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Collisionless Boltzmann:

∂f

∂t
+ 〈v,∇xf〉 − 〈∇Φ,∇vf〉 =

∂f

∂t
+ [f,H ] = 0 (1)

Steady-state assumption:∂f/∂t = 0 = ∂Φ/∂t, i.e., f = f (x, v) and Φ = Φ(x).

data: measurements of (x, v) for stars or equivalent units of matter for one epoch

Can (and should) have several fi; all relaxed to steady-state Vlasov equilibrium.

Dark matter and bias factors allowed (ρ from f need not fulfill Poisson self-consistently;
data fragmented).

Phase-space tomography or generalized Newton’s inverse problem of dynamics. Given
a large number of observed (x, v) (for any motion markers such as stars or other matter and
possibly in different populations Pi) in a domain Ω ⊂ R3 × R3 in a gravitationally bound
steady-state system, deduce the potential Φ(x) of the system, and the distribution function(s)
f (x, v) of the observed matter in Ω.

(Kaasalainen 2008, Inverse Problems and Imaging 2, 527)
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Uniqueness
Approximate the system by an integrable one: in Φ(x), x ∈ R3, all orbits are approximately

confined to 3-tori in R3
x × R3

v that are each defined by three action (Poincaré) integrals Ji, i =

1..3, a class of isolating integrals I:

Ji =
1

2π

∮
Pi

〈p, dq〉, (2)

where p ∈ R3 and q ∈ R3 are any canonically conjugate momenta and coordinates, and Pi is a
path that cannot be continuously deformed into a point (for other paths, the integral vanishes).
By Jeans’ theorem,

f (x, v) = f [I1(x, v), ..., I3(x, v)] := f [I(x, v)]. (3)

Lemma. Let the potential Φ(x) generate an integrable system, and let T denote the corre-
sponding set of 3-tori in R3×R3. Then Φ(x) is the only integrable potential (up to an additive
constant) that creates any chosen subset T̂ of arbitrarily small patches Γ on any tori of T such
that T̂ covers all of R3

x (accessible to the system) in a connected manner.

[The lemma can also be expanded to concern all potentials (not just integrable systems) by
defining Γ to be sections of orbits having common points x. In fact, just one chaotic orbit is
sufficient as it eventually defines Φ(x) at all x ∈ R3. More generally, Γ can denote parts of any
structures on which E is constant, or parts of isosurfaces of functions of the form f (E).]

The lemma states that even highly fragmentary information on the shape of the tori in phase
space is well sufficient to determine the integrable potential Φ(x) uniquely. The 3-surfaces
formed by the intersection of three 5-surfaces fi(I) are 3-tori (defined by I as well). Then, by
the lemma, any collection of parts of surfaces fi sufficient to determine a connected chain of
torus patches uniquely determines Φ(x). We can now state the following result:
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Uniqueness theorem. Let three independent steady-state distribution functions fi(x, v),
i = 1..3 (f : R3 × R3 → R) of matter in an integrable system be defined in some common
domains of R3×R3 such that a set of parts of the surfaces fi(x, v) = const. forms a succession
of torus patches connected in x. Then the fi(x, v) uniquely determine the potential Φ(x).

Also, we can expect that one distribution function f (x, v), defined everywhere in R3 × R3,
uniquely determines Φ(x).

The theorem is constructive for three f ’s (from which we directly get Φ(x) with the proce-
dure of the lemma), while the case of one f is non-constructive. Finding the integrable Φ(x)

corresponding to one f is not obvious since there are no general procedures for finding and
exploring integrable potentials. In practice, we can circumvent this difficulty by allowing the
use of non-integrable potentials and approximate tori

The theorem generalizes to observations of gi(x, v) = γ(x, v) fi(x, v) > 0, where γ is a bias
function. Also, we can expect that, if γ(x) depends on x only: γ : R3

x → R, even the single
product γ(x)f (x, v) determines the potential Φ(x) of the system.
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Tomography in 6D
Have distribution f (x), x ∈ RN and a linear transformation w = Rx, det R = 1. The

marginal distribution function h(z) along z, any one of the new coordinate axes denoted by the
set W (R), is

h(z) =

∫
W (R)\z

f (R−1w) dN−1w, (4)

and its cumulative distribution function C(z) is

C(z) =

∫ z

zmin

h(z′) dz′, (5)

usually with zmin → −∞. Since h(z) = dC(z)/dz uniquely defines h(z) from a given C(z),
we know from tomographic theory (another reason why this inverse problem can be called
dynamical or phase-space tomography) that:

The probability distribution f (x), x ∈ RN , is uniquely determined by the cumulative distri-
butions C(z) of its marginal distributions h(z) along all line directions in RN that define the
coordinate z.

Two one-dimensional distributions can be compared via their cumulative distribution func-
tions. In the case of observations and a model, we denote the observational distribution of K
observations at zi (arranged in ascending order by z) by

SK(z) = i, zi ≤ z < zi+1, (6)

for number density, or, if mass is included in our problem,

SK(z) =

i∑
j=1

mj, zi ≤ z < zi+1, (7)
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with SK(z) = 0 for z < z1.

χ2 =
∑
ij

[S
(i)
K (zj)− C(i)(zj)]

2. (8)

Generally, with q = (x, v) and w = Riq, we evaluate each hi(z) corresponding to the choice
for z ordered by i:

hi(z) =

∫
γ(R−1

i w) f (R−1
i w) d5w, (9)

and find, via S(i)
K (z) and C(i)(z), the best model parameters of Φ(x), f (x, v), and γ(x) mini-

mizing (8).

We can also include errors: when the number of data points is high, the real probability f (w)

is blurred by error convolution function ε(w − w′):

f̃ (w) =

∫
R6
f (w′)ε(w − w′)d6w′ (10)

which results in a transformed CDF.

As a computational device, we can maximize the product of likelihoods, or logP =
∑

i log pf(wi).
Since P → 0 always (pf(wi) < 1), the result is not a proper measure and only gives the rela-
tive goodness-of-fit between different models. To know how good the actual fit is, we need to
evaluate the CDFs. Instead of CDF integrals, we can draw simulated data sets via MCMC (and
include error distributions in these as well) and compare these with the observed set.
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Figure 1: (a) Marginal and cumulative distributions in r and (b) u from the isochrone distribution (h in solid line, SK from samples in
dashed line), and the distributions with the best-fit model (h in dotted line, C in dot-dash).

.
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Torus construction
Torus construction can be seen as a way of solving the inverse problem of determining an

integrable Hamiltonian H0 of which the near-integrable H is a perturbation:

H(J, θ) = H0(J) + εH1(J, θ), (11)

where J ∈ Rn and θ ∈ Tn are canonically conjugate actions and angles. Poincaré called the
direct problem of perturbation “the fundamental problem of dynamics”, so we can call our
problem the inverse Poincaré problem of dynamics. Torus construction defines the mapping

(θ, J)↔ (q, p) (12)

between actions-angles (or their approximations) and the Cartesian canonical phase-space co-
ordinates q ∈ Rn, p ∈ Rn.

We can classify the various types of methods of torus construction (or goals essentially
equivalent to this) as

M(i, j) = M([1 : canonical map, 2 : embedding], [1 : phase− space sampling, 2 : orbit integration]).

(13)

(Kaasalainen and De Simone, in preparation)

8



M(1,1):

Have (I, φ) of some known integrable HI and thus know the mapping

(θ, J)↔ (φ, I)↔ (q, p) (14)

Now we can write S(φ, J) : T2 × R2 → R with the (finite) Fourier series

S(φ, J) = φ · J − i
∑

n∈Z2\{0}

Sn(J)ein·φ, (15)

and taking into account the time symmetry and real-valuedness, we have

S(φ, J) = φ · J + 2
∑
n∈Z2

+

Sn(J) sinn · φ (16)

so that the transformations between the canonical coordinates are

I =
∂S

∂φ
= J + 2

∑
n

nSn(J) cosn · φ (17)

and
θ =

∂S

∂J
= φ + 2

∑
n

∂Sn(J)

∂J
sinn · φ. (18)

For an integrable H0(w), w := (q, p) ∈ R2 × R2, we must have

∂H0

∂θ
= 0,

∂H0

∂J
= ω, (19)

Setting ∂H/∂θ = 0 with ∂H/∂φ = 0 everywhere gives the torus fitting routine for Sn(J)

(Binney et al., Kaasalainen et al.; also done as M(1, 2) by a long orbit integration (Warnock et
al.): only OK for real KAM tori).
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If ∂Sn(J)
∂J are needed for angle transformation (e.g. for smooth interpolation between tori):

∂H

∂J
=
∂H

∂w

∂w

∂I

∂I

∂J
= ω (20)

where
∂I

∂J
= I2×2 + 2

∑
n

[
ni
∂Sn(J)

∂Jj

]
ij∈2×2

cosn · φ, (21)

so the requirement of fulfilling (20) at J for a set of sample φ(l), Sn(J) given, can be written in
the form of two sets of linear equations for the two unknown vectors (ωj,

∂Sn(J)
∂Jj

), j = 1, 2:

ωj −
∂H

∂w

2∑
i=1

∂w

∂Ii

∣∣∣
J,φ(l)

∑
n

ni
∂Sn(J)

∂Jj
cos(n · φ(l)) =

∂H

∂w

∂w

∂Ij

∣∣∣
J,φ(l)

(22)

(also done as M(1, 2) with integrated orbit strips: OK for any tori, not only KAM). Can also
use ω to label the desired torus.
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M(2,1):

We can also consider the desired torus simply as a manifold in R2 × R2 and aim at defining
a suitable embedding Φ : Tn → R2n

Φ(θ;α) = [q(θ), p(θ)] (23)

where the parameter vector α ∈ Rn denotes the constraints we want our torus to fulfill: these
can be either the desired actions J or frequencies ω.

Now we minimize the norm ‖e‖ of the error vector

e(θ′) = J4×4∇(q,p)H [Φ(θ)]− ∂ωΦ(θ), (24)

where J is the symplectic matrix (
0 I
−I 0

)
. (25)

We can express [q(θ), p(θ)] as the Fourier series

q(θ) =
∑
n

qne
i(n·θ), p(θ) =

∑
n

pne
i(n·θ). (26)

The first two components eA(θ) of the error vector e(θ) are now given by

eA(θ) = p(θ)−
∑
n

i(n · ω) qne
i(n·θ). (27)

This implies that eA(θ) identically vanishes if we set

pn = i(n · ω) qn. (28)

The remaining components eB(θ) to be minimized in the norm can be written as

eB(θ) = ∂qH(q, p) + i(n · ω) pne
i(n·θ), (29)

11



or, using the condition (28),

eB(θ) = ∂qH(q, p)− (n · ω)2 qne
i(n·θ). (30)

This is well known: e.g. Ratcliff-Chang-Schwarzschild. But RCS i) used a bad method for
determining qn and ii) did not treat this as a potentially ill-posed inverse problem: constraints
needed/useful (especially when not a KAM torus). Also, might not want to set eA = 0: then
‖eB‖ and ‖e‖ may be larger than they would with free pn as well.

One regularization function:

RH(θ) = |H(θ)− 〈H〉θ|, (31)

Another: J on the torus should be constant, so

J1 =
1

2π

∑
j

∑
kl

∑
mn

pjklq
j
mne

i(l+n)θ2im

∫ 2π

0

ei(k+m)θ1dθ1

=
∑
jkln

(−ik)pjklq
j
−kne

i(l+n)θ2.
(32)

Likewise,
J2 =

∑
jkln

(−in)pjknq
j
l−ne

i(k+l)θ1. (33)

Since Ji should not depend on θj, we define the actions JT of our torus to be the mean values
of the above series, i.e.,

JT1 =
∑
jkl

(−ik)pjklq
j∗
kl , JT2 =

∑
jkl

(−il)pjklq
j∗
kl , (34)

12



with q−n = q∗n due to the real-valuedness of q. Our constraint is that θ-dependence should
vanish:

∀L 6= 0 :
∑
jkl

(−ik)pjklq
j
−k,L−l = 0, ∀K 6= 0 :

∑
jkl

(−il)pjklq
j
K−k,−l = 0. (35)

as noted in Binney-Spergel.

For example, minimize

χ2
S =

∑
i

‖eA(θi)‖2 + ‖eB(θi)‖2 + λHRH(θi)
2 + λJRJ(θi)

2, (36)

where λi are suitable regularization weights, and

RJ(θ) = |Ji(θ)− JTi |. (37)

When a KAM torus exists for ω in H , the requirement ‖e‖ = 0 directly implies J = JT and
H = 〈H〉 on the torus.
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M(2,2):

An alternative scheme is to use strips of numerically integrated orbits starting at a set of θ0,
and demanding that the surface of the final torus deviate as little as possible from the strips in
phase space:

χ2
I =

∑
i

‖piI − p(θi)‖2 + ‖qiI − q(θi)‖2 + λHRH(θi)
2 + λJRJ(θi)

2, (38)

where qiI , p
i
I are the numerically integrated phase-space points at times ti starting from q(θ0i), p(θ0i),

and
θi = θ0i + ωti. (39)

Other things:

• We can use adaptive interpolation on a random grid (rather than a fixed grid) to probe the
J-space efficiently.

• Quadratically convergent algorithm for polishing off an almost-there torus

• Don’t like Fourier series? Then do the above by straight manifold triangulation: distribute
θ among vertices in R2n, interpolate Φ and θ between vertices (on facets) such that ‖e‖ is
minimized

• M(1, ∗) works for most orbits (at least in 2 effective dimensions); M(2, ∗) for cases requir-
ing brute force
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