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Outline

Step 1 : Some facts from dynamical stellar systems

Step 2 : Some instabilities in dynamical stellar systems

Step 3 : Some key N Body experiences
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Step 1

Some facts ...



- p. 4/27

Globular clusters

80% : Core-halo , 20% Collapsed Core, Generically no intermediate mass BH

From Djorgowski et al. ’86
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This effect is due to the evolution of GC through the galaxy.

Log t( )h

r rc t/

r rh t/ : Collapsed core

Shape of Globular Clusters in the Harris ’91 catalogue
Color means 2 body relaxation time at rh
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Globular clusters

Core-Hallo structures are King models (from Elson et al. ’87)

Collapsed core structures are like Singular Isothermal Spheres
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Galaxies

Observations : Luminosity profile : R1/4 Law, Supermassive BH, No Core.
Simulations : The best model is Prugniel-Simien (see Merritt et al. ’06)
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Step 2

Some instabilities ...
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Jeans Instability
See Kiessling ’03 for modern improvement (?)

R >

(

σ2

4πGρ

)1/2

Sufficiently "Large" or "Cold" or "Dense" homogeneous system (Top Hat) collapses
and forms a core-hallo 4 structure (..., Roy & P. ’04, Joyce et al. ’09)
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Antonov Instability

1. Isothermal sphere in a box is unstable if the density contrast R > 709

2. Isothermal sphere in a thermal bath is unstable if R > 32
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re
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R = 709
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R

R

Look for horizontal or vertical tangents in (E , β) plane (see Katz ’78).
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Fundamental Example

Stability of core-hallo 4 structure of mass M in an isothermal bath
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Fundamental Example

Mass density
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Fundamental example



- p. 13/27

Fundamental example

Potential Energy : Ujk = −
∫

ρ (r) (r.ek) (∇ψ .ej) dr W = Tr (Ujk).
in our spherical bounded case one have

W = −4πG

∫ re

0

s3ρ (s)
dψ

ds
ds = −

3GM2

5re

x3 (5x− 4)

(4x− 3)
2
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let define λ =
reE

GM2
and µ =

GMβ

re
and plot (λ (x) , µ (x))
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let define λ =
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GM2
and µ =

GMβ

re
and plot (λ (x) , µ (x))
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> xc = 1.44 the system becomes unstable, it corresponds to

R =
ρ (re)

ρ (0)

∣

∣

∣

∣
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= x4
c ≈ 4.3

A core-halo 4 structure in a isothermal bath is unstable if R & 4
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Radial orbit instability (ROI)
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Radial orbit instability (ROI)
see Maréchal & P. ’09a for a large review ...

An anisotropic spherical equilibrium system becomes triaxial if it is too radial in
velocity space
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Radial orbit instability (ROI)
see Maréchal & P. ’09a for a large review ...

An anisotropic spherical equilibrium system becomes triaxial if it is too radial in
velocity space

Proof (see Maréchal & P. ’09b for details)

The second order energy variation

H(2)[f0] = −

∫

{g,E}{g, f0}dΓ −Gm2

∫ ∫

{g, f0}{g
′, f ′0}

|q − q′|
dΓdΓ′

associated to a perturbation generated by g of an equilibrium system with

fo

(

E,L2
)

= fa
0

(

E,L2
)

= ϕ (E) δa
(

L2
)

with δa(L2) =
1

πa2
exp

(

−
L2

a2

)

becomes negative when a→ 0 (radial orbits system) ⇒ Existence of negative energy
modes.
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Radial orbit instability (ROI)
see Maréchal & P. ’09a for a large review ...

An anisotropic spherical equilibrium system becomes triaxial if it is too radial in
velocity space

Proof (see Maréchal & P. ’09b for details)

The second order energy variation

H(2)[f0] = −

∫

{g,E}{g, f0}dΓ −Gm2

∫ ∫

{g, f0}{g
′, f ′0}

|q − q′|
dΓdΓ′

associated to a perturbation generated by g of an equilibrium system with
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(
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)
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(

E,L2
)

= ϕ (E) δa
(

L2
)

with δa(L2) =
1

πa2
exp

(

−
L2

a2

)

becomes negative when a→ 0 (radial orbits system) ⇒ Existence of negative energy
modes.

Vlasov-Poisson system is hamiltonian

Conclusion : The system is Dissipation-Induced Unstable (spectral instability) and
that cause it to lose its spherical symmetry.
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Mechanism of ROI

Equilibrium

Unstable
Non Radial
perturbation

Stable
Equilibrium
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Mechanism of ROI

Equilibrium

Unstable
Non Radial
perturbation

This takes ≈ Td

Stable
Equilibrium
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Facts about ROI
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Facts about ROI
Huss et al. ’91, Mac Millan et al. ’06 : The effects of ROI are attenuated by the

merging process (eg Katz ’91), but this instability is needed to obtain the "good"
density profile of structures in simulations and not a pure power law.
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Facts about ROI
Huss et al. ’91, Mac Millan et al. ’06 : The effects of ROI are attenuated by the

merging process (eg Katz ’91), but this instability is needed to obtain the "good"
density profile of structures in simulations and not a pure power law.

Roy & P. ’04,... ,Barnes et al. ’09 : Generic Top Hat Collapse don’t suffer ROI.
Most popular (?) explanation by Barnes et al. ’09 : "Roi is suppressed because
sufficient mass occupying radial anisotropic orbits is not retained during the collapse"
(because they leave the system)
My explanation : This instability needs an equilibrium seed to grow : only actual
inhomogeneous collapse (with several timescales) is affected by ROI.
Example : A Plummer sphere could be triaxialized by ROI :

At t = 0,
a red Plummer is surrounded by

an hollow cold and homogeneous bowl
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Step 3

Some fundamental experiences ...
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N bodies collapses

Set 1 : One Top Hat of density ρ0 with N = 3 × 104 particles a virial ϑ = −0.5.
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N bodies collapses

Set 1 : One Top Hat of density ρ0 with N = 3 × 104 particles a virial ϑ = −0.5.
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N bodies collapses

Set 2 : Set 1 + 20 small top hats of density ρ1 > ρ0 the whole at virial ϑ = −0.5.
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N bodies collapses

Set 2 : Set 1 + 20 small top hats of density ρ1 > ρ0 the whole at virial ϑ = −0.5.
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N bodies collapses

Set 2 : Set 1 + 20 small top hats of density ρ1 > ρ0 the whole at virial ϑ = −0.5.
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N bodies collapses
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N bodies collapses

Set 2 : Set 1 + 20 small top hats of density ρ1 > ρ0 the whole at virial ϑ = −0.5.
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½ r( )

r r/ 50

t & T0

Additional remarks
■ With less than 10 small top hats, the results are similar to the one of set 1 ;
■ Allowing more evaporation produces the collapse of Set 1 Top Hat’s core ;
■ More cold collapses of set 2 (ϑ . 0.2) become triaxial ; only for set 2 !
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Analysis : what’s happened

Homogeneous collapse
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Enough mass in the small top hats

A rough calculus gives M• ≈ 10−5 ×M ...!



- p. 25/27

Conclusion



- p. 25/27

Conclusion

Homogeneous isolated collapse (small astrophysical scales)
forms King profile ;
cannot suffer Roi ;
long time evolution can produce core collapse ;
generically no contain a high mass concentrated object.



- p. 25/27

Conclusion

Homogeneous isolated collapse (small astrophysical scales)
forms King profile ;
cannot suffer Roi ;
long time evolution can produce core collapse ;
generically no contain a high mass concentrated object.

This could be an idealization of the Globular Clusters formation and evolution.



- p. 25/27

Conclusion

Homogeneous isolated collapse (small astrophysical scales)
forms King profile ;
cannot suffer Roi ;
long time evolution can produce core collapse ;
generically no contain a high mass concentrated object.

This could be an idealization of the Globular Clusters formation and evolution.

"‘Hierarchic"’ collapse
forms Einasto profile (or multiple power law) ;
can suffer ROI ⇒ Ellipticity and good profile;
generically contain a high mass concentrated object.



- p. 25/27

Conclusion

Homogeneous isolated collapse (small astrophysical scales)
forms King profile ;
cannot suffer Roi ;
long time evolution can produce core collapse ;
generically no contain a high mass concentrated object.

This could be an idealization of the Globular Clusters formation and evolution.

"‘Hierarchic"’ collapse
forms Einasto profile (or multiple power law) ;
can suffer ROI ⇒ Ellipticity and good profile;
generically contain a high mass concentrated object.

This could be an idealization of the Galaxies formation and evolution.
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