tossing a coin, let θ be the probability of obtaining heads in one
throw. Suppose we make N = 5 flips and obtain the sequence x̂ = {H,T,T,T,T}.
The likelihood is obtained by taking the binomial, Eq. (134), and replacing for r the
number of heads obtained (r = 1) in N = 5 trials, and looking at it as a function of
the parameter we are interested in determining, here θ . Thus

L (θ) =

(
5
1

)
θ

1(1−θ)4 = 5θ(1−θ)4, (15)

which is plotted as a function of θ in Fig. 1.
If instead of r = 1 heads we had obtained a different number of heads in our

N = 5 trials, the likelihood function would have looked as shown in Fig. 2 for a few
different choices for r.

Fig. 1 The likelihood function for the probability of heads (θ ) for the coin tossing example, with
N = 5,r = 1.

3 For example, for a Gaussian θ = {µ,σ}, for a Poisson distribution, θ = λ and for a binomial
distribution, θ = p, the probability of success in one trial.
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Fig. 2 The likelihood function for the probability of heads (θ ) for the coin tossing example, with
n = 5 trials and different values of r.

This example leads to the formulation of the Maximum Likelihood Principle:
if we are trying to determine the value of θ given what we have observed (e.g.,
the sequence of H/T in coin tossing), we should choose the value that maximises
the likelihood, because this maximises the probability of obtaining the data that we
got. Notice that this is not necessarily the same as maximising the probability of θ .
Doing so requires the use of Bayes theorem, see section 3.

2.5 The Maximum Likelihood Principle

The Maximum Likelihood Principle (MLP): given the likelihood function L (θ)
and seeking to determine the parameter θ , we should choose the value of θ in such
a way that the value of the likelihood is maximised.

Definition 6. The Maximum Likelihood Estimator (MLE) for θ is

θML ≡max
θ

L (θ). (16)

It can be shown that the MLE as defined above has the following properties: it
is asymptotically unbiased (i.e., θML → θ for N → ∞, i.e., the ML estimate con-
verges to the true value of the parameters for infinitely many data points) and it is
asymptotically the minimum variance estimator, i.e. the one with the smallest errors.

To find the MLE, we maximise the likelihood by requiring its first derivative to
be zero and the second derivative to be negative:

∂L (θ)

∂θ

∣∣∣
θML

= 0, and
∂ 2L (θ)

∂θ 2

∣∣∣
θML

< 0. (17)
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In practice, it is often more convenient to maximise the logarithm of the likelihood
(the “log-likelihood”) instead. Since log is a monotonic function, maximising the
likelihood is the same as maximising the log-likelihood. So one often uses

∂ lnL (θ)

∂θ

∣∣∣
θML

= 0, and
∂ 2 lnL (θ)

∂θ 2

∣∣∣
θML

< 0. (18)

Example 8. MLE of the mean of a Gaussian. Imagine we have N independent mea-
surements of a Gaussian-distributed quantity, and let’s denote them by {x̂1, x̂2, . . . , x̂N}.
Here the parameters we are interested in determining are µ (the mean of the
distribution) and σ (the standard deviation of the distribution), hence we write
θ = {µ,σ}.Then the joint likelihood function is given by

L (µ,σ) = p(x̂|µ,σ) =
N

∏
i=1

1√
2πσ

exp
(
−1

2
(x̂i−µ)2

σ2

)
, (19)

Often, the expression above is written as

L = L0 exp
(
−χ

2/2
)

(20)

where the so-called “chi-squared” is defined as

χ
2 =

N

∑
i=1

(x̂i−µ)2

σ2 . (21)

We want to estimate the (true) mean of the Gaussian. The MLE for the mean is
obtained by solving

∂ lnL

∂ µ
= 0⇒ µML =

1
N

N

∑
i=1

x̂i, (22)

i.e., the MLE for the mean is just the sample mean (i.e., the average of the measure-
ments).

Example 9. MLE of the standard deviation of a Gaussian. If we want to estimate the
standard deviation σ of the Gaussian, the MLE for σ is:

∂ lnL

∂σ
= 0⇒ σ

2
ML =

1
N

N

∑
i=1

(x̂i−µ)2. (23)

However, the MLE above is “biased”, i.e. it can be shown that

E(σ2
ML) =

(
1− 1

N

)
σ

2 6= σ
2, (24)

where E()̇ denotes the expectation value. I.e., for finite N the expectation value of
the ML estimator is not the same as the true value, σ2. In order to obtain an unbiased
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estimator we replace the factor 1/N by 1/(N−1). Also, because the true µ is usually
unknown, we replace it in Eq. (23) by the MLE estimator for the mean, µML.

Therefore, the unbiased MLE estimator for the variance is

σ̂
2 =

1
N−1

N

∑
i=1

(x̂i−µML)
2. (25)

In general, you should always use Eq. (25) as the ML estimator for the variance, and
not Eq. (23).

Example 10. MLE for the success probability of a binomial distribution. We go back
to the coin tossing example, but this time we solve it in all generality. Let’s define
“success” as “the coin lands heads” (H). Having observed H heads in a number
N of trials, the likelihood function of a binomial is given by Eq. (134), where the
unknown parameter is θ (the success probability for one trial, i.e., the probability
that the coin lands H):

L (θ) = P(H|θ ,N) =

(
N
H

)
θ

H(1−θ)N−H , (26)

The Maximum Likelihood Estimator the success probability is found by maximising
the log likelihood:

∂ lnL (θ)

∂θ
=

∂

∂θ

(
ln
(

N
H

)
+H lnθ +(N−H) ln(1−θ)

)
=

H
θ
− N−H

1−θ

!
= 0

⇔ θML =
H
N
.

(27)

Thus the MLE is simpy given by the observed fraction of heads, which is intuitively
obvious.

Example 11. MLE for the rate of a Poisson distribution. The likelihood function is
given by Eq. (136), using the notation θ = λ (i.e., the parameter θ we are interested
in is here the rate λ ):

L (λ ) = P(n|λ ) = (λ t)n

n!
exp(−λ t), (28)

The unknown parameter is the rate λ , while the data are the observed counts, n,
in the amount of time t. The Maximum Likelihood Estimate for λ is obtained by
finding the maximum of the log likelihood as a function of the parameter (here, the
rate λ ). Hence we need to find the value of λ such that:

∂ lnP(n|λ )
∂λ

= 0. (29)

The derivative gives
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∂ lnP(n|λ )
∂λ

=
∂

∂λ
(n ln(λ t)− lnn!−λ t) = n

t
λ t
− t = 0⇔ λMLE =

n
t
. (30)

So the maximum likelihood estimator for the rate is the observed average number
of counts.

We can thus summarise the MLE recipe:

(i) Write down the likelihood. This depends on the kind of random process you are
considering. Identify what is the parameter that you are interested in, θ .

(ii) Find the “best fit” value of the parameter of interest by maximising the likelihood
L as a function of θ . This is your MLE, θML.

(iii) Evaluate the uncertainty on θML, i.e. compute the confidence interval (see next
section).

2.6 Confidence intervals (frequentist)

Consider a general likelihood function, L (θ) and let us do a Taylor expansion of
the log-likelihood lnL around its maximum, given by θML:

lnL (θ)= lnL (θML)+
∂ lnL (θ)

∂θ

∣∣∣
θML

(θ−θML)+
1
2

∂ 2 lnL (θ)

∂θ 2

∣∣∣
θML

(θ−θML)
2+. . .

(31)
The second term on the RHS vanishes (by definition of the Maximum Likelihood
value), hence we can approximate the likelihood as

L (θ)≈L (θML)exp
(
−1

2
(θ −θML)

2

Σ 2
θ

)
+ . . . , (32)

with
1

Σθ
2 =−∂ 2 lnL (θ)

∂θ 2

∣∣∣
θML

. (33)

A general likelihood function can be approximated to second order as a Gaussian
around the ML value, as shown by Eq. (32). Therefore, to the extent that this second
order Taylor expansion is sufficiently accurate, the uncertainty around the ML value,
Σθ , is approximately given by Eq. (33).
Example 12. Let’s go back to the Gaussian problem of Eq. (19). We have seen in
Eq. (22) that the sample mean is the MLE for the mean of the Gaussian. We now
want to compute the uncertainty on this value. Applying Eq. (33) to the likelihood
of Eq. (19) we obtain

Σ
2
µ = σ

2/N. (34)

This means that the the uncertainty on our ML estimate for µ (as expressed by
the standard deviation Σµ ) is proportional to 1/

√
N, with N being the number of

measurements.
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As the likelihood function can be approximated as a Gaussian (at least around
the peak), we can use the results for a Gaussian distribution to approximate the
probability content of an interval around the ML estimate for the mean. The interval
[µmin,µmax] is called a 100α% confidence interval for the mean µ if P(µmin < µ <
µmax) = α .

Example 13. For example, the interval [µML−Σµ < µ < µML+Σµ ] is a 68.3% con-
fidence interval for the mean (a so-called “1σ interval”), while [µML−2Σµ < µ <
µML +2Σµ ] is a 95.4% confidence interval (a “2σ interval”).

Example 14. In the temperature measurement example of Eq. (42), the 68.3% confi-
dence interval for the mean is 198.0K< µ < 201.2K. The 95.4% confidence interval
is 196.4K < µ < 202.8K.

Generally, the value after the “±” sign will usually give the 1σ (i.e., 68.3%) re-
gion. Sometimes you might find a notation like 50±1 (95% CL), where “CL” stands
for “Confidence Level”. In this case, ±1 encompasses a region of 95% confidence
(rather than 68.3%), which corresponds to 1.96 σ (see Table 4).

In the multi-dimensional case, additional parameters are eliminated from the like-
lihood by profiling over them, i.e., maximising over their value.

Definition 7. The profile likelihood for the parameter θ1 (without loss of generality)
is defined as

L (θ1)≡ max
θ2,...,θN

L (θ), (35)

where in our case L (θ) is the full likelihood function.

Thus in the profile likelihood one maximises the value of the likelihood along
the hidden dimensions, rather than integrating it out as in the marginal posterior
(see Eq. (61) below).

The profile likelihood can be directly interpreted as a if it were a genuine likeli-
hood function, except that it does account for the effect of the hidden parameters.

Confidence intervals from the profile likelihood can be obtained via the likeli-
hood ratio test as follows.

Classical confidence intervals based on the Neyman construction are defined as
the set of parameter points in which some real-valued function, or test statistic, t
evaluated on the data falls in an acceptance region Wθ = [t−, t+]. Likelihood ratios
are often chosen as the test statistic on which frequentist intervals are based. When
θ is composed of parameters of interest, θ , and nuisance parameters, ψ , a common
choice of test statistic is the profile likelihood ratio

λ (θ)≡ L (θ , ˆ̂ψ)

L (θ̂ , ψ̂)
. (36)

where ˆ̂ψ is the conditional maximum likelihood estimate (MLE) of ψ with θ fixed
and θ̂ , ψ̂ are the unconditional MLEs. Under certain regularity conditions4, Wilks

4 One important and often-overlooked condition for the validity of Wilks’ theorem is that the
parameter it is being applied to cannot lie at the boundary of the allowed parameter space. In this
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showed [59] that the distribution of−2lnλ (θ) converges to a chi-square distribution
with a number of degrees of freedom given by the dimensionality of θ .

This leads to the following prescription. Starting from the best-fit value in pa-
rameter space, an α% confidence interval encloses all parameter values for which
minus twice the log–likelihood increases less than ∆ χ2(α,n) from the best fit value.
The threshold value depends on α and on the number n of parameters one is simul-
taneously considering (usually n = 1 or n = 2), and it is obtained by solving

α =
∫

∆ χ2

0
χ

2
n (x)dx, (37)

where χ2
n (x) is the chi–square distribution for n degrees of freedom, Eq. (170).

One has to be careful with the interpretation of confidence intervals as this is
often misunderstood!

Interpretation: if we were to repeat an experiment many times, and each
time report the observed 100α% confidence interval, we would be correct
100α% of the time. This means that (ideally) a 100α% confidence intervals
contains the true value of the parameter 100α% of the time.

In a frequentist sense, it does not make sense to talk about “the probability of θ”.
This is because every time the experiment is performed we get a different realization
(different samples), hence a different numerical value for the confidence interval.
Each time, either the true value of θ is inside the reported confidence interval (in
which case, the probability of θ being inside is 1) or the true value is outside (in
which case its probability of being inside is 0). Confidence intervals do not give the
probability of the parameter! In order to do that, you need Bayes theorem.

2.7 Exercices

Those exercises are designed to help you put into practice the above introductory
concepts. Please make sure you are familiar with these notions before moving on to
the next section.

(i) Gaussian 1D problem. The surface temperature on Mars is measured by a probe
10 times, yielding the following data (units of K):

191.9,201.6,206.1,200.4,203.2,201.6,196.5,199.5,194.1,202.4 (38)

case, one ought to employ Chernoff’s theorem instead [11]. A modern discussion of the regularity
conditions necessary for the asymptotic distribution of the likelihood ratio test statistics to be valid
can be found in [47].
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a. Assume that each measurement is independently Normally distributed with
known variancee σ2 = 25 K2. What is the likelihood function for the whole
data set?
Answer: The measurements are independent, hence the total likelihood is the
product of the likelihoods for each measurement:

Ltot(T ) =
10

∏
i=1

1√
2πσ

exp
(
−1

2
(T̂i−T )2

σ2

)
(39)

where T̂i are the data given, T is the temperature we are trying to determine
(unknown parameter) and σ = 5 K.

b. Find the Maximum Likelihood Estimate (MLE) for the surface temperature,
TML, and express your result to 4 significant figures accuracy.
Answer: The MLE for the mean of a Gaussian is given by the mean of the
sample, see Eq. (22), hence

TML =
1

10

10

∑
i=1

Ti = 199.7K. (40)

c. Determine symmetric confidence intervals at 68.3%, 95.4% and 99% around
TML (4 significant figures accuracy).
Answer: The variance of the mean is given by σ2/N, see Eq. (34). Therefore
the standard deviation of our estimate TML is given by ΣT = σ/

√
N = 5/

√
10

= 1.58 K, which corresponds to the 68.3% interval: 199.7± 1.6 K, i.e. the
range [198.1,201.3] K (4 s.f. accuracy). Confidence intervals at 95.4% and
99% corresponds to symmetric intervals around the mean of length 2.0 and
2.57 times the standard deviation ΣT . Hence the required confidence intervals
are [196.5,202.9] K (95.4%) and [195.6,203.8] K (99%).

d. How many measurements would you need to make if you wanted to have a 1σ

confidence interval around the mean of length less than 1 K (on each side)?
Answer: A 1σ confidence interval lenght 1 K means that the value of ΣT
should be 1 K. Using that the standard deviation scales as 1/

√
N, we have

1 = 5/
√

N⇒ N = 25. (41)

You would need N = 25 measurements to achieve the desired accuracy.

(ii) The surface temperature on Mars is measured by a probe 10 times, yielding the
following data (units of K):

197.2,202.4,201.8,198.8,207.6,191.4,201.4,198.2,195.7,201.2. (42)

Assuming that each measurement is independently Gaussian distributed with
known variance σ2 = 5 K2, what is the likelihood function for the whole data
set?
Answer: the measurements are independent, hence the total likelihood is the
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product of the likelihoods for each measurement, see Eq. (19):

L (T ) =
10

∏
i=1

1√
2πσ

exp
(
−1

2
(T̂i−T )2

σ2

)
(43)

What is the MLE of the mean, TML?
Answer: the MLE for the mean of a Gaussian is given by the mean of the sample,
see Eq. (22), hence

TML =
1
10

10

∑
i=1

T̂i = 199.6K. (44)

What is the uncertainty on our MLE for the mean?
Answer: The variance of the mean is given by Σ 2

µ = σ2/N, where σ2 = 5 K2

and N = 10. Therefore the standard deviation of our temperature estimate TML
is given by ΣT = 5/

√
10 = 1.6 K. The measurement can thus be summarized

as T = 199.6± 1.6 K, where the ±1.6 K gives the range of the 1σ (or 68.3%)
confidence interval.

(iii) A laser beam is used to measure the deviation of the distance between the Earth
and the Moon from its average value, giving the following data, in units of cm:

119, 119, 122, 121, 116. (45)

a. Assuming that each measurement above follows an independent Gaussian dis-
tribution of known standard deviation σ = 3 cm, write down the joint likeli-
hood function for ∆ , the deviation of the Earth-Moon distance from its average
value.
Answer: The joint Gaussian likelihood function for ∆ is given by

P(∆ |d)≡L (∆) =
5

∏
i=1

1√
2πσ

exp
(
−1

2
(∆ −di)

2

σ2

)
, (46)

where σ = 3 cm and di are the measurements given in the question.
b. Compute the maximum likelihood estimate for ∆ and its uncertainty, both to

3 significant figures.
Answer: The maximum likelihood estimate for ∆ is found by maximising the
log-likelihood function wrt ∆ :

∂ lnL

∂∆
=−

5

∑
i=1

∆ −di

σ2 = 0→ ∆MLE =
1
N

5

∑
i=1

di (47)

The numerical value is ∆MLE = 119.4cm≈ 119 (cm, 3 s.f.).
The uncertainty Σ on ∆ is estimated from the inverse curvature of the log
likelihood function at the MLE point:

−∂ 2 lnL

∂∆ 2 =
N∆

σ2 → Σ =

(
−∂ 2 lnL

∂∆ 2

)−1/2

=
σ√
N

(48)
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Numerically this gives Σ = 3/
√

5 = 1.34≈ 1 cm.
c. How would you report the measurement of ∆?

Answer: The measurement of ∆ would thus be reported as ∆ = (119±1) cm.

(iv) An experiment counting particles emitted by a radioactive decay measures r par-
ticles per unit time interval. The counts are Poisson distributed.

a. If λ is the average number of counts per per unit time interval, write down the
appropriate probability distribution function for r.

b. Now we seek to determine λ by repeatedly measuring for M times the num-
ber of counts per unit time interval. This series of measurements yields a se-
quence of counts r̂ = {r̂1, r̂2, r̂3, ..., r̂M}. Each measurement is assumed to be
independent. Derive the combined likelihood function for λ , L (λ ) = P(r̂|λ ),
given the measured sequence of counts r̂.

c. Use the Maximum Likelihood Principle applied to the the log likelihood
lnL (λ ) to show that the Maximum Likelihood estimator for the average rate
λ is just the average of the measured counts, r̂, i.e.

λML =
1
M

M

∑
i=1

r̂i .

d. By considering the Taylor expansion of lnL (λ ) to second order around λML,
derive the Gaussian approximation for the likelihood L (λ ) around the Max-
imum Likelihood point (see Eq. (63) in the handout), and show that it can be
written as

L (λ )≈ L0 exp
(
−1

2
M

λML
(λ −λML)

2
)
,

where L0 is a normalization constant.
e. Compare with the equivalent expression for M Gaussian-distributed measure-

ments to show that the variance σ2 of the Poisson distribution is given by
σ2 = λ .

(v) An astronomer measures the photon flux from a distant star using a very sensi-
tive instrument that counts single photons. After one minute of observation, the
instrument has collected r̂ photons. One can assume that the photon counts, r̂,
are distributed according to the Poisson distribution. The astronomer wishes to
determine λ , the emission rate of the source.

a. What is the likelihood function for the measurement? Identify explicitly what
is the unknown parameter and what are the data in the problem.

b. If the true rate is λ = 10 photons/minute, what is the probability of observing
r̂ = 15 photons in one minute?

c. Find the Maximum Likelihood Estimate for the rate λ (i.e., the number of
photons per minute). What is the maximum likelihood estimate if the observed
number of photons is r̂ = 10?
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d. Upon reflection, the astronomer realizes that the photon flux is the superpo-
sition of photons coming from the star plus “background” photons coming
from other faint sources within the field of view of the instrument. The back-
ground rate is supposed to be known, and it is given by λb photons per minute
(this can be estimated e.g. by pointing the telescope away from the source
and measuring the photon counts there, when the telescope is only picking up
background photos). She then points to the star again, measuring r̂t photons
in a time tt . What is her maximum likelihood estimate of the rate λs from the
star in this case?
Hint: The total number of photons r̂t is Poisson distributed with rate λ =
λs +λb, where λs is the rate for the star.

e. What is the source rate (i.e., the rate for the star) if r̂t = 30, tt = 2 mins, and
λb = 12 photons per minute? Is it possible that the measured average rate from
the source (i.e., r̂t/tt ) is less than λb? Discuss what happens in this case and
comment on the physicality of this result.

(vi) This problem generalizes the Gaussian measurement case to the case where the
measurements have different uncertainties among them.
You measure the flux F of photons from a laser source using 4 different instru-
ments and you obtain the following results (units of 104 photons/cm2):

34.7±5.0, 28.9±2.0, 27.1±3.0, 30.6±4.0. (49)

a. Write down the likelihood for each measurement, and explain why a Gaussian
approximation is justified in this case.

b. Write down the total likelihood for the combination of the 4 measurements.
c. Find the MLE of the photon flux, FML, and show that it is given by:

FML = ∑
i

n̂i

σ̂2
i /σ̄2 , (50)

where
1

σ̄2 ≡∑
i

1
σ̂2

i
. (51)

d. Compute FML from the data above and compare it with the sample mean.
e. Find the 1σ confidence interval for your MLE for the mean, and show that it

is given by: (
∑

i

1
σ̂2

i

)−1/2

. (52)

Evaluate the confidence interval for the above data. How would you summa-
rize your measurement of the flux F?
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3 Bayesian parameter inference

In this section we introduce the meaning and practical application of Bayes Theo-
rem, Eq. (4), which encapsulates the notion of probability as degree of belief.

3.1 Bayes theorem as an inference device

As a mathematical result, Bayes Theorem is elementary and uncontroversial. It be-
comes interesting for the purpose of inference when we replace in Bayes theorem,
Eq. (4), A→ θ (the parameters) and B→ d (the observed data, or samples), obtain-
ing

P(θ |d) = P(d|θ)P(θ)
P(d)

. (53)

On the LHS, P(θ |d) is the posterior probability for θ (or “posterior” for short), and
it represents our degree of belief about the value of θ after we have seen the data d.

On the RHS, P(d|θ) = L (θ) is the likelihood we already encountered. It is the
probability of the data given a certain value of the parameters.

The quantity P(θ) is the prior probability distribution (or “prior” for short). It
represents our degree of belief in the value of θ before we see the data (hence the
name). This is an essential ingredient of Bayesian statistics. The Bayesian school
is divided between “subjectivists” (who maintain that the prior is a reflection of
the subject state of knowledge of the individual researcher adopting it) and “ob-
jectivists” (who argue for the use of “standard” priors to enforce inter-subjectivity
between different researchers). However formulated, the posterior distribution usu-
ally converges to a prior-independent regime for sufficiently large data sets.

In the denominator, P(d) is a normalizing constant (often called “the evidence”
or “marginal likelihood”), than ensures that the posterior is normalized to unity:

P(d) =
∫

dθP(d|θ)P(θ). (54)

The evidence is important for Bayesian model selection (see section 4).

Interpretation: Bayes theorem relates the posterior probability for θ (i.e., what
we know about the parameter after seeing the data) to the likelihood and the
prior (i.e., what we knew about the parameter before we saw the data). It can
be thought of as a general rule to update our knowledge about a quantity (here,
θ ) from the prior to the posterior.

Remember that in general P(θ |d) 6= P(d|θ), i.e. the posterior P(θ |d) and the
likelihood P(d|θ) are two different quantities with different meaning!
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Example 15. We want to determine if a randomly-chosen person is male (M) or fe-
male (F)5. We make one measurement, giving us information on whether the person
is pregnant (Y) or not (N). Let’s assume we have observed that the person is preg-
nant, so d = Y .

The likelihood is P(d = Y |θ = F) = 0.03 (i.e., there is a 3% probability that a
randomly selected female is pregnant), but the posterior probability P(θ = F |d =
Y ) = 1.0, i.e., if we have observed that the person is pregnant, we are sure she is a
woman. This shows that the likelihood and the posterior probability are in general
different!

This is because they mean two different things: the likelihood is the probability
of making the observation if we know what the parameter is (in this example, if we
know that the person is female); the posterior is the probability of the parameter
given that we have made a certain observation (in this case, the probability of a
person being female if we know she is pregnant). The two quantities are related by
Bayes theorem (prove this in the example given here).

Bayesian inference works by updating our state of knowledge about a parameter
(or hypothesis) as new data flow in. The posterior from a previous cycle of observa-
tions becomes the prior for the next.

3.2 Advantages of the Bayesian approach

Irrespectively of the philosophical and epistemological views about probability, as
physicists we might as well take the pragmatic view that the approach that yields
demonstrably superior results ought to be preferred. In many real–life cases, there
are several good reasons to prefer a Bayesian viewpoint:

(i) Classic frequentist methods are often based on asymptotic properties of estima-
tors. Only a handful of cases exist that are simple enough to be amenable to
analytic treatment (in physical problems one most often encounters the Normal
and the Poisson distribution). Often, methods based on such distributions are em-
ployed not because they accurately describe the problem at hand, but because of
the lack of better tools. This can lead to serious mistakes. Bayesian inference is
not concerned by such problems: it can be shown that application of Bayes’ The-
orem recovers frequentist results (in the long run) for cases simple enough where
such results exist, while remaining applicable to questions that cannot even be
asked in a frequentist context.

(ii) Bayesian inference deals effortlessly with nuisance parameters. Those are pa-
rameters that have an influence on the data but are of no interest for us. For
example, a problem commonly encountered in astrophysics is the estimation of
a signal in the presence of a background rate The particles of interest might be
photons, neutrinos or cosmic rays. Measurements of the source s must account

5 This example is due to Louis Lyons.
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for uncertainty in the background, described by a nuisance parameter b. The
Bayesian procedure is straightforward: infer the joint probability of s and b and
then integrate over the uninteresting nuisance parameter b (“marginalization”,
see Eq. (76)). Frequentist methods offer no simple way of dealing with nuisance
parameters (the very name derives from the difficulty of accounting for them in
classical statistics). However neglecting nuisance parameters or fixing them to
their best–fit value can result in a very serious underestimation of the uncertainty
on the parameters of interest.

(iii) In many situations prior information is highly relevant and omitting it would
result in seriously wrong inferences. The simplest case is when the parameters
of interest have a physical meaning that restricts their possible values: masses,
count rates, power and light intensity are examples of quantities that must be
positive. Frequentist procedures based only on the likelihood can give best–fit
estimates that are negative, and hence meaningless, unless special care is taken
(for example, constrained likelihood methods). This often happens in the regime
of small counts or low signal to noise. The use of Bayes’ Theorem ensures that
relevant prior information is accounted for in the final inference and that physi-
cally meaningless results are weeded out from the beginning.

(iv) Bayesian statistics only deals with the data that were actually observed, while
frequentist methods focus on the distribution of possible data that have not been
obtained. As a consequence, frequentist results can depend on what the exper-
imenter thinks about the probability of data that have not been observed. (this
is called the “stopping rule” problem). This state of affairs is obviously absurd.
Our inferences should not depend on the probability of what could have hap-
pened but should be conditional on whatever has actually occurred. This is built
into Bayesian methods from the beginning since inferences are by construction
conditional on the observed data.

The cosmology and astrophysics communities have been embracing Bayesian meh-
ods since the turning of the Millennium, spurred by the availability of cheap com-
putational power that has ushered in an era of high-performance computing, thus
allowing for the first time to deploy the power of Bayesian statistics thanks to nu-
merical implementations (in particular, MCMC and related techniques). The steep
increase in the number of Bayesian papers in the astrophysics literature is shown in
Fig. 3.

3.3 Considerations and caveats on priors

Bayesian inference works by updating our state of knowledge about a parameter (or
hypothesis) as new data flow in. The posterior from a previous cycle of observations
becomes the prior for the next. The price we have to pay is that we have to start
somewhere by specifying an initial prior, which is not determined by the theory,
but it needs to be given by the user. The prior should represent fairly the state of
knowledge of the user about the quantity of interest. Eventually, the posterior will
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Fig. 3 Number of articles in astronomy and cosmology with “Bayesian” in the title, as a function
of publication year (upper data points) and total number of articles (lower data points) as a func-
tion of publication year. Numbers are normalized to 1980 levels for each data series. The number
of Bayesian papers doubles every 4.3 years, while the total number of papers doubles “only” ev-
ery 12.6 years. At the present rate, by 2060 all papers on the archive will be Bayesian. (source:
NASA/ADS).

converge to a unique (objective) result even if different scientists start from different
priors (provided their priors are non-zero in regions of parameter space where the
likelihood is large). See Fig. 4 for an illustration.

(a) (b) (c) (d)

Fig. 4 Converging views in Bayesian inference. Two scientists having different prior believes p(θ)
about the value of a quantity θ (panel (a), the two curves representing two different priors) observe
one datum with likelihood L (θ) (panel (b)), after which their posteriors p(θ |d) (panel (c), ob-
tained via Bayes Theorem, Eq. (4)) represent their updated states of knowledge on the parameter.
This posterior then becomes the prior for the next observation. After observing 100 data points, the
two posteriors have become essentially indistinguishable (d).

There is a vast literature about how to select a prior in an appropriate way. Some
aspects are fairly obvious: if your parameter θ describes a quantity that has e.g. to
be strictly positive (such as the number of photons in a detector, or an amplitude),
then the prior will be 0 for values θ < 0.

A standard (but by no means harmless, see below) choice is to take a uniform
prior (also called “flat prior”) on θ , defined as:
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P(θ) =
{ 1

(θmax−θmin)
for θmin ≤ θ ≤ θmax

0 otherwise
(55)

With this choice of prior in Bayes theorem, Eq. (53), the posterior becomes func-
tionally identical to the likelihood up to a proportionality constant:

P(θ |d) ∝ P(d|θ) = L (θ). (56)

In this case, all of our previous results about the likelihood carry over (but with a
different interpretation). In particular, the probability content of an interval around
the mean for the posterior should be interpreted as a statement about our degree of
belief in the value of θ (differently from confidence intervals for the likelihood).

Example 16. Let’s look once more to the temperature estimation problem of Eq. (42).
The Bayesian estimation of the temperature proceeds as follows. We first need
to specify the likelihood function – this is the same as before, and it is given by
Eq. (42). If we want to estimate the temperature, we need to compute the posterior
probability for T , given by (up to a normalization constant)

P(T |d) ∝ L (T )P(T ) (57)

where the likelihood L (T ) is given by Eq. (42). We also need to specify the prior,
P(T ). For this particular case, we know that T > 0 (the temperature in K of an object
needs to be positive) and let’s assume we know that the temperature cannot exceed
300 K. Therefore we can pick a flat prior of the form

P(T ) =
{ 1

300 for 0K ≤ T ≤ 300K
0 otherwise.

(58)

The posterior distribution for T then becomes

P(T |d) ∝

{
L (T )

300 for 0K ≤ T ≤ 300K
0 otherwise.

(59)

So the posterior is identical to the likelihood (up to a proportionality constant), at
least within the range of the flat prior. Hence we can conclude that the posterior is
going to be a Gaussian (just like the likelihood) and we can immediately write the
68.3% posterior range of T as 198.0K < µ < 201.2K. This is numerically identical
to our results obtained via the MLE. However, in this case the interpretation of this
interval is that “after seeing the data, and given our prior as specified in Eq. (58),
there is 68.3% probability that the true value of the temperature lies within the range
198.0K < µ < 201.2K”.
Under a change of variable, Ψ =Ψ(θ), the prior transforms according to:

P(Ψ) = P(θ)
∣∣∣det

(
∂θ

∂Ψ

)∣∣∣. (60)
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In particular, a flat prior on θ is no longer flat in Ψ if the variable transformation is
non-linear.
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Fig. 5 Illustration of the phenomenon of the concentration of measure in parameter spaces with a
large number of dimensions. The coloured band represents the density of samples (as a function
of the number of dimensions sampled) obtained with a flat prior on the axis coordinates of a D-
dimensional hypercube. It can be seen that samples from the prior concentrate in a thin shell of
constant variance, leaving most of the parameter space unexplored. The radius of the shell is given
in the vertical axis.

It is important to realize that a flat prior is far from harmless, especially in param-
eter spaces of high dimensionality. This is the so-called “concentration of measure”
phenomenon. Sampling uniformly (i.e., with a uniform prior) along each dimension
xi ∈ [0,1] of a D-dimensional hypercube leads to the radius r =

(
∑

D
i=1 x2

i
)1/2 of the

samples to concentrate around the value 〈r〉= (D/3)1/2 with constant variance. As
a consequence, all of the samples are found on a thin shell (see Fig. 5 for an illustra-
tion). Even worse, in D dimensions the volume of the hypercube is much larger than
the volume of the hypersphere, hence most of the volume is in the corners of the hy-
percube which are not sampled. This means that an MCMC in D dimensions (where
D is large) has a prior distribution that is far from being uniformly distributed in the
volume of the hypercube – although any 2-dimensional projection will apparently
belie this.

A sensitivity analysis should always be performed, i.e., change the prior in a
reasonable way and assess how robust the ensuing posterior is. Unfortunately, this
is seldom done in the astrophysics and cosmology literature.

There is a vast body of literature on different types of priors, when to use them
and what they are good for. It is a good idea to browse the literature when faced
with a new problem, as there is no point in re-inventing the wheel every time. There
are essentially two schools of thought: one maintains that priors should be chosen
according to subjective degree of belief; the other, that they should be selected ac-
cording to some formal rule, i.e. priors should be chosen by convention. None of the
two approaches is free from difficulties. To give but some relevant examples:
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• reference priors: the idea is to define a prior so that the contribution of the data to
the posterior is maximised. This is achieved by choosing a prior with maximum
entropy. For example, in the case of a Gaussian likelihood this leads to the con-
clusion that the proper prior for the mean µ is flat on µ , while for the standard
deviation σ is should be flat in logσ (with appropriate cutoffs of course).

• ignorance priors: in 1812 Laplace set forth the principle that when nothing else
is known priors should be chosen so as to give equal probability to all alterna-
tives (“the principle of indifference”). Unfortunately this is very difficult to do in
the case of continuous parameters: part of the reason is that the notion of “indif-
ference” is not invariant under non-linear reparameterizations. In some relatively
simple cases, ignorance priors can be derived using symmetry or invariance ar-
guments, see for examples [26].

• conjugate priors: a prior is said to be conjugate to the likelihood if the result-
ing posterior is of the same family as the likelihood. The convenience of having
conjugate priors is that the likelihood updates the prior to a posterior which is of
the same type (i.e., same distributional family). For example, Gaussian distribu-
tions are self-conjugate, i.e., a Gaussian prior with a Gaussian likelihood leads
to a Gaussian posterior; the conjugate prior to both the Poisson and the expo-
nential likelihood is the Gamma distribution; the conjugate prior to a Binomial
likelihood is the Beta distribution.

3.4 A general Bayesian solution to inference problems

The general Bayesian recipe to inferential problems can be summarised as follows:

(i) Choose a model containing a set of hypotheses in the form of a vector of param-
eters, θ (e.g., the mass of an extra–solar planet or the abundance of dark matter
in the Universe).

(ii) Specify the priors for the parameters. Priors should summarize your state of
knowledge about the parameters before you consider the new data, including
an relevant external source of information.

(iii) Construct the likelihood function for the measurement, which usually reflects
the way the data are obtained (e.g., a measurement with Gaussian noise will
be represented by a Normal distribution, while γ–ray counts on a detector will
have a Poisson distribution for a likelihood). Nuisance parameters related to the
measurement process might be present in the likelihood, e.g. the variance of the
Gaussian might be unknown or the background rate in the absence of the source
might be subject to uncertainty. Such nuisance parameters are included in the
likelihood (with appropriate prior). If external measurements are available for
the nuisance parameters, they can be incorporated either as an informative prior
on them, or else as additional likelihood terms.

(iv) Obtain the posterior distribution (usually, up to an overall normalisation constant)
either by analytical means or, more often, by numerical methods (see below for
MCMC and nested sampling algorithms to this effect).



30 Contents

The posterior pdf for one parameter at the time is obtained by marginalization,
i.e., by integrating over the uninteresting parameters. E.g., assume the the vector of
parameters is given by θ = {φ ,ψ}, then the 1D posterior pdf for φ alone is given
by

p(φ |d) ∝

∫
L (φ ,ψ)p(φ ,ψ)dψ. (61)

The final inference on φ from the posterior can then be communicated by plotting
p(φ |d), with the other components marginalized over.

From an MCMC chain, one can also obtain the profile likelihood, Eq. (35), by
maximising the value of the likelihood in each bin. The profile likelihood is expected
to be prior-independent, as long as the scan has gathered a sufficient number of sam-
ples in the favoured region, which is in general a difficult task for multi-dimensional
parameter spaces. It is also typically much more expensive to compute as it requires
a much larger number of samples than the posterior.

The profile likelihood and the Bayesian posterior ask two different statistical
questions of the data: the latter evaluates which regions of parameter space are most
plausible in the light of the measure implied by the prior; the former singles out
regions of high quality of fit, independently of their extent in parameter space, thus
disregarding the possibility of them being highly fine tuned. The information con-
tained in both is relevant and interesting, and for non-trivial parameter spaces the
two different approaches do not necessarily lead to the same conclusions6.

3.5 The Gaussian linear model

As idealised a case as it is, the Gaussian linear model is a great tool to hone your
computational skills and intuition. This is because it can be solved analytically, and
any numerical solution can be compared with the exact one. Furthermore, it applies
in an approximate way to many cases of interest. Here we solve analytically the gen-
eral problem in n dimensions. An application to the 2-dimensional case is then given
in the Exercises, section 3.8.2. For a more complete discussion, see [30], where the
general case is treated (including errors on the independent variable, general cor-
relations, missing data, upper limits, selection effects and the important subject of
Bayesian hierarchical modelling).

We consider the following linear model

y = Fθ + ε (62)

where the dependent variable y is a d-dimensional vector of observations (the data),
θ = {θ1,θ2, . . . ,θn} is a vector of dimension n of unknown parameters that we wish
to determine and F is a d× n matrix of known constants which specify the rela-

6 In the archetypal case of a Gaussian likelihood and uniform prior, the posterior pdf and the profile
likelihood are identical (up to a normalisation constant) and thus the question of which to choose
does not arise.
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tion between the input variables θ and the dependent variables y (so-called “design
matrix”).

In the following, we will specialize to the case where observations yi(x) are fitted
with a linear model of the form f (x) = ∑

n
j=1 θ jX j(x). Then the matrix F is given by

the basis functions X j evaluated at the locations xi of the observations, Fi j = X j(xi).
Notice that the model is linear in θ j, not necessarily in X j, i.e. X j can very well be
a non-linear function of x.

Furthermore, ε is a d-dimensional vector of random variables with zero mean
(the noise). We assume for simplicity that ε follows a multivariate Gaussian distri-
bution with uncorrelated covariance matrix C ≡ diag(τ2

1 ,τ
2
2 , . . . ,τ

2
d ). The likelihood

function takes the form

p(y|θ) = 1
(2π)d/2 ∏ j τ j

exp
[
−1

2
(b−Aθ)t(b−Aθ)

]
, (63)

where we have defined Ai j = Fi j/τi and bi = yi/τi where A is a d×n matrix and b
is a d-dimensional vector. This can be re-cast with some simple algebra as

p(y|θ) = L0 exp
[
−1

2
(θ −θ0)

tL(θ −θ0)

]
, (64)

with the likelihood Fisher matrix L (a n×n matrix) given by

L≡ AtA (65)

and a normalization constant

L0 ≡
1

(2π)d/2 ∏ j τ j
exp
[
−1

2
(b−Aθ0)

t(b−Aθ0)

]
. (66)

Here θ0 denotes the parameter value which maximises the likelihood (i.e., the max-
imum likelihood value for θ ), given by

θ0 = L−1Atb. (67)

We assume as a prior pdf a multinormal Gaussian distribution with zero mean
and the n× n dimensional prior Fisher information matrix P (recall that that the
Fisher information matrix is the inverse of the covariance matrix), i.e.

p(θ) =
|P|1/2

(2π)n/2 exp
[
−1

2
θ

tPθ

]
, (68)

where |P| denotes the determinant of the matrix P.
It can be shown that the posterior distribution for θ is given by multinormal

Gaussian with Fisher information matrix F

F = L+P (69)
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and mean θ̄ given by
θ̄ = F−1Lθ0. (70)

Finally, the model likelihood (or “Bayesian evidence”, i.e., the normalizing con-
stant in Bayes theorem) is given by

p(y) = L0
|F |−1/2

|P|−1/2 exp
[
−1

2
θ

t
0(L−LF−1L)θ0

]
= L0

|F |−1/2

|P|−1/2 exp
[
−1

2
(θ t

0Lθ0− θ̄
tF θ̄)

]
.

(71)

3.6 Markov Chain Monte Carlo methods

3.6.1 General theory

The purpose of a Markov chain Monte Carlo algorithm is to construct a sequence
of points (or “samples”) in parameter space (called “a chain”). The crucial property
of the chain is that the density of samples is proportional to the posterior pdf. This
allows to construct a map of the posterior distribution.

A Markov chain is defined as a sequence of random variables {X (0),X (1), . . . ,X (M−1)}
such that the probability of the (t +1)–th element in the chain only depends on the
value of the t–th element. The crucial property of Markov chains is that they can be
shown to converge to a stationary state (i.e., which does not change with t) where
successive elements of the chain are samples from the target distribution, in our
case the posterior p(θ |d).

The generation of the elements of the chain is probabilistic in nature, and is de-
scribed by a transition probability T (θ (t),θ (t+1)), giving the probability of moving
from point θ (t) to point θ (t+1) in parameter space. A sufficient condition to obtain a
Markov Chain is that the transition probability satisfy the detailed balance condition

p(θ (t)|d)T (θ (t),θ (t+1)) = p(θ (t+1)|d)T (θ (t+1),θ (t)). (72)

This is perhaps clearer when recast as follows:

T (θ (t),θ (t+1))

T (θ (t+1),θ (t))
=

p(θ (t+1)|d)
p(θ (t)|d)

, (73)

i.e.ṙatio of the transition probabilities is inversely proportional to the ratio of the
posterior probabilities at the two points.

Once samples from the posterior pdf have been gathered, obtaining Monte Carlo
estimates of expectations for any function of the parameters becomes a trivial task.
The posterior mean is given by
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E[θ ] =
∫

P(θ |d)θdθ ≈ 1
M

M−1

∑
t=0

θ
(t), (74)

where the (approximate) equality with the mean of the samples from the MCMC
follows because the samples θ (t) are generated from the posterior by construction.

One can easily obtain the expectation value of any function of the parameters
f (θ) as

E[ f (θ)]≈ 1
M

M−1

∑
t=0

f (θ (t)). (75)

It is usually interesting to summarize the results of the inference by giving the 1–
dimensional marginal probability for the j–th element of θ , θ j, obtained by inte-
grating out all other parameters from the posterior:

P(θ1|d) =
∫

P(θ |d)dθ2 . . .dθn, (76)

where P(θ1|d) is the marginal posterior for the parameter θ1. While this would usu-
ally require an n−1-dimensional integration (which can be numerically difficult), it
is easily obtained from the Markov chain. Since the elements of the Markov chains
are samples from the full posterior, P(θ |d), their density reflects the value of the
full posterior pdf. It is then sufficient to divide the range of θ1 in a series of bins
and count the number of samples falling within each bin, simply ignoring the co-
ordinates values θ2, . . . ,θn. A 2–dimensional posterior is defined in an analogous
fashion.

A 1D 2–tail symmetric α% credible region is given by the interval (for the pa-
rameter of interest) within which fall α% of the samples, obtained in such a way
that a fraction (1−α)/2 of the samples lie outside the interval on either side. In
the case of a 1–tail upper (lower) limit, we report the value of the quantity below
(above) which α% of the sample are to be found.

Credible regions for a given probability content α can be defined in an infinite
number of ways. Two definitions are commonly used. The first is “symmetric credi-
ble interval” (in 1D) given above. The second definition is that of Highest Posterior
Density (HPD) regions. They are obtained by starting from the maximum of the
posterior and reducing the level until the desired fraction α of the posterior proba-
bility mass is included. Such a definition delimits a region so that every point inside
it has by construction a higher posterior density than any point outside it. For a given
probability content α , the HPD region is also the shortest interval. For a Normal 1D
posterior, the HPD is identical to the symmetric credible region.

3.6.2 The Metropolis-Hastings algorithm

The simplest (and widely used) MCMC algorithm is the Metropolis-Hastings algo-
rithm [42, 23]:
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(i) Start from a random point θ (0), with associated posterior probability p0 ≡
p(θ (0)|d).

(ii) Propose a candidate point θ (c) by drawing from the proposal distribution q(θ (0),θ (c)).
The proposal distribution might be for example a Gaussian of fixed width σ cen-
tered around the current point. For the Metropolis algorithm (as opposed to the
more general form due to Hastings), the distribution q satisfies the symmetry
condition, q(x,y) = q(y,x).

(iii) Evaluate the posterior at the candidate point, pc = p(θ (c)|d). Accept the candi-
date point with probability

α = min

(
pcq(θ (c),θ (0))

p0q(θ (0),θ (c))
,1

)
. (77)

For the Metropolis algorithm (where q is symmetric), this simplifies to

α = min
(

pc

p0
,1
)
. (78)

This accept/reject step can be performed by generating a random number u from
the uniform distribution [0,1) and accepting the candidate sample if u < α , and
rejecting it otherwise.

(iv) If the candidate point is accepted, add it to the chain and move there. Otherwise
stay at the old point (which is thus counted twice in the chain). Go back to (ii).

Notice from Eq. (78) that whenever the candidate sample has a larger posterior than
the previous one (i.e., pc > p0) the candidate is always accepted. Also, in order to
evaluate the acceptance function (78) only the unnormalized posterior is required, as
the normalization constant drops out of the ratio. It is easy to show that the Metropo-
lis algorithm satisfies the detailed balance condition, Eq. (72), with the transition
probability given by T (θ (t),θ (t+1)) = q(θ (t),θ (t+1))α(θ (t),θ (t+1)).

Ref [19] shows that an optimal choice of the proposal distribution is such that it
leads to an acceptance rate of approximately 25% (where acceptance rate is the ratio
of the number of accepted jumps to the total number of likelihood evaluations). The
optimal scale of the proposal distribution is approximately 2.4/

√
d times the scale

of the target distribution, where d is the number of dimensions of the parameter
space.

The choice of proposal distribution q is crucial for the efficient exploration of the
posterior. If the scale of q is too small compared to the scale of the target distribution,
exploration will be poor as the algorithm spends too much time locally. If instead
the scale of q is too large, the chain gets stuck as it does not jump very frequently.

To improve the exploration of the target, it is advisable to run an exploratory
MCMC, compute the covariance matrix from the samples, and then re-run with this
covariance matrix (perhaps rescaled by a factor 2.4/

√
d as recommended by [19]) as

the covariance of a multivariate Gaussian proposal distribution. This process can be
iterated a couple of times. The affine invariant ensemble sampler proposed by [21]
evolves a series of “walkers” rather than just one sampler at the time, and uses the
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position of the other points in the ensemble to generate a move with greatly reduced
auto-correlation length. This also largely dispenses with the need to fine-tune the
proposal distribution to match the target density. An algorithm that includes a suit-
able parallelization of this sampling scheme is described in [18], and is implemented
in a publicly available Python package, emcee7.

3.6.3 Gibbs sampling

The Gibbs sampler is a particularly good choice when it is simple (and computa-
tionally non-expensive) to sample from the conditional distribution of one of the
parameters at the time. It has been shown to work well in a large (∼ 105) number of
dimensions.

In Gibbs sampling, each of the parameters is updated in turn by drawing the
proposal distribution from the univariate conditional distribution of that variable
(conditional on all the others). This is best explained in a simple example, where the
parameter space is 2-dimensional and θ = {x,y}. In order to obtain the t-th sample,
one draws

x(t) ∼ p(x|y = y(t−1)) (79)

y(t) ∼ p(y|x = x(t)). (80)
(81)

Notice that in the second step, when drawing y we condition on a value of x that has
been updated to the latest draw of x, namely x(t). In the above, p denotes the target
distribution, i.e. the posterior density (where we have omitted explicit conditioning
on the data for ease of notation).

In a higher number of dimensions of parameter space, one always draws the k-
th variable from the conditional distribution p(θk|θ(−k)), where θ(−k) denotes the
vector of variables without the k-th variable.

It is perhaps slightly baffling that one can obtain samples from the joint posterior
merely from knowledge of the conditional distributions (although this is not gener-
ally true). An explanation of why this is the case (under only very mild conditions)
can be found in [10].

The Gibbs sampler can thus be seen as a special case of Metropolis-Hastings,
with one-dimensional proposal distributions and an acceptance rate of 1.

The above can also be generalised to blocks of variables, that are all updated si-
multaneously conditional on all the others. In the so-called “blocked Gibbs sampler”
one draws two (or more) variables simultaneously from p(θk, j|θ(−k, j)). This can be
useful in improving the convergence if the two variables k, j are strongly correlated.
A collapsed Gibbs sampler refers to the case when one of the variables has been
marginalised out in one of the sampling steps, i.e. one draws from p(θk|θ(−k, j)),
where the j-th variable has been marginalised from the joint. More sophisticated

7 Available from: http://dan.iel.fm/emcee.
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sampling strategies can also be employed to reduced auto-correlation and improve
sampling, see [45, 45] for the Partially Collapsed Gibbs sampler, and [60] for the
ancillarity-sufficiency interweaving strategy.

3.6.4 Hamiltonian Monte-Carlo

Hamiltonian Monte Carlo is particularly appealing for physicists, as it is built on
the formalism of Hamiltonian dynamics (as the name implies). Only a very sketchy
introduction is possible here. Refer to [44] for further details. A Python implemen-
tation of HMC can be found at: mc-stan.org.

The idea is to augment the vector containing the variable of interest, q (rep-
resenting position), by another vector of the same dimensionality, p (representing
momentum). We then define the potential energy U(q) as the negative log of the
unnormalized posterior we wish to sample from,

U(q) =− log(π(q)L (q)), (82)

where π(q) is the prior and L (q) the likelihood function. The Hamiltonian of this
fictitious system is then given by

H(q, p) = K(p)+U(q) (83)

where K(p) represents kinetic energy,

K(p) = ∑
i

p2
i

2mi
. (84)

Here, the sum runs over the dimensionality of the parameter space, and mi are “mass
values” that are chosen for convenience. If we look at the kinetic energy term as the
negative log of a probability distribution, then it defines a multivariate Gaussian of
0 mean with variance along each direction given by m2

i .
From analytical mechanics, we know that physical solutions are obtained by solv-

ing the Hamiltonian equations:

dqi

dt
=

∂H
∂ pi

(85)

d pi

dt
=−∂H

∂qi
. (86)

Such solutions have the useful properties of preserving energy (i.e., dH/dt = 0)
and conserving the phase space volume (in virtue of Liouville’s theorem). Those
properties are crucial in ensuring that the Hamiltonian MC (HMC) algorithm leaves
the desired distribution invariant.

In order to obtain a Markov Chain from the target distribution, the Hamiltonian
MC algorithm performs the following steps in each iteration:
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(i) resample the momentum variables, pi ∼N (0,m2
i );

(ii) obtain a new candidate location (qc, pc) in phase space by evolving the system
via approximate Hamiltonian dynamics (e.g. via the leapfrog method);

(iii) take a Metropolis accept/reject step at the candidate location (this is necessary as
in practice numerical approximation schemes mean that the energy of the system
is only approximately conserved).

The Hamiltonian dynamics preserves energy, but it changes the value of both the
momentum (in step (1)) and position variables (in step (2)), thus accomplishing a
large jump in the parameters of interest, namely q.

The key advantages of HMC is that it produces samples that are much less corre-
lated than ordinary Metropolis-Hastings (in virtue of the large distance travelled via
the Hamiltonian dynamics step), and that it scales well with the number of dimen-
sions of the parameter space.

3.6.5 Importance sampling

Importance sampling is a useful technique when we want to sample from a target
distribution p(x) (usually the posterior), but we have samples from another distri-
bution q(x) (perhaps because the latter is simpler to sample from). In some appli-
cations, q(x) could be the posterior from a certain data set, and we then want to
add another data set on top of it, thus obtaining p(x). As long as p(x) is not too
dissimilar from q(x), it can be obtained by importance sampling.

The expectation value under p of any function f (x) of the RV x can be written as

Ep[ f (x)] =
∫

f (x)p(x)dx =
∫

f (x)q(x)
p(x)
q(x)

dx = Eq[
p(x)
q(x)

f (x)]. (87)

This shows that we can obtain the expectation value under p by computing the
expectation value under q but re-weighting the function of interest by the factor
p(x)/q(x).

In terms of the sampling estimate, we can write

µ f ≈
1
M

∑
M
i=0 wi f (xi)

∑
M
i=0 wi

(88)

where wi = p(xi)/q(xi) are the importance sampling weights and xi ∼ q(x). Notice
that only the unnormalized values of p and q are necessary in Eq. (88), since the
normalisation cancels in the ratio.
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3.7 Practical and numerical issues

It is worth mentioning several important practical issues in working with MCMC
methods. Poor exploration of the posterior can lead to serious mistakes in the fi-
nal inference if it remains undetected – especially in high–dimensional parameter
spaces with multi–modal posteriors. It is therefore important not to use MCMC
techniques as a black box, but to run adequate tests to ensure insofar as possible that
the MCMC sampling has converged to a fair representation of the posterior.

Some of the most relevant aspects are:

(i) Initial samples in the chain must be discarded, since the Markov process is not
yet sampling from the equilibrium distribution (so–called burn–in period). The
length of the burn–in period can be assessed by looking at the evolution of the
posterior density as a function of the number of steps in the chain. When the
chain is started at a random point in parameter space, the posterior probability
will typically be small and becomes larger at every step as the chain approaches
the region where the fit to the data is better. Only when the chain has moved in
the neighborhood of the posterior peak the curve of the log posterior as a function
of the step number flattens and the chain begins sampling from its equilibrium
distribution. Samples obtained before reaching this point must be discarded, see
Fig. 6

(ii) A difficult problem is presented by the assessment of chain convergence, which
aims at establishing when the MCMC process has gathered enough samples so
that the Monte Carlo estimate (75) is sufficiently accurate. Useful diagnostic
tools include the Raftery and Lewis statistics [48] and the Gelman and Rubin
criterion [20].

(iii) One has to bear in mind that MCMC is a local algorithm, which can be trapped
around local maxima of the posterior density, thus missing regions of even higher
posterior altogether. Considerable experimentation is sometimes required to find
an implementation of the MCMC algorithm that is well suited to the exploration
of the parameter space of interest. Experimenting with different algorithms (each
of which has its own strength and weaknesses) is highly recommended.

(iv) Successive samples in a chain are in general correlated. Although this is not prej-
udicial for a correct statistical inference, it is often interesting to obtain indepen-
dent samples from the posterior. This can be achieved by “thinning” the chain
by an appropriate factor, i.e. by selecting only one sample every K. The auto-
correlation is a good measure of the number of steps required before the chain
has “forgotten” its previous state. It can be estimated from the MCMC samples
as

γ̂(k) =
∑

M−k
i=0 (θi− θ̄)(θi+k− θ̄)

∑
M−k
i=0 (θi− θ̄)2

, (89)

where k is called the lag and x̄ is the sample mean (the above equation should
be understood component by component if the parameter vector θ is multi-
dimensional). A plot of γ̂ versus lag k is called “autocorrelation function” (ACF)
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Fig. 6 Illustration of the burn-in period. Left panel: the logarithm of the log-likelihood,
− lnP(d|θ), as a function of the step number for four Monte Carlo chains. After the burn-in period
(dotted, vertical lines), the value flattens and the chains are sampling from the target distribution.
Right panel: the four chains (in different colors) are started in different points of a 6-dimensional
parameter space and all converge to the same region after the burn-in. The vertical axis gives the
number of steps.

and the value of the lag after which it drops close to 0 provides an estimate of the
thinning factor K required to obtain approximate independent samples from the
chain.
A discussion of samples independence and how to assess it can be found in [15],
along with a convergence test based on the samples’ power spectrum.

3.8 Exercices

3.8.1 Bayesian reasoning

(i) A batch of chemistry undergraduates are screened for a dangerous medical con-
dition called Bacillum Bayesianum (BB). The incidence of the condition in the
population (i.e., the probability that a randomly selected person has the disease)
is estimated at about 1%. If the person has BB, the test returns positive 95% of
the time. There is also a known 5% rate of false positives, i.e. the test returning
positive even if the person is free from BB. One of your friends takes the test and
it comes back positive. Here we examine whether your friend should be worried
about her health.

a. Translate the information above in suitably defined conditional probabilities.
The two relevant propositions here are whether the test returns positive (de-
note this with a + symbol) and whether the person is actually sick (denote
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this with the symbol BB = 1. Denote the case when the person is healthy as
BB = 0).

b. Compute the conditional probability that your friend is sick, knowing that she
has tested positive, i.e., find P(BB = 1|+).

c. Imagine screening the general population for a very rare desease, whose inci-
dence in the population is 10−6 (i.e., one person in a million has the disease
on average, i.e. P(BB = 1) = 10−6). What should the reliability of the test
(i.e., P(+|BB = 1)) be if we want to make sure that the probability of actually
having the disease after testing positive is at least 99%? Assume first that the
false positive rate P(+|BB = 0) (i.e, the probability of testing positive while
healthy), is 5% as in part (a). What can you conclude about the feasibility of
such a test?

d. Now we write the false positive rate as P(+|BB = 0) = 1−P(−|BB = 0). It is
reasonable to assume (although this is not true in general) that P(−|BB= 0) =
P(+|BB = 1), i.e. the probability of getting a positive result if you have the
disease is the same as the probability of getting a negative result if you don’t
have it. Find the requested reliability of the test (i.e., P(+|BB = 1)) so that
the probability of actually having the disease after testing positive is at least
99% in this case. Comment on whether you think a test with this reliability is
practically feasible.

(ii) In a game, you can pick one of three doors, labelled A, B and C. Behind one of
the three doors lies a highly desirable price, such as for example a cricket bat.
After you have picked one door (e.g., door A) the person who is presenting the
game opens one of the remaining 2 doors so as to reveal that there is no prize
behind it (e.g., door C might be opened). Notice that the gameshow presenter
knows that the door he opens has no prize behind it. At this point you can either
stick with your original choice (door A) or switch to the door which remains
closed (door B). At the end, all doors are opened, at which point you will only
win if the prize is behind your chosen door.

a. Given the above rules (and your full knowledge of them), should you stick
with your choice or is it better to switch?

b. In a variation, you are given the choice to randomly pick one of doors B or
C and to open it, after you have chosen door A. You pick door C, and upon
opening it you discover there is nothing behind it. At this point you are again
free to either stick with door A or to switch to door B. Are the probabilities
different from the previous scenario? Justify your answers.

(iii) In a TV debate, politician A affirms that a certain proposition S is true. You trust
politician A to tell the truth with probability 4/5. Politician B then agrees that what
politician A has said is indeed true. Your trust in politician B is much weaker, and
you estimate that he lies with probability 3/4.
After you have heard politician B, what is the probability that statement S is
indeed true?
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(You may assume that you have no other information on the truth of proposition
S other than what you heard from politicians A and B)
Hint: Start by denoting by AT the statement “politician A tells the truth”, and by
BT the statement “politician B tells the truth”. What you are after is the proba-
bility of the statement “proposition S is true” after you have heard politician B
say so.

(iv) A body has been found on the Baltimore West Side, with no apparent wounds,
although it transpires that the deceased, a Mr Fuzzy Dunlop, was a heavy drug
user. The detective in charge suggests to close the case and to attribute the death
to drugs overdose, rather than murder.
Knowing that, of all murders in Baltimore, about 30% of the victims were drug
addicts, and that the probability of a dead person having died of overdose is 50%
(without further evidence apart from the body) estimate the probability that the
detective’s hunch is correct. (For this problem, you may assume that the possible
only causes of death are overdose or murder).

3.8.2 Bayesian parameter inference

(v) This problem takes you through the steps to derive the posterior distribution for
a quantity of interest θ , in the case of a Gaussian prior and Gaussian likelihood,
for the 1-dimensional case.
Let us assume that we have made N independent measurements, x̂= {x̂1, x̂2, . . . , x̂N}
of a quantity of interest θ (this could be the temperature of an object, the distance
of a galaxy, the mass of a planet, etc). We assume that each of the measurements
in independently Gaussian distributed with known experimental standard devia-
tion σ . Let us denote the sample mean by x̄, i.e.

x̄ =
1
N

N

∑
i=1

x̂i. (90)

Before we do the experiment, our state of knowledge about the quantity of inter-
est θ is described by a Gaussian distribution on θ (i.e., the prior entering Eq. (81)
in the handout), centered around 0 (we can always choose the units in such a way
that this is the case). Such a prior might come e.g. from a previous experiment we
have performed. The new experiment is however much more precise, i.e. Σ � σ .
Our prior state of knowledge be written in mathematical form as the following
Gaussian pdf:

p(θ)∼N (0,Σ 2). (91)

a. Write down the likelihood function for the measurements and show that it can
be recast in the form:

L (θ) = L0 exp
(
−1

2
(θ − x̄)2

σ2/N

)
, (92)
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where L0 is a constant that does not depend on θ .
b. By using Bayes theorem, compute the posterior probability for θ after the data

have been taken into account, i.e. compute p(θ |x̂). Show that it is given by a

Gaussian of mean x̄ Σ2

Σ2+σ2/N and variance
[

1
Σ2 +

N
σ2

]−1
.

Hint: you may drop the normalization constant from Bayes theorem, as it does
not depend on θ

c. Show that as N → ∞ the posterior distribution becomes independent of the
prior.

d. Show that as N → ∞ the mean of the posterior distribution converges to the
MLE of the mean for θ . This means that for a large number of measurements,
the Bayesian result matches the frequentist MLE result.

(vi) We already encountered the coin tossing problem, but this time you’ll do it in the
Bayesian way.
A coin is tossed N times and heads come up H times.

a. What is the likelihood function? Identify clearly the parameter, θ , and the
data.

b. What is a reasonable, non-informative prior on θ?
c. Compute the posterior probability for θ . Recall that θ is the probability that a

single flip will give heads. This integral will prove useful:∫ 1

0
dθθ

N(1−θ)M =
Γ (N +1)Γ (M+1)

Γ (N +M+2)
. (93)

d. Determine the posterior mean and standard deviation of θ .
e. Plot your results as a function of H for N = 10,100,1000.
f. † Generalize your prior to the Beta distribution,

p(θ |ν1,ν2) =
1

B(ν1,ν2)
θ

ν1−1(1−θ)ν2−1 (94)

where B(ν1,ν2) = Γ (ν1)Γ (ν2)/Γ (ν1 +ν2) is the beta function and the “hy-
perparameters” ν1,ν2 > 0. Clearly, a uniform prior is given by the choice
(ν1,ν2) = (1,1). Evaluate the dependency of your result to the choice of hy-
perparameters.

g. † What is the probability that the (N +1)-th flip will give heads?

(vii) Prove Eqs. (64), (69) and (71) in the notes for the Gaussian linear model given
by

y = Fθ + ε. (95)

Hint: recall this standard result for Gaussian integrals:∫
exp
[
−1

2
(x−m)t

Σ
−1(x−m)

]
dx =

√
det(2πΣ) (96)
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(viii) Now we specialize to the case n = 2, i.e. we have two parameters of interest,
θ = {θ1,θ2} and the linear function we want to fit is given by

y = θ1 +θ2x. (97)

(In the formalism above, the basis vectors are X1 = 1,X2 = x).
Table 1 gives an array of d = 10 measurements y = {y1,y2, . . . ,y10}, together
with the values of the independent variable xi. Assume that the uncertainty in the
same for all measurements, i.e. τi = 0.1 (i = 1, . . . ,10). You may further assume
that measurements are uncorrelated. The data set is shown in the left panel of
Fig. 7

Table 1 Data sets for the Gaussian linear model exercise. You may assume that all data points are
independently and identically distributed with standard deviation of the noise σ = 0.1.

x y

0.8308 0.9160
0.5853 0.7958
0.5497 0.8219
0.9172 1.3757
0.2858 0.4191
0.7572 0.9759
0.7537 0.9455
0.3804 0.3871
0.5678 0.7239
0.0759 0.0964

x

y

Example data set
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Fig. 7 Left panel: data set for the Gaussian linear problem. The solid line shows the true value of
the linear model from which the data have been generated, subject to Gaussian noise. Right panel:
2D credible intervals from the posterior distribution for the parameters. The the blue diamond is the
Maximum Likelihood Estimator, from Eq. (67), whose value for this data set is x =−0.0136,y =
1.3312.
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a. Assume a Gaussian prior with Fisher matrix P = diag
(
10−2,10−2

)
for θ .

Find the posterior distribution for θ given the data, and plot it in 2 dimensions
in the (θ1,θ2) plane (see right panel of Fig. 7).
Use the appropriate contour levels to demarcate 1, 2 and 3 sigma joint credible
intervals of the posterior.

b. In a language of your choice, write an implementation of the Metropolis-
Hastings Markov Chain Monte Carlo algorithm, and use it to obtain samples
from the posterior distribution.
Plot equal weight samples in the (θ1,θ2) space, as well as marginalized 1-
dimensional posterior distributions for each parameter.

c. Compare the credible intervals that you obtained from the MCMC with the
analytical solution.

(ix) Supernovae type Ia can be used as standardizable candles to measure distances
in the Universe. This series of problems explores the extraction of cosmological
information from a simplified SNIa toy model.
The cosmological parameters we are interested in constraining are

C = {Ωm,ΩΛ ,h} (98)

where Ωm is the matter density (in units of the critical energy density) and ΩΛ

is the dark energy density, assumed here to be in the form of a cosmological
constant, i.e. w = −1 at all redshifts. In the following, we will fix h = 0.72 for
simplicity, where the Hubble constant today is given by H0 = 100hkm/s/Mpc.
In an FRW cosmology defined by the parameters C , the distance modulus µ (i.e.,
the difference between the apparent and absolute magnitudes, µ = m−M) to a
SN at redshift z is given by

µ(z,C ) = 5log
[

DL(z,Ωm,ΩΛ ,h)
Mpc

]
+25, (99)

where DL denotes the luminosity distance to the SN. Recalling that DL = cdL/H0,
We can rewrite this as

µ(z,C ) = η +5logdL(z,Ωm,ΩΛ ), (100)

where
η =−5log

100h
c

+25 (101)

and c is the speed of light in km/s. We have defined the dimensionless luminosity
distance

dL(z,Ωm,ΩΛ )=
(1+ z)√
|Ωκ |

sinn{
√
|Ωκ |

∫ z

0
dz′[(1+z′)3

Ωm+ΩΛ +(1+z′)2
Ωκ ]

−1/2}.

(102)
The curvature parameter is given by the constraint equation
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Ωκ = 1−Ωm−ΩΛ (103)

and the function

sinn(x) =

 x for a flat Universe (Ωκ = 0);
sin(x) for a closed Universe (Ωκ < 0);
sinh(x) for an open Universe (Ωκ > 0).

(104)

We now assume that from each SNIa in our sample we get a measurement of the
distance modulus with Gaussian noise8, i.e., that the likelihood function for each
SN i (i = 1, . . . ,N) is of the form

Li(zi,C ,M) =
1√

2πσi
exp
(
−1

2
(µ̂i−µ(zi,C ))2

σ2
i

)
. (105)

The observed distance modulus is given by µ̂i = m̂i−M, where m̂i is the observed
apparent magnitude and M is the intrinsic magnitude of the SNIa. We assume that
each SN observation is independent of all the others.
The provided data file9 (SNe simulated.dat) contains simulated observa-
tions from the above simplified model of N = 300 SNIa. The two columns give
the redshift zi and the observed apparent magnitude m̂i. The observational error
is the same for all SNe, σi = σ = 0.4 mag for i = 1, . . . ,N.
A plot of the data set is shown in the left panel of Fig. 8. The characteristics of
the simulated SNe are designed to mimic currently available datasets (see [32, 1,
31, 49, 6]).

a. We assume that the intrinsic magnitude10 is known and fix M = M0 =−19.3
and that h = 0.72. We also assume that the observational error is known, given
by the value above.
Using a language of your choice, write a code to carry out an MCMC sampling
of the posterior probability for (Ωm,ΩΛ ) and plot the resulting 68% and 95%
posterior regions, both in 2D and marginalized to 1D, using uniform priors on
(Ωm,ΩΛ ) (be careful to define them explicitly).
You should obtain a result similar to the 2D plot shown in the right panel of
Fig. 8.

b. † Add the quantity σ (the observational error) to the set of unknown param-
eters and estimate it from the data along with C . Notice that since σ is a
“scale parameter”, the appropriate (improper) prior is p(σ) ∝ 1/σ (see [7] for
a justification).

8 We neglect the important issue of applying the empirical corrections known as Phillip’s relations
to the observed light curve. This is of fundamental important in order to reduce the scatter of SNIa
within useful limits for cosmological distance measurements, but it would introduce a technical
complication here without adding to the fundamental scope of this exercise.
9 Thanks to Marisa March for help with the simulation.
10 In reality the SNe intrinsic magnitude is not fixed, but there is an “intrinsic dispersion” (even
after Phillips’ corrections) reflecting perhaps intrinsic variability in the explosion mechanism, or
environmental parameters which are currently poorly understood.
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Fig. 8 Left: Simulated SNIa dataset, SNe simulated.dat. The solid line is the true underlying
cosmology. Right: constraints on Ωm,ΩΛ from this dataset, with contours delimiting 2D joint 68%
and 95% credible regions (uniform priors on the variables Ωm,ΩΛ , assuming M = M0 fixed and
h = 0.72). The red cross denotes the true value.

c. The location of the peaks in the CMB power spectrum gives a precise mea-
surement of the angular diameter distance to the last scattering surface, di-
vided by the sound horizon at decoupling. This approximately translates into
an effective constraint (see [52], Fig. 20) on the following degenerate combi-
nation of Ωm and ΩΛ :

1.41ΩΛ +Ωm = 1.30±0.04. (106)

Add this constraint (assuming a Gaussian likelihood, with the above mean and
standard deviation) to the SNIa likelihood and plot the ensuing combined 2D
and 1D limits on (Ωm,ΩΛ ).

d. The measurement of the baryonic acoustic oscillation scale in the galaxy
power spectrum at small redshift gives an effective constraint on the angular
diameter distance DA out to z ∼ 0.3. This measurement can be summarized
as [2]:

DA(z = 0.57) = (1408±45)Mpc. (107)

Add this constraints (again assuming a Gaussian likelihood) to the above
CMB+SNIa limits and plot the resulting combined 2D and 1D limits on
(Ωm,ΩΛ ).
Hint: recall that DL(z) = (1+ z)2DA(z).
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4 Bayesian model selection

4.1 The three levels of inference

For the purpose of this discussion, it is convenient to divide Bayesian inference in
three different levels:

(i) Level 1: We have chosen a model M0, assumed true, and we want to learn about
its parameters, θ0. E.g.: we assume ΛCDM to be the true model for the Universe
and try to constrain its parameters. This is the usual parameter inference step.

(ii) Level 2: We have a series of alternative models being considered (M1,M2, . . . )
and we want to determine which of those is in best agreement with the data.
This is a problem of model selection, or model criticism. For example, we might
want to decide whether a dark energy equation of state w = −1 is a sufficient
description of the available observations or whether we need an evolving dark
energy model, w = w(z).

(iii) Level 3: Of the N models considered in Level 2, there is no clear “best” model.
We want to report inferences on parameters that account for this model uncer-
tainty. This is the subject of Bayesian model averaging. For example, we want to
determine Ωm independently of the assumed dark energy model.

The Frequentist approach to model criticism is in the form of hypothesis testing
(e.g., “chi-squared-per-degree-of-freedom“ type of tests). One ends up rejecting (or
not) a null hypothesis H0 based on the p-value, i.e., the probability of getting data as
extreme or more extreme than what has been observed if one assumes that H0 is true.
Notice that this is not the probability for the hypothesis! Classical hypothesis testing
assumes the hypothesis to be true and determines how unlikely are our observations
given this assumption. This is arguably not the quantity we are actually interested
in, namely, the probability of the hypothesis itself given the observations in hand.
Ref. [50] is a highly recommended read on this topic.

The Bayesian approach takes the view that there is no point in rejecting a model
unless there are specific alternatives available: it takes therefore the form of model
comparison. The key quantity for model comparison is the Bayesian evidence.
Bayesian model comparison automatically implements a quantitative version of Oc-
cam’s razor, i.e., the notion that simpler models ought to be preferred if they can
explain the data sufficiently well.

4.2 The Bayesian evidence

4.2.1 Definition

The evaluation of a model’s performance in the light of the data is based on the
Bayesian evidence. This is the normalization integral on the right–hand–side of
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Bayes’ theorem, Eq. (54), which we rewrite here conditioning explicitly on the
model under consideration, M , with parameter space ΩM :

p(d|M )≡
∫

ΩM

p(d|θ ,M )p(θ |M )dθ (Bayesian evidence). (108)

The Bayesian evidence is the average of the likelihood under the prior for a spe-
cific model choice. From the evidence, the model posterior probability given the
data is obtained by using Bayes’ Theorem to invert the order of conditioning:

p(M |d) ∝ p(M )p(d|M ), (109)

where we have dropped an irrelevant normalization constant that depends only on
the data and p(M ) is the prior probability assigned to the model itself. Usually
this is taken to be non–committal and equal to 1/Nm if one considers Nm different
models.

When comparing two models, M0 versus M1, one is interested in the ratio of the
posterior probabilities, or posterior odds, given by

p(M0|d)
p(M1|d)

= B01
p(M0)

p(M1)
. (110)

Definition 8. The Bayes factor B01 is the ratio of the models’ evidences:

B01 ≡
p(d|M0)

p(d|M1)
(Bayes factor). (111)

A value B01 > (<) 1 represents an increase (decrease) of the support in favour of
model 0 versus model 1 given the observed data (see [29] for more details on Bayes
factors).

Bayes factors are usually interpreted against the Jeffreys’ scale [27] for the
strength of evidence, given in Table 2. This is an empirically calibrated scale, with
thresholds at values of the odds of about 3 : 1, 12 : 1 and 150 : 1, representing weak,
moderate and strong evidence, respectively.

| lnB01| Odds Probability Strength of evidence
< 1.0 ∼< 3 : 1 < 0.750 Inconclusive
1.0 ∼ 3 : 1 0.750 Weak evidence
2.5 ∼ 12 : 1 0.923 Moderate evidence
5.0 ∼ 150 : 1 0.993 Strong evidence

Table 2 Empirical scale for evaluating the strength of evidence when comparing two models,
M0 versus M1 (so–called “Jeffreys’ scale”). Threshold values are empirically set, and they occur
for values of the logarithm of the Bayes factor of | lnB01| = 1.0, 2.5 and 5.0. The right–most
column gives our convention for denoting the different levels of evidence above these thresholds.
The probability column refers to the posterior probability of the favoured model, assuming non–
committal priors on the two competing models, i.e., p(M0) = p(M1) = 1/2 and that the two
models exhaust the model space, p(M0|d)+ p(M1|d) = 1.
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4.2.2 The Occam’s razor effect

We begin by considering the example of two nested models. Consider two compet-
ing models: M0 predicting that a parameter θ = 0 with no free parameters, and M1
which assigns to it a Gaussian prior distribution with 0 mean and variance Σ 2. As-
sume we perform a measurement of θ described by a normal likelihood of standard
deviation σ , and with the maximum likelihood value lying λ standard deviations
away from 0, i.e. |θmax/σ | = λ . Then the Bayes factor between the two models is
given by, from Eq. (111)

B01 =
√

1+(σ/Σ)−2 exp
(
− λ 2

2(1+(σ/Σ)2)

)
. (112)

For λ � 1, corresponding to a detection of the new parameter with high signifi-
cance, the exponential term dominates and B01 � 1, favouring the more complex
model with a non–zero extra parameter, in agreement with what one would get us-
ing Frequentist hypothesis testing. But if λ ∼< 1 and σ/Σ � 1 (i.e., the likelihood
is much more sharply peaked than the prior and in the vicinity of 0), then the pre-
diction of the simpler model that θ = 0 has been confirmed. This leads to the Bayes
factor being dominated by the Occam’s razor term, and B01 ≈ Σ/σ , i.e. evidence ac-
cumulates in favour of the simpler model proportionally to the volume of “wasted”
parameter space. If however σ/Σ � 1 then the likelihood is less informative than
the prior and B01 → 1, i.e. the data have not changed our relative belief in the two
models.

In the above example, if the data are informative with respect to the prior on
the extra parameter (i.e., for σ/Σ � 1) the logarithm of the Bayes factor is given
approximately by

lnB01 ≈ ln(Σ/σ)−λ
2/2, (113)

where as before λ gives the number of sigma away from a null result (the “signifi-
cance” of the measurement). The first term on the right–hand–side is approximately
the logarithm of the ratio of the prior to posterior volume. We can interpret it as
the information content of the data, as it gives the factor by which the parameter
space has been reduced in going from the prior to the posterior. This term is posi-
tive for informative data, i.e. if the likelihood is more sharply peaked than the prior.
The second term is always negative, and it favours the more complex model if the
measurement gives a result many sigma away from the prediction of the simpler
model (i.e., for λ � 0). We are free to measure the information content in base–10
logarithm (as this quantity is closer to our intuition, being the order of magnitude of
our information increase), and we define the quantity I10 ≡ log10 (Σ/σ). Figure 9
shows contours of | lnB01| = const for const = 1.0,2.5,5.0 in the (I10,λ ) plane, as
computed from Eq. (113). The contours delimit significative levels for the strength
of evidence, according to the Jeffreys’ scale (Table 2). For moderately informative
data (I10 ≈ 1− 2) the measured mean has to lie at least about 4σ away from 0 in
order to robustly disfavor the simpler model (i.e., λ ∼> 4). Conversely, for λ ∼< 3
highly informative data (I10 ∼> 2) do favor the conclusion that the extra parameter



50 Contents

is indeed 0. In general, a large information content favors the simpler model, be-
cause Occam’s razor penalizes the large volume of “wasted” parameter space of the
extended model.

An useful properties of Figure 9 is that the impact of a change of prior can be
easily quantified. A different choice of prior width (i.e., Σ ) amounts to a horizontal
shift across Figure 9, at least as long as I10 > 0 (i.e., the posterior is dominated by
the likelihood). Picking more restrictive priors (reflecting more predictive theoreti-
cal models) corresponds to shifting the result of the model comparison to the left of
Figure 9, returning an inconclusive result (white region) or a prior–dominated out-
come (hatched region). Notice that results in the 2–3 sigma range, which are fairly
typical in cosmology, can only support the more complex model in a very mild way
at best (odds of 3 : 1 at best), while actually being most of the time either inconclu-
sive or in favour of the simpler hypothesis (pink shaded region in the bottom right
corner).

Notice that Bayesian model comparison is usually conservative when it comes
to admitting a new quantity in our model, even in the case when the prior width
is chosen “incorrectly” (whatever that means!). In general the result of the model
comparison will eventually override the “wrong” prior choice (although it might
take a long time to do so), exactly as it happens for parameter inference.

Bayesian model selection does not penalize parameters which are unconstrained
by the data. This is easily seen from Eq. (113): if a parameter is unconstrained, its
posterior width σ is approximately equal to the prior width, Σ , and the Occam’s
razor penalty term goes to zero. In such a case, consideration of the Bayesian model
complexity might help in judging model performance, see [33] for details.

Fig. 9 Illustration of Bayesian model comparison for two nested models, where the more complex
model has one extra parameter. The outcome of the model comparison depends both on the infor-
mation content of the data with respect to the a priori available parameter space, I10 (horizontal
axis) and on the quality of fit (vertical axis, λ , which gives the number of sigma significance of the
measurement for the extra parameter). Adapted from [54].
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4.2.3 Comparison with p-values

Classical hypothesis testing relies on comparing the observed value of some test
statistics, T (X) (where X is a RV with density p(X |θ)) with its the expected dis-
tribution under a null hypothesis (usually denoted by H0). The hypothesis test is to
compare H0 : θ = θ0 vs an alternative H1 : θ 6= θ0. The test statistics is so chosen
that more extreme values denote a stronger disagreement with the null.

Definition 9. The p-value (or observed significance level) is given by the probabil-
ity under the null that T achieves values as extremes or more extremes that have
been observed (assuming here that the larger the value of T , the stronger the dis-
agreement):

℘= p(T (X)≥ T obs|H0). (114)

As an example, consider the case where under H0, xi ∼N (θ0,σ) for fixed θ0
(the null hypothesis), while under the alternative H1, x∼N (θ ,σ) and n data sam-
ples are available (with σ known). The usual test statistics is then given by

T (X) =
√

n
|X̄−θ0|

σ
. (115)

The p-value is then given by

℘= 2(1− erf(T obs)) (116)

where the observed value of the test statistics is

T obs =
√

n
|x̄−θ0|

σ
(117)

and x̄ is the sample mean.
The classical procedure of reporting the observed℘ leads to a gross misrepresen-

tation of the evidence against the null (this is in contrast with the Neyman-Person
procedure of setting a threshold p-value before the experiment is performed, and
then only reporting whether or not that threshold has been exceeded). This is be-
cause it does not obey the frequentist principle: in repeated use of a statistical pro-
cedure, the long–run average actual error should not be greater than the long–run
average reported error [4]. This means that, for example, of all reported 95% con-
fidence results, on average many more than 5% turn out to be wrong, and typically
more than 50% are wrong.

Jeffreys famously criticised the use of p-values thus ([28] cited in [5]):

I have always considered the arguments for the use of [p-values] absurd. They amount to
saying that a hypothesis that may or may not be true is rejected because a greater departure
from the trial value was improbable; that is, that it has not predicted something that has not
happened.

An interesting illustration is given in [5]. Consider the case described above, and
let us generate data from a random sequence of null hypothesis (H0) and alternatives
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(H1), with θ0 = 0, σ = 1 and θ ∼N (0,1). Suppose that the proportion of nulls and
alternatives is equal. We then compute the p-value using Eq. (116) and we select all
the tests that give ℘∈ [α− ε,α + ε], for a certain value of α and ε � α (the exact
value of ε is unimportant). Among such results, which rejected the null hypothesis
at the 1−α level, we then determine the proportion that actually came from the
null, i.e. the percentage of wrongly rejected nulls. The results are shown in Table 3.
We notice that among all the “significant” effects at the 95% level about 50% are
wrong, and in general when there is only a single alternative at least 29% of the 95%
confidence level results will be wrong.

p-value sigma fraction of true nulls lower bound
0.05 1.96 0.51 0.29
0.01 2.58 0.20 0.11
0.001 3.29 0.024 0.018

Table 3 Proportion of wrongly rejected nulls among all results reporting a certain p-value (simu-
lation results). The ”lower bound” column gives the minimum fraction of true nulls (derived in [5]).
This illustrates that the reported p-value is not equal to the fraction of wrongly rejected true nulls,
which can be considerably worse.

The root of this striking disagreement with a common misinterpretation of the
p-value (namely, that the p-value gives the fraction of wrongly rejected nulls
in the long run) is twofold. While the p-value gives the probability of obtaining
data that are as extreme or more extreme than what has actually been observed
assuming the null hypothesis is true, one is not allowed to interpret this as the
probability of the null hypothesis to be true, which is actually the quantity
one is interested in assessing. The latter step requires using Bayes theorem
and is therefore not defined for a frequentist. Also, quantifying how rare the
observed data are under the null is not meaningful unless we can compare this
number with their rareness under an alternative hypothesis.

A useful rule of thumb is obtained by [5]: it is recommended to think of a nσ

result as of a (n− 1)σ result. Reducing the number of sigma significance brings
the naive p-value interpretation in better alignment with the above results. All these
points are discussed in greater detail in [5, 50, 4, 38, 14].
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4.3 Computation of the evidence

4.3.1 Nested sampling

A powerful and efficient alternative to classical MCMC methods has emerged in the
last few years in the form of the so–called “nested sampling” algorithm, out forward
by John Skilling [51]. Although the original motivation for nested sampling was to
compute the evidence integral of Eq. (108), the development of the multi–modal
nested sampling technique [17] (and more recently the PolyChord algorithm [22])
provides a powerful and versatile algorithm that can sample efficiently from com-
plex, multi-modal likelihood surfaces, see Fig. 10.

Fig. 10 Example of posterior reconstruction using Nested Sampling. Left panel: target likelihood
in a 2D parameter space (x,y). Right panel: reconstructed posterior (with flat priors) using Nested
Sampling. From Ref. [17].

The gist of nested sampling is that the multi–dimensional evidence integral is
recast into a one–dimensional integral, by defining the prior volume X as dX ≡
p(θ |M )dθ so that

X(λ ) =
∫

L (θ)>λ

p(θ |M )dθ (118)

where L (θ) ≡ p(d|θ ,M ) is the likelihood function and the integral is over the
parameter space enclosed by the iso–likelihood contour L (θ) = λ . So X(λ ) gives
the volume of parameter space above a certain level λ of the likelihood.

The Bayesian evidence, Eq. (108), can be written as

p(d|M ) =
∫ 1

0
L (X)dX , (119)

where L (X) is the inverse of Eq. (118). Samples from L (X) can be obtained by
drawing uniformly samples from the likelihood volume within the iso–contour sur-
face defined by λ . This is the difficult part of the algorithm.
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Finally, the 1–dimensional integral of Eq. (119) can be obtained by simple
quadrature, thus

p(d|M )≈∑
i

L (Xi)Wi, (120)

where the weights are Wi =
1
2 (Xi−1−Xi+1), see [51, 43] for details11.

4.3.2 Thermodynamic integration

Thermodynamic integration computes the evidence integral by defining

E(µ)≡
∫

ΩM

L (θ)µ p(θ |M )dθ , (121)

where µ is an annealing parameter and L (θ)≡ p(d|θ ,M ). Obviously the desired
evidence corresponds to E(1). One starts by performing a standard MCMC sam-
pling with µ = 0 (i.e., sampling from the prior), then gradually increases µ to 1
according to some annealing schedule. The log of the evidence is then given by

lnE(1) = lnE(0)+
∫ 1

0

d lnE
dµ

dµ =
∫ 1

0
〈lnL 〉µ dµ, (122)

where the average log-likelihood is taken over the posterior with annealing parame-
ter µ , i.e.

〈lnL 〉µ =

∫
ΩM

(lnL )L (θ)µ p(θ |M )dθ∫
ΩM

L (θ)µ p(θ |M )dθ
. (123)

The drawback is that the end result might depend on the annealing schedule used
and that typically this methods takes 10 times as many likelihood evaluations as
parameter estimation. For an overview of so-called “population Monte Carlo” algo-
rithms and annealed importance sampling, see [25, 8].

4.3.3 Laplace approximation

An approximation to the Bayesian evidence can be obtained when the likelihood
function is unimodal and approximately Gaussian in the parameters. Expanding the
likelihood around its peak to second order one obtains the Laplace approximation

p(d|θ ,M )≈Lmax exp
[
−1

2
(θ −θmax)

tL(θ −θmax)

]
, (124)

where θmax is the maximum–likelihood point, Lmax the maximum likelihood value
and L the likelihood Fisher matrix (which is the inverse of the covariance matrix for

11 Publicly available software implementing nested sampling can be found at
http://www.mrao.cam.ac.uk/software/cosmoclust/.
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the parameters). Assuming as a prior a multinormal Gaussian distribution with zero
mean and Fisher information matrix P one obtains for the evidence, Eq. (108)

p(d|M ) = Lmax
|F |−1/2

|P|−1/2 exp
[
−1

2
(θmax

tLθmax−θ
t
Fθ)

]
, (125)

where the posterior Fisher matrix is F = L+P and the posterior mean is given by
θ = F−1Lθmax.

4.3.4 The Savage-Dickey density ratio

A useful approximation to the Bayes factor, Eq. (111), is available for situations in
which the models being compared are nested into each other, i.e. the more complex
model (M1) reduces to the original model (M0) for specific values of the new pa-
rameters. This is a fairly common scenario when one wishes to evaluate whether
the inclusion of the new parameters is supported by the data (e.g., do we need
isocurvature contributions to the initial conditions for cosmological perturbations,
or whether a curvature term in Einstein’s equation is needed, or whether a non–scale
invariant distribution of the primordial fluctuation is preferred).

Writing for the extended model parameters θ = (φ ,ψ), where the simpler model
M0 is obtained by setting ψ = 0, and assuming further that the prior is separable
(which is usually the case), i.e. that

p(φ ,ψ|M1) = p(ψ|M1)p(φ |M0), (126)

the Bayes factor can be written in all generality as

B01 =
p(ψ|d,M1)

p(ψ|M1)

∣∣∣∣
ψ=0

. (127)

This expression is known as the Savage–Dickey density ratio (see [54] and ref-
erences therein). The numerator is simply the marginal posterior under the more
complex model evaluated at the simpler model’s parameter value, while the denom-
inator is the prior density of the more complex model evaluated at the same point.
This technique is particularly useful when testing for one extra parameter at the
time, because then the marginal posterior p(ψ|d,M1) is a 1–dimensional function
and normalizing it to unity probability content only requires a 1–dimensional inte-
gral, which is simple to do using for example the trapezoidal rule.

4.3.5 Information criteria for approximate model selection

Sometimes it might be useful to employ methods that aim at an approximate model
selection under some simplifying assumptions that give a default penalty term for
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more complex models, which replaces the Occam’s razor term coming from the
different prior volumes in the Bayesian evidence [34].

Akaike Information Criterion (AIC): the AIC is an essentially frequentist crite-
rion that sets the penalty term equal to twice the number of free parameters in the
model, k:

AIC≡−2lnLmax +2k (128)

where Lmax ≡ p(d|θmax,M ) is the maximum likelihood value.

Bayesian Information Criterion (BIC): the BIC follows from a Gaussian approx-
imation to the Bayesian evidence in the limit of large sample size:

BIC≡−2lnLmax + k lnN (129)

where k is the number of fitted parameters as before and N is the number of data
points. The best model is again the one that minimizes the BIC.

Deviance Information Criterion (DIC): the DIC can be written as

DIC≡−2DKL +2Cb. (130)

In this form, the DIC is reminiscent of the AIC, with the lnLmax term replaced by
the estimated KL divergence DKL and the number of free parameters by the effective
number of parameters, Cb (see [55] for definitions).

The information criteria ought to be interpreted with care when applied to real
situations. Comparison of Eq. (129) with Eq. (128) shows that for N > 7 the BIC pe-
nalizes models with more free parameters more harshly than the AIC. Furthermore,
both criteria penalize extra parameters regardless of whether they are constrained
by the data or not, unlike the Bayesian evidence. In conclusion, what makes the in-
formation criteria attractive, namely the absence of an explicit prior specification,
represents also their intrinsic limitation.

4.4 Example: model selection for the inflationary landscape

The inflationary model comparison carried out in Ref. [41, 40] is an example of
the application of the above formalism to the problem of deciding which theoretical
model is the best description of the available observations. Although the technical
details are fairly involved, the underlying idea can be sketched as follows.

The term “inflation” describes a period of exponential expansion of the Universe
in the very first instants of its life, some 10−32 seconds after the Big Bang, during
which the size of the Universe increased by at least 25 orders of magnitude. This
huge and extremely fast expansion is required to explain the observed isotropy of
the cosmic microwave background on large scales. It is believed that inflation was
powered by one or more scalar fields. The behaviour of the scalar field during infla-
tion is determined by the shape of its potential, which is a real-valued function V (φ)
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(where φ denotes the value of the scalar field). The detailed shape of V (φ) controls
the duration of inflation, but also the spatial distribution of inhomogeneities (per-
turbations) in the distribution of matter and radiation emerging from inflation. It is
from those perturbations that galaxies and cluster form out of gravitational collapse.
Hence the shape of the scalar field can be constrained by observations of the large
scale structures of the Universe and of the CMB anisotropies.

Theories of physics beyond the Standard Model motivate certain functional
forms of V (φ), which however typically have a number of free parameters, θ . The
fundamental model selection question is to use cosmological observations to dis-
criminate between alternative models for V (φ) (and hence alternative fundamental
theories). The major obstacle to this programme is that very little if anything at all
is known a priori about the free parameters θ describing the inflationary potential.
What is worse, such parameters can assume values across several orders of magni-
tude, according to the theory. Hence the Occam’s razor effect of Bayesian model
comparison can vary in a very significant way depending on the prior choices for
Ψ . Furthermore, a non-linear reparameterization of the problem (which leaves the
physics invariant) does in general change the Occam’s razor factor, and hence the
model comparison result.

In Ref. [41] inflationary model selection was considered from a principled point
of view. The Bayesian evidence and complexity of 198 slow-roll single-field models
of inflation was computed, using the Planck 2013 Cosmic Microwave Background
data. The models considered represented an almost complete and systematic scan
of the entire landscape of inflationary scenarios proposed so far (More recently,
this works has been extended to more complex scenarios with more than one scalar
field [58]). The analysis singled out the most probable models (from an Occam’s ra-
zor point of view) that are compatible with Planck data. The resulting Bayes factors
(normalised to the case of Higgs Inflation) are displayed in Fig. 11.

4.5 Open challenges

I conclude by listing what I think are some of the open questions and outstanding
challenges in the application of Bayesian model selection to cosmological model
building.

• Is Bayesian model selection always applicable? The Bayesian model compar-
ison approach as applied to cosmological and particle physics problems has
been strongly criticized by some authors. E.g., George Efstathiou [16] and Bob
Cousins [12, 13] pointed out (in different contexts) that often insufficient atten-
tion is given to the selection of models and of priors, and that this might lead to
posterior model probabilities which are largely a function of one’s unjustified as-
sumptions. This draws attention to the difficult question of how to choose priors
on phenomenological parameters, for which theoretical reasoning offers poor or
no guidance (as in the inflationary model comparison example above).
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Fig. 11 Bayes factors (bars) and absolute upper bound to the Bayes factors (arrows) for inflationary
scenarios, with Higgs inflation as the reference model (see [41] for further details).

• How do we deal with Lindley’s paradox? It is simple to construct examples of
situations where Bayesian model comparison and classical hypothesis testing
disagree (Lindley’s paradox [36]). This is not surprising, as frequentist hypoth-
esis testing and Bayesian model selection really ask different questions of the
data [50]. Furthermore, as the scaling with the number of data points is different,
there isn’t even a guarantee that the two approaches will agree in the asymptotic
regime of large data sample size. As Louis Lyons aptly put it:

Bayesians address the question everyone is interested in by using assumptions no–one
believes, while frequentists use impeccable logic to deal with an issue of no interest to
anyone [37].
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However, such a disagreement is more likely to occur in situations where the sig-
nal is weak, which are precisely the kind of “frontier science” cases which are
the most interesting ones (e.g., discovery claims). Is there a way to evaluate e.g.
the loss function from making the “wrong” decision about rejecting/accepting a
model? In this context, perhaps a decision theoretical approach would be benefi-
cial: the loss function of making the wrong decision has to be explicitly formu-
lated, thus helping putting the user’s subjective biases and values in the open.

• How do we assess the completeness of the set of known models? Bayesian model
selection always returns a best model among the ones being compared, even
though that model might be a poor explanation for the available data. Is there
a principled way of constructing an absolute scale for model performance in a
Bayesian context? (for example, along the lines of the notion of Bayesian doubt,
introduced in [39]).

• Is Bayesian model averaging useful? Bayesian model averaging can be used
to obtain final inferences on parameters which take into account the resid-
ual model uncertainty (examples of applications in cosmology can be found
in [35, 46, 57, 24]). However, it also propagates the prior sensitivity of model
selection to the level of model-averaged parameter constraints. Is it useful to pro-
duce model-averaged parameter constraints, or should this task be left to the user,
by providing model-specific posteriors and Bayes factors instead?

• Is there such a thing as a “correct” prior? In fundamental physics, models and pa-
rameters (and their priors) are supposed to represent (albeit in an idealized way)
the real world, i.e., they are not simply useful representation of the data (as they
are in other statistical problems, e.g. as applied to social sciences). In this sense,
one could imagine that there exist a “correct” prior for e.g. the parameters θ of
our cosmological model, which could in principle be derived from fundamen-
tal theories such as string theory (e.g., the distribution of values of cosmological
parameters across the landscape of string theory [53]). This raises interesting sta-
tistical questions about the relationship between physics, reality and probability.

4.6 Exercices

(i) A coin is tossed N = 250 times and it returns H = 140 heads. Evaluate the evi-
dence that the coin is biased using Bayesian model comparison and contrast your
findings with the usual (frequentist) hypothesis testing procedure (i.e. testing the
null hypothesis that pH = 0.5). Discuss the dependency on the choice of priors.

(ii) In 1919 two expeditions sailed from Britain to measure the light deflection from
stars behind the Sun’s rim during the solar eclipse of May 29th. Einstein’s Gen-
eral Relativity predicts a deflection angle

α =
4GM
c2R

,
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where G is Newton’s constant, c is the speed of light, M is the mass of the grav-
itational lens and R is the impact parameter. It is well known that this result
it exaclty twice the value obtained using Newtonian gravity. For M = M� and
R = R� one gets from Einstein’s theory that α = 1.74 arc seconds.
The team led by Eddington reported 1.61± 0.40 arc seconds (based on the po-
sition of 5 stars), while the team headed by Crommelin reported 1.98±0.16 arc
seconds (based on 7 stars).
What is the Bayes factor between Einstein and Newton gravity from those data?
Comment on the strength of evidence.

(iii) Assume that the combined constraints from CMB, BAO and SNIa on the density
parameter for the cosmological constant can be expressed as a Gaussian posterior
distribution on ΩΛ with mean 0.7 and standard deviation 0.05. Use the Savage-
Dickey density ratio to estimate the Bayes factor between a model with ΩΛ = 0
(i.e., no cosmological constant) and the ΛCDM model, with a flat prior on ΩΛ in
the range 0≤ΩΛ ≤ 2. Comment on the strength of evidence in favour of ΛCDM.

(iv) If the cosmological constant is a manifestation of quantum fluctuations of the
vacuum, QFT arguments lead to the result that the vacuum energy density ρΛ

scales as
ρΛ ∼

ch̄
16π

k4
max (131)

where kmax is a cutoff scale for the maximum wavenumber contributing to the
energy density (see e.g. [9]). Adopting the Planck mass as a plausible cutoff
scale (i.e., kmax = c/h̄MPl) leads to “the cosmological constant problem”, i.e., the
fact that the predicted energy density

ρΛ ∼ 1076GeV4 (132)

is about 120 orders of magnitude larger than the observed value, ρobs∼ 10−48GeV4.

a. Repeat the above estimation of the evidence in favour of a non-zero cosmolog-
ical constant, adopting this time a flat prior in the range 0≤ΩΛ/Ω obs

Λ
< 10120.

What is the meaning of this result? What is the required observational accu-
racy (as measured by the posterior standard deviation) required to override the
Occam’s razor penalty in this case?

b. It seems that it would be very difficult to create structure in a universe with
ΩΛ � 100, and so life (at least life like our own) would be unlikely to evolve.
How can you translate this “anthropic” argument into a quantitative statement,
and how would it affect our estimate of ΩΛ and the model selection problem?

(v) This problem follows up the cosmological parameter estimation problem from
supernovae type Ia (for a more thorough treatment, see [56, 57]).

a. Adopt uniform priors Ωm∼U(0,2) and ΩΛ ∼U(0,2). Produce a 2D marginalised
posterior pdf in the (Ωm,ΩΛ ) plane.

b. Produce a 1D marginalised posterior pdf for the curvature parameter, Ωκ =
1−ΩΛ −Ωm, paying attention to normalising it to unity probability content.
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What is the shape of the prior on Ωκ implied by your choice of a uniform
prior on Ωm,ΩΛ ?

c. Use the Savage-Dickey density ratio formula to estimate from the above 1D
posterior the evidence in favour of a flat Universe, Ωκ = 0, compared with a
non-flat Universe, Ωκ 6= 0, with prior P(Ωκ) =U(−1,1).
Discuss the dependency of your result on the choice of the above prior range.
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Appendix

5 Some background material

5.1 The uniform, binomial and Poisson distributions

The uniform distribution: for n equiprobable outcomes between 1 and n, the uni-
form discrete distribution is given by

P(r) =
{

1/n for 1≤ r ≤ n
0 otherwise (133)

It is plotted in Fig. 12 alongside with its cdf for the case of the tossing of a fair die
(n = 6).

Fig. 12 Left panel: uniform discrete distribution for n = 6. Right panel: the corresponding cdf.
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The binomial distribution: the binomial describes the probability of obtaining r
“successes” in a sequence of n trials, each of which has probability p of success.
Here, “success” can be defined as one specific outcome in a binary process (e.g.,
H/T, blue/red, 1/0, etc). The binomial distribution B(n, p) is given by:

P(r|n, p)≡ B(n, p) =
(

n
r

)
pr(1− p)n−r, (134)

where the “choose” symbol is defined as(
n
r

)
≡ n!

(n− r)!r!
(135)

for 0 ≤ r ≤ n (remember, 0! = 1). Some examples of the binomial for different
choices of n, p are plotted in Fig. 13.

The derivation of the binomial distribution proceeds from considering the prob-
ability of obtaining r successes in n trials (pr), while at the same time obtaining
n− r failures ((1− p)n−r). The combinatorial factor in front is derived from con-
siderations of the number of permutations that leads to the same total number of
successes.

The Poisson distribution: the Poisson distribution describes the probability of ob-
taining a certain number of events in a process where events occur with a fixed
average rate and independently of each other. The process can occur in time (e.g.,
number of planes landing at Heathrow, number of photons arriving at a photomul-
tiplier, number of murders in London, number of electrons at a detector, etc . . . in a
certain time interval) or in space (e.g., number of galaxies in a patch on the sky).

Let’s assume that λ is the average number of events occuring per unit time or
per unit length (depending on the problem being considered). Furthermore, λ =
constant in time or space.

Example 17. For example, λ = 3.5 busses/hour is the average number of busses
passing by a particular bus stop every hour; or λ = 10.3 droplets/m2 is the aver-
age number of drops of water hitting a square meter of the surface of an outdoor
swimming pool in a certain day. Notice that of course at every given hour an integer
number of busses actually passes by (i.e., we never observe 3 busses and one half
passing by in an hour!), but that the average number can be non-integer (for exam-
ple, you might have counted 7 busses in 2 hours, giving an average of 3.5 busses per
hour). The same holds for the droplets of water.

For problems involving the time domain (e.g., busses/hour), the probability of r
events happening in a time t is given by the Poisson distribution:

P(r|λ , t)≡ Poisson(λ ) =
(λ t)r

r!
e−λ t . (136)

If the problem is about the spatial domain (e.g., droplets/m2), the probability of r
events happening in an area A is given by:
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Fig. 13 Some examples of the binomial distribution, Eq. (134), for different choices of n, p, and
its corresponding cdf.

P(r|λ ,A)≡ Poisson(λ ) =
(λA)r

r!
e−λA. (137)

Notice that this is a discrete pmf in the number of events r, and not a continuous
pdf in t or A. The probability of getting r events in a unit time interval is obtained
by setting t = 1 in Eq. (136); similarly, the probability of getting r events in a unit
area is obtained by setting A = 1 in Eq. (137)

Example 18. A particle detector measures protons which are emitted with an aver-
age rate λ = 4.5/s. What is the probability of measuring 6 protons in 2 seconds?
Answer:

P(6|λ = 4.5s−1, t = 2s) =
(4.5 ·2)6

6!
e−4.5·2 = 0.09. (138)
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So the probability is about 9%.
The Poisson distribution of Eq. (136) is plotted in Fig. 14 as a function of r for a

few choices of λ (notice that in the figure t = 1 has been assumed, in the appropri-
ate units). The derivation of the Poisson distribution follows from considering the

Fig. 14 Some examples of the Poisson distribution, Eq. (136), for different choices of λ , and its
corresponding cdf.

probability of 1 event taking place in a small time interval ∆ t, then taking the limit
∆ t → dt → 0. It can also be shown that the Poisson distribution arises from the bi-
nomial in the limit pn→ λ for n→ ∞, assuming t = 1 in the appropriate units (see
lecture).

Example 19. In a post office, people arrive at the counter at an average rate of 3
customers per minute. What is the probability of 6 people arriving in a minute?
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Answer: The number of people arriving follows a Poisson distribution with average
λ = 3 (people/min). The probability of 6 people arriving in a minute is given by

P(n = 6|λ , t = 1min) =
(λ t)n

n!
e−λ t ≈ 0.015 (139)

So the probability is about 1.5%.
The discrete distributions above depend on parameters (such as p for the bino-

mial, λ for Poisson), which control the shape of the distribution. If we know the
value of the parameters, we can compute the probability of an observation (as done
it the examples above). This is the subject of probability theory, which concerns it-
self with the theoretical properties of the distributions. The inverse problem of mak-
ing inferences about the parameters from the observed samples (i.e., learning about
the parameters from the observations made) is the subject of statistical inference,
addressed later.

5.2 Expectation value and variance

Two important properties of distributions are the expectation value (which controls
the location of the distribution) and the variance or dispersion (which controls how
much the distribution is spread out). Expectation value and variance are functions
of a RV.

Definition 10. The expectation value E[X ] (often called “mean”, or “expected value”12)
of the discrete RV X is defined as

E[X ] = 〈X〉 ≡∑
i

xiPi. (140)

Example 20. You toss a fair die, which follows the uniform discrete distribution,
Eq. (133). What is the expectation value of the outcome?
Answer: the expectation value is given by E[X ] = ∑i i · 1

6 = 21/6.

Definition 11. The variance or dispersion Var(X) of the discrete RV X is defined as

Var(X)≡ E[(X−E[X ])2] = E(X2)−E[X ]2. (141)

The square root of the variance is often called “standard deviation” and is usually
denoted by the symbol σ , so that Var(X) = σ2.

Example 21. For the case of tossing a fair die once, the variance is given by

Var(X) = ∑
i
(xi−〈X〉)2Pi = ∑

i
x2

i Pi−

(
∑

i
xiPi

)2

= ∑
i

i2
1
6
−
(

21
6

)2

=
105
36

.

(142)

12 We prefer not to use the term “mean” to avoid confusion with the sample mean.
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For the binomial distribution of Eq. (134), the expectation value and variance are
given by:

E[X ] = np, Var(X) = np(1− p). (143)

Example 22. A fair coin is tossed N times. What is the expectation value for the
number of heads, H? What is its variance? For N = 10, evaluate the probability of
obtaining 8 or more heads.
Answer: The expectation values and variance are given by Eq. (143), with p = 1/2
(as the coin is fair), thus

E(H) = N p = N/2 and Var(H) = N p(1− p) = N/4. (144)

The probability of obtaining 8 or more heads is given by

P(H = 8 =
10

∑
H=8

P(H heads|N, p = 1/2) =
1

210

10

∑
H=8

(
10
H

)
=

56
1024

≈ 0.055. (145)

So the probability of obtaining 8 or more heads is about 5.5%.
For the Poisson distribution of Eq. (136), the expectation value and variance are

given by:
E[X ] = λ t, Var(X) = λ t, (146)

while for the spatial version of the Poisson distribution, Eq. (137), they are given
by:

E[X ] = λA, Var(X) = λA. (147)

As we did above for the discrete distribution, we now define the following prop-
erties for continuous distributions.

Definition 12. The expectation value E[X ] of the continuous RV X with pdf p(X) is
defined as

E[X ] = 〈X〉 ≡
∫

xp(x)dx. (148)

Definition 13. The variance or dispersion Var(X) of the continuous RV X is defined
as

Var(X)≡ E[(X−E[X ])2] = E(X2)−E[X ]2 =
∫

x2 p(x)dx−
(∫

xp(x)dx
)2

.

(149)

5.3 The exponential distribution

The exponential distribution describes the time one has to wait between two con-
secutive events in a Poisson process, e.g. the waiting time between two radioactive
particles decays. If the Poisson process happens in the spatial domain, then the ex-
ponential distribution describes the distance between two events (e.g., the separation
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of galaxies in the sky). In the following, we will look at processes that happen in
time (rather than in space).

To derive the exponential distribution, one can consider the arrival time of Pois-
son distributed events with average rate λ (for example, the arrival time particles
in a detector). The probability that the first particle arrives at time t is obtained by
considering the probability (which is Poisson distributed) that no particle arrives in
the interval [0, t], given by P(0|λ , t) = exp(−λ t) from Eq. (136), times the proba-
bility that one particle arrives during the interval [t, t +∆ t], given by λ∆ t. Taking
the limit ∆ t → 0 it follows that the probability density (denoted by a symbol p())
for observing the first event happening at time t is given by

p(1st event happens at time t|λ ) = λe−λ t , (150)

where λ is the mean number of events per unit time. This is the exponential distri-
bution.

Example 23. Let’s assume that busses in London arrive according to a Poisson dis-
tribution, with average rate λ = 5 busses/hour. You arrive at the bus stop and a bus
has just departed. What is the probability that you will have to wait more than 15
minutes?
Answer: the probability that you’ll have to wait for t0 = 15 minutes or more is given
by ∫

∞

t0
p(1st event happens at time t|λ )dt =

∫
∞

t0
λe−λ tdt = e−λ t0 = 0.29, (151)

where we have used λ = 5busses/hour = 1/12 busses/min.
If we have already waited for a time s for the first event to occur (and no event

has occurred), then the probability that we have to wait for another time t before the
first event happens satisfies

p(T > t + s|T > s) = p(T > t). (152)

This means that having waited for time s without the event occuring, the time we
can expect to have to wait has the same distribution as the time we have to wait from
the beginning. The exponential distribution has no “memory” of the fact that a time
s has already elapsed.

For the exponential distribution of Eq. (150), the expectation value and variance
for the time t are given by

E(t) = 1/λ , Var(t) = 1/λ
2. (153)
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5.4 The Gaussian (or Normal) distribution

The Gaussian pdf (often called “the Normal distribution”) is perhaps the most im-
portant distribution. It is used as default in many situations involving continuous
RV (the reason becomes clear once we have studied the Central Limit Theorem,
section 2.3).

The Gaussian pdf is a continuous distribution with mean µ and standard deviation
σ is given by

p(x|µ,σ) =
1√

2πσ
exp
(
−1

2
(x−µ)2

σ2

)
, (154)

and it is plotted in Fig. 15 for two different choices of {µ,σ}. The Gaussian is the
famous bell-shaped curve.

Fig. 15 Two examples of the Gaussian distribution, Eq. (154), for different choices of µ,σ , and its
corresponding cdf. The expectation value µ controls the location of the pdf (i.e., when changing µ

the peak moves horizontally, without changing its shape), while the standard deviation σ controls
its width (i.e., when changing σ the spread of the peak changes but not its location).

For the Gaussian distribution of Eq. (154), the expectation value and variance are
given by:

E[X ] = µ, Var(X) = σ
2. (155)

It can be shown that the Gaussian arises from the binomial in the limit n→∞ and
from the Poisson distribution in the limit λ →∞. As shown in Fig. 16, the Gaussian
approximation to either the binomial or the Poisson distribution is very good even
for fairly moderate values of n and λ .

The probability content of a Gaussian of standard deviation σ for a given sym-
metric interval around the mean of width κσ on each side is given by
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Fig. 16 Gaussian approximation to the binomial (left panel) and the Poisson distribution (right
panel). The solid curve gives in each case the Gaussian approximation to each pmf.

P(µ−κσ < x < µ +κσ) =
∫

µ+κσ

µ−κσ

1√
2πσ

exp
(
−1

2
(x−µ)2

σ2

)
dx (156)

=
2√
π

∫
κ/
√

2

0
exp
(
−y2)dy (157)

= erf(κ/
√

2), (158)

where the error function erf is defined as

erf(x) =
2√
π

∫ x

0
exp
(
−y2)dy, (159)

and can be found by numerical integration (also often tabulated and available as a
built-in function in most mathematical software). Also recall the useful integral:∫

∞

−∞

exp
(
−1

2
(x−µ)2

σ2

)
dx =

√
2πσ . (160)

Eq. (156) allows to find the probability content of the Gaussian pdf for any sym-
metric interval around the mean. Some commonly used values are given in Table 4.

Example 24. Measurements are often reported with the notation T = (100± 1) K
(in this case, we assume we have measured a temperature, T ). If nothing else is
specified, it is usually implied that the error follows a Gaussian distribution. In the
example above, ±1 K is the so-called “1σ interval”. This means that 68.3% of
the probability is contained within the range [99,101] K. A “2σ interval” would
have a length of 2 K on either side, so 95.4% of the probability is contained in the
interval [98,102] K. If one wanted a 99% interval, one would need a 2.57σ range
(see Table 4). Since in this case the 1σ error is 1 K, the 2.57σ error is 2.57 K and
the 99% interval is [97.43,102.57] K.
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κ P(−κ < x−µ

σ
< κ) Usually called

“number of sigma” Probability content
1 0.683 1σ

2 0.954 2σ

3 0.997 3σ

4 0.9993 4σ

5 1−5.7×10−7 5σ

1.64 0.90 90% probability interval
1.96 0.95 95% probability interval
2.57 0.99 99% probability interval
3.29 0.999 99.9% probability interval

Table 4 Relationship between the size of the interval around the mean and the probability content
for a Gaussian distribution.

A heuristic derivation of how the Gaussian arises follows from this example in-
volving darts throwing. Suppose we are throwing darts towards a target (located at
the center of the coordinate system, at the position x = 0,y = 0), with the following
rules:

(i) Throws are independent.
(ii) Errors in the x and y directions are independent.

(iii) Large errors are less probable than small ones.

The probability of a dart landing in an infinitesimal square located at coordinates
(x,y) and of size (∆x,∆y) (i.e., the dart landing in the interval [x,x+∆x] and [y,y+
∆y]) is given by:

p(x)∆x · p(y)∆y = f (r)∆x∆y, (161)

where p(x) is the probability density of landing at position x (and similarly for
p(y)), which is what we are trying to determine. On the l.h.s. of this equation, we
can multiply the probabilities of landing in the x and y direction because of rule
number (1) and (2). On the l.h.s., f (r) is a function that only depends on the radial
distance from the center, because of rule (2).

We now differentiate the above equation w.r.t. the polar coordinate φ :(
p(x)

d p(x)
dφ

+ p(y)
d p(y)

dφ

)
∆x∆y = 0. (162)

(Note that the r.h.s. becomes 0 as it does not depend on φ ). In polar coordinates,
x = r cosφ ,y = r sinφ , hence

d p(x)
dφ

=
∂ p
∂x

∂x
∂φ

=−∂ p
∂x

y, (163)

d p(y)
dφ

=
∂ p
∂y

∂y
∂φ

=
∂ p
∂y

x. (164)

Eq. (162) becomes
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−p(x)

∂ p
∂x

y+ p(y)
∂ p
∂y

x
)

∆x∆y = 0, (165)

which implies
p(x)

x
∂ p
∂x

=
p(y)

y
∂ p
∂y

. (166)

Since each side only depends on one of the variables, they must both equal a constant
C, and we obtain the differential equation:

∂ p
∂x

=Cxp(x) (167)

(and similarly for y). Integration gives the solution

p(x) = Ae
C
2 x2

(168)

and C < 0 because of rule (3). We thus define C =−1/σ2. Requiring that the distri-
bution is normalized gives A= 1√

2πσ
, and therefore p(x) has the shape of a Gaussian

(similarly for p(y)).

5.5 The Chi-Square distribution

We define the RV χ2 as the sum of the squares of n standardised independent iden-
tically distributed Gaussian RV, x1, . . . ,xn, where xi ∼N (µ,σ):

χ
2 =

n

∑
i

(
xi−ν

σ

)2

(169)

The the RV χ2 is distributed according to the Chi-Square distribution with n degrees
of freedom,

p(χ2) =
1

Γ (n/2)2n/2 (χ
2)

n
2−1 exp(−1

2
χ

2). (170)

For the Chi-Square distribution of Eq. (170), the expectation value and variance are
given by:

E[X ] = n Var(X) = 2n. (171)
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