Several astronomical problems solved by calibrating the distribution in projected phase space with cosmological simulations

Gwenaël BOUÉ (IMCCE, Paris)

Radek WOJTAK (*CAMK, Warsaw*)

Ewa ŁOKAS (*CAMK, Warsaw*)

Andrea BIVIANO (*Trieste*)

Chris GORDON (Oxford)

Smriti MAHAJAN (*Birmingham, UK*)

Somak RAYCHAUDHURY (Birmingham, UK)

Outline

- Phase space & observers projected phase space
- Universal distribution of halo interlopers
- New mass modelling techniques see also R. Wojtak
- Applications:
 - Dark matter & orbits in quasi-spherical systems from galaxy clusters see also R. Wojtak to dwarf spheroidals
 - ➡ Neutral gas deficient spiral galaxies "in" Virgo cluster
 - ➡ Star formation history of galaxies falling into clusters

Radial phase space

stack of 93 regular halos of dark matter particles within hydrodynamical cosmological simulations by Borgani et al. 04

Projected phase space = observer's viewpoint

projected radius

How does one learn about full phase space when limited to projected phase space view?

Hubble flow distortion

line-of-sight distance

line-of-sight distance

Hubble flow:

- $\pm 3\sigma_v$ cuts ~all particles beyond ~27 r_{200}
- what effect on projected phase space?

Gary Mamon (IAP), 5 Nov 09, Several astronomical problems solved by calibrating the distribution in projected phase space with cosmological simulations

Universal distribution of halo & interloper particles in projected phase space

Cuts through projected phase space

Mamon, Biviano & Murante in prep.

Mamon, Biviano & Murante in prep.

nearly constant surface density

gaussian + constant velocity distribution

Universality

+B

σ.

50×B

2×A

Σ

1

1.2

Old & New Mass Modeling Techniques using internal motions

From phase space to local space

2 classes of mass & anisotropy modelling

- Jeans analysis
- Fitting the projected phase space distribution

Spherical stationary Jeans equation

mass / anisotropy degeneracy MAD

/ Mamon (*IAP*), 5 Nov 09, Several astronomical problems solved by calibrating the distrib

the distribution in projected phase space with cosmologic

_13

Jeans 2) assume either M(r) or $\beta(r)$

given projected observations: surface density $\Sigma(R)$ line of sight velocity dispersion $\sigma_{los}(R)$

2a) Anisotropy inversion assume $M(r) \rightarrow \beta(r)$

Binney & Mamon 82 Tonry 83; Bicknell et al. 89 Solanes & Salvador-Solé 90 Dejonghe & Merritt 92

Jeans 2b) Mass inversion

Mamon & Boué 09, MNRAS in press Wolf et al. 09, MNRAS submitted

 $p = \rho \sigma_r^2$ = dynamical pressure $P = \Sigma \sigma_{los}^2$ = projected pressure anisotropic kinematic projection

$$P(R) = 2\int_{R}^{\infty} \left(1 - \beta \frac{R^2}{r^2}\right) p \frac{r \, dr}{\sqrt{r^2 - R^2}}$$

anisotropic kinematic deprojection

$$(1-\beta) p(r) = \int_r^\infty K_\beta(R,r) \frac{dP}{dR} dR$$

$$ho v_c^2 = -p' - 2 \, rac{eta}{r} \, p$$

insert dynamical pressure into Jeans equation \rightarrow mass profile

Jeans 3) combine dispersion & kurtosis assuming cst ß

line of sight kurtosis

$$\kappa_{\rm los}(R) = \frac{v_{\rm los}^4(R)}{\sigma_{\rm los}^4(R)} - 3$$

Gary Mamon (*IAP*), 5 Nov 09, Several astronomical problems solved by calibrating the distribution in projected phase space with cosmological simulations 16

fit to distribution in projected phase space

• Clean method:

projected phase space from distribution function and potential

$$g(R, v_z) = 2 \, \int_R^\infty \frac{r dr}{\sqrt{r^2 - R^2}} \int_{-\infty}^\infty dv_R \int_{-\infty}^\infty dv_\theta \, f\left[1/2v^2 + \Phi(r), J\right]$$

Dejonghe & Merritt 92

which f(E,J)?

- fit from combination of orbits Schwazschild 79; Syer & Tremaine 94 De Lorenzi, Gerhard et al. 07
- fit from combination of elementary $f_i(E,J)$ Merritt & Saha 93; Gerhard et al. 98
- fit from non-parametric f(E,J) Wu & Tremaine 06
- simple f(E,J) from Λ CDM halos Wojtak, Lokas, Mamon, Gottlöber & Klypin 08

fit to distribution in projected phase space

• Clean method:

projected phase space from distribution function and potential

$$g(R, v_z) = 2 \, \int_R^\infty \frac{r dr}{\sqrt{r^2 - R^2}} \int_{-\infty}^\infty dv_R \int_{-\infty}^\infty dv_\theta \, f \left[\frac{1}{2v^2} + \Phi(r), J \right]$$

Dejonghe & Merritt 92

which f(E,J)?

- fit from combination of orbits Schwazschild 79; Syer & Tremaine 94 De Lorenzi, Gerbard et al. 07
- fit from combination of elementary $f_i(E,J)$
- fit from non-parametric f(E,J) Wu & Tremair
- simple f(E,J) from Λ CDM halos Wojtak, Lo
- dissipative mergers?

Gary Mamon (IAP), 5 Nov 09, Several astronomical problems solved by calibrating the distribution in

fit to distribution in projected phase space (2)

19

 Quick method: MAMPOSSt projected phase space from velocity distribution, anisotropy & potential Mamon, Biviano & Boué, to be submitted soon

assume radial profiles: $M_{tot}(r), \beta(r), \{v\}(r)$

$$\{\mathcal{V}\}(r) \quad p(v_z|R) = \frac{\sqrt{2/\pi}}{\Sigma(R)} \int_R^\infty \frac{r\nu}{\sqrt{r^2 - R^2}} \frac{(1 - \beta R^2/r^2)^{-1/2}}{\sigma_r} \exp\left[-\frac{v_z^2}{2(1 - \beta R^2/r^2)\sigma_r^2}\right] dr$$

$$\sigma_z^2(R, r) = \left[1 - \beta \left(\frac{R}{r}\right)^2\right] \sigma_r^2(r)$$

for academic case of β =cst, gaussian-*MAMPOSSt* predicts: correct l.o.s. velocity dispersion profile but incorrect l.o.s. velocity kurtosis profile

gaussian

Gary Mamon (IAP), 5 Nov 09, Several astronomical problems solved by calibrating the distribution in projected phase space with cosmological simulations

kinematical effects of: * non-sphericity * projected infalling filaments * substructure * streaming motions (infall, rebound)

test with halos from cosmological *N*-body simulations: measure in 3D & reestimate in 2D

mass follows number, β =cst

dispersion-kurtosis Sanchis, Łokas & Mamon 04

10 halos × 3 projections (400 pts / halo)

 $\Delta \log M_{100} = -0.07 \pm 0.10$ $\Delta \log c = 0.08 \pm 0.24$ $\Delta \log \left(\frac{\sigma_r}{\sigma_{\theta}}\right) = -0.04 \pm 0.11$

MAMPOSSt Mamon, Biviano & Boué in prep.

11 halos × 3 projections (500 pts / halo)

$$\Delta \log M_{200} = 0.01 \pm 0.09$$
$$\Delta \log c = 0.07 \pm 0.20$$
$$\Delta \log \left(\frac{\sigma_r}{\sigma_{\theta}}\right) = -0.03 \pm 0.08$$

dispersion-kurtosis: very uncertain concentration MAMPOSSt: somewhat better!

Comparison with orbit modeling

- requires systems not far from spherical symmetry
- rotation, substructure not incorporated

BUT

- dispersion-kurtosis, MAMPOSSt & Wojtak method tested on cosmological halos
- mass & anisotropy inversions: non-parametric
- less a black box and more intuition
- fast enough to probe set of solutions (MCMC)

Applications of new mass & anisotropy modelling techniques

Mass & anisotropy modeling of Clusters of galaxies

Partially lifting the anisotropy / mass degeneracy: joint fits to velocity dispersion & <u>kurtosis</u> profiles

Gar

isotropic fits best!

cusp and core both agree with data

VFW:
$$c = \frac{r_{100}}{r_s} \approx 9.4$$

VS.

• c = 6 (cosmo sims) Bullock et al. 01

• c = 5.5 (stacked 2dFGRS)

Biviano & Girardi 03 • c = 4 (stacked ENACS)

Katgert, Biviano & Mazure 04

Cluster concentration vs. mass = r_{200}/r_{-2}

Mass & anisotropy modelling of Groups of Galaxies

Line-of-sight velocity dispersion profiles of groups: effect of global velocity dispersion

Concentration vs. Mass

Gary Mamon (IAP), 5 Nov 09, Several astronomical problems solved by calibrating the distribution in projected phase space with cosmological simulations

Mass & anisotropy modeling of Elliptical galaxies

A dearth of dark matter in ordinary elliptical galaxies Romanowsky et al. 03, Science

Recent analyses of NGC 3379

dark matter content @ 4 Re still very uncertain!

anisotropy vs. mass in M84

Mass & anisotropy modelling of the Fornax dwarf spheroidal

with Chris GORDON (*Oxford*) Andrea BIVIANO (*Trieste*) $L_V = 1.9 \times 10^7 L_{sun}$ Irwin & Hatzimiditriou 95

 $L_V = 0.9 \times 10^7 L_{sun}$ Walcher et al. 03

m = 0.7 Sersic distribution Walcher et al. 03; Battaglia et al. 06

ellipticity: $0.21 \rightarrow 0.36$ Battaglia et al. 06

main starburst: age = 5.4 Gyr Saviane et al. 00

 $M_{\text{stars}}/L_V = 4.8$ Walcher et al. 03

(uncertain) center: Battaglia et al. 06

Fornax data

2633 velocities2278 Fornax members

Fitting velocity dispersion only

Fornax: velocity dispersion profile out to 2 R_{eff}

1/3 fraction of dark matter in inner regions? OR *L_V* underestimated by 40%?

M/L increases outwards? OR tangential outer orbits?

Fornax: anisotropy inversion

cst $M/L \rightarrow$ radial (low M/L) or tangential (high M/L) orbits no dark matter solution fails at large radius

Fornax: isotropic mass inversion

Several astronomical problems solved by calibrating the distribution in projected phase space with cosmological simulations Gary Mamon (*IAP*), 5 Nov 09,

Neutral gas deficient spiral galaxies towards the Virgo cluster

Neutral gas (HI) maps in Virgo cluster

Gary Mamon (*IAP*), 5 Nov 09, Several astronomical problems solved by calibrating the distribution in projected phase space with cosmological simulations 41

Gary Mamon (IAP), 5 Nov 09, Several astronomical problems solved by calibrating the distribution

2

HI deficiency vs. line-of-sight distance

What causes HI-deficiency in distant galaxies?

HI-deficient galaxies on the outskirts of the Virgo cluster!

Could distant HI-deficient spirals have passed through cluster & been stripped?

Gary Mamon (IAP), 5 Nov 09, Several astronomical problems solved by calibrating the distribution in projected phase space with cosmological simulations 44

Comparison with cosmological simulations

including ellipticals

13 HI-deficient outliers

neighboring particles in $\{D_{los}, R, v_{los}\}$ space (w errors): what fraction in Virgo before including the distance errors?

Galaxy		RA	Dec	T	B_T^c	D_{25}	θ	v	D	N	P_1	$P_{2.5}$		
VCC	NGC	(J2000)		-	-			$({\rm km s^{-1}})$	(Mpc)					
	4064	$12^{h}04^{m}11^{s}.8$	$18^{\circ}26'33''$	1	11.73	4:0	8°.8	837	9.8	942	0.00	0.81	Merg	ger .
522	4305	$12^{ m h}22^{ m m}03\!\!\!^{ m s}\!$	$12^{\circ}44'27''$	1	12.87	$2'_{.0}$	$2^{\circ}_{\cdot}2$	1814	40.7	200	0.00	0.00	Com	panion
524	4307	$12^{ m h}22^{ m m}06\!\!\!^{ m s}\!$	$09^{\circ}02'27''$	3	11.84	3!5	$4^{\circ}.0$	913	27.4	1846	0.41	0.48	Com	panion
559	4312	$12^{ m h}22^{ m m}32 m .0$	$15^{\circ}32'20''$	2	11.76	4'.7	3?7	47	10.8	754	0.95	1.00	in V	1rgo
713	4356	$12^{ m h}24^{ m m}15 m . m . m 9$	$08^{\circ}32'10''$	6	13.02	2!6	$4^{\circ}_{\cdot}2$	998	29.4	1377	0.19	0.23	Com	ipanion
979	4424	$12h27^{m}13 lap{.}3$	$09^{\circ}25'13''$	1	11.99	3'.4	$3^{\circ}_{\cdot}1$	314	4.1	106	0.00	0.00	Mer	ger
1043	4438	$12^{ m h}27^{ m m}46^{ m s}\!.3$	$13^{\circ}00'30''$	1	10.55	8'.7	1.0	-45	10.4	755	1.00	1.00	in v	irgo
1330	4492	$12^{ m h}30^{ m m}58\!\!\!\!^{ m s}\!\!\!\!\!9$	$08^{\circ}04'41''$	1	13.04	1'.9	$4^{\circ}_{\cdot}3$	1638	28.1	1261	0.08	0.11	Com	panion
1569	—	$12^{ m h}34^{ m m}31 m . m ^{s}4$	$13^{\circ}30'23''$	5	14.62	0'.8	1.4	687	23.3	8967	0.72	0.94	in v	irgo
1690	4569^{a}	$M90 \ 12^{h}36^{m}50^{s}.5$	$13^{\circ}09'54''$	2	9.63	10'.4	1?7	-328	9.4	143	1.00	1.00	in V	irgo.
1730	4580	$12^{ m h}37^{ m m}49 m s5$	$05^{\circ}22'09''$	2	12.39	$2'_{.0}$	$7^{\circ}_{\cdot}2$	893	19.3	8724	0.00	0.84	Con	npanion
1760	4586	$12^{ m h}38^{ m m}28^{ m s}.1$	$04^\circ19'09''$	1	12.06	3'.9	$8^{\circ}_{\cdot}3$	639	14.4	4657	0.00	0.98	Çoŋ	npanion
1859	4606	$12^{ m h}40^{ m m}57^{ m s}.7$	$11^\circ 54' 46''$	1	12.28	2'.9	$2^{\circ}_{\cdot}5$	1528	12.7	7648	0.95	1.00	ın V	Irgo
													•	

at least 5 out of 13 must be in Virgo: suffered ram pressure stripping

6/13 have companions: induce *tidal* stripping of outer gas

2/13: minor mergers heat up & ionize neutral Hydrogen

Star formation history of galaxies falling in clusters

with Smriti MAHAJAN & Somak RAYCHAUDHURY

Gary Mamon (*IAP*), 5 Nov 09, Several astronomical problems solved by calibrating the distribution in projected phase space with cosmological simulations 48

Gary Mamon (IAP), 5 Nov 09, Several astronomical problems solved by calibrating the distribution in projected phase space with cosmological simulations

49

Mass modelling = *exploratory data analysis*: try ≠ methods: * mass & β inversions * dispersion-kurtosis * *MAMPOSSt or* Wojtak+09

Coma cluster • E/S0s on isotropic orbits

X-ray groups
 very low concentration of low mass ones:
 irregular potential or energy dissipation

- Strong radial anisotropy beyond 1.5 *R*_e
 - Dark matter dominates at 4 Re
- **Fornax** Isotropic inner orbits, ≈ radial outer orbits
 - Dark matter present:
 - likely > 50% at all radii

seen in simulations: Klimentowski+07

Conclusions (2)

- Universal distribution of interlopers in projected phase space
 - → incorporate in mass & anisotropy modelling
- Half of neutral gas deficient spirals behind Virgo are in Virgo!
- Single passage through cluster decreases fraction of recent starbursts by only < 20%