# From Exponential Growth to Saturation: An Instability Dissected in Phase-Space 

Jihad Rachid Touma

Department of Physics
American University Of Beirut
Beirut, Lebanon

## Partners in Crime

- Mher Kazandjian (AUB, Lebanon)
- S. Sridhar (RRI, Bangalore, India)
- Scott Tremaine (Princeton, USA)


## Plan (roughly)

- Preamble
- Instability
- Dissection
- Summary
- Plan (actually)

The "Double" Nucleus of M31: Observations, Hypotheses,
Models and Implications

The "Double" Nucleus of M31: Observations, Hypotheses,

## Models and Implications



Fig. 2. (a) Contour map of the surface brightness of the best-fit model. The contour interval is $0^{\mathrm{m}} .1$, and the vertical axis points $70^{\circ}$ counterclockwise from north. The origin, which coincides with the black hole at $P 2$, is marked by a cross, and the projected locations of the three ringlets in Eq. (2) are shown as dotted lines. (b) Deconvolved $V$-band surface-brightness con tours of the nucleus of M31 (Fig. 2 of L93). The orientation and origin are the same as in (a) but the contour interval of $0 \mathrm{~m} \cdot 25$ is larger and a larger area is shown.

The "Double" Nucleus of M31: Observations, Hypotheses,
Models and Implications



Figure 1: Before and After

## Two Counter-Rotating Rings

- Start with two softened counter-rotating Keplerian rings, with angular momenta, $L_{p}=m_{p} \sqrt{G M_{\bullet} a_{p}\left(1-e_{p}^{2}\right)}$ and $L_{r}=-m_{r} \sqrt{G M_{\bullet} a_{r}\left(1-e_{r}^{2}\right)}$;
- Of course both secular energy, and total angular momentum, $L_{T}=L_{p}+L_{r}$ are conserved;
- A positive torque exerted by $p$ on $r$ would increase $r$ 's angular momentum, making $L_{r}$ tend to zero, hence increasing $r$ 's eccentricity;
- An equal and opposite (hence negative) torque exerted by $r$ on $p$ would decrease $p$ 's angular momentum, making $L_{p}$ tend to zero, hence increasing $r$ 's eccentricity;
- The CR instability requires that such a configuration is maintained for sufficiently long to bring about significant growth in eccentricities; maintaining such a configuration would require that rings precess with neighboring frequency, in the same direction, with increasing eccentricity: Such a tuning is provided by softening(heat)!


## Numerical Clusters

- Black Hole, $10^{8} M_{\odot}$, dominating cluster, $10^{7} M_{\odot}$, perturbed by various counter-rotating perturbers, $10^{5}--510^{6} M_{\odot}$;
- Cluster: thin Kuzmin disk (ring) radial scale of 1 pc , with vertical $s e c h^{2}$ profile with 0.1 pc , typical $\sigma_{v} \simeq 200 \mathrm{~km} / \mathrm{s}$;
- Perturbers: Counter-rotating: ring (both overlapping and not, coplanar, inclined), IMBH (various configurations).
- $10^{4}--10^{6}$ particles, softening length of $10^{-3} \mathrm{pc}$ for particle-particle interactions, and $10^{-5} \mathrm{pc}$ for particle-SMBH interactions;
- Parallel runs on cluster of 8-36 procs, with tree code (Gadget's parallel version), pushed to its limits, errors of $10^{-4}$ and $10^{-5}$ in energy and angular momentum respectively, over 1 Myr calculations ( $10 T_{\text {prec }}$ ).


## Axisymmetric to Eccentric




## Puffing up a Thin Disk




Figure 1: Eccentricity-Inclination Evolution

## Mode Relaxation as Function of SMBH Softening



## Averaged (secular), self-consistent, collisionless dynamics

Evolution governed by CBE-Poisson system of equations:

$$
\frac{\partial f}{\partial t}+\mathbf{v} \cdot \frac{\partial \mathbf{f}}{\partial \mathbf{r}}-\nabla \phi \cdot \frac{\partial \mathbf{f}}{\partial \mathbf{v}}=\mathbf{0}
$$

where: $\phi(\mathbf{r}, \mathbf{t})=\phi_{\text {self }}(\mathbf{r}, \mathbf{t})+\phi_{\text {ext }}(\mathbf{r}, \mathbf{t})$,

$$
\phi_{\text {self }}(\mathbf{r}, \mathbf{t})=-\mathbf{G} \int \mathbf{d}^{3} \mathbf{r}^{\prime} \mathbf{d}^{3} \mathbf{v}^{\prime} \frac{\mathbf{f}\left(\mathbf{r}^{\prime}, \mathbf{v}^{\prime} \mathbf{t}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}
$$

and $\phi_{e x t}(\mathbf{r}, \mathbf{t})=\frac{-\mathbf{G M}_{\mathbf{e}}}{\mathbf{r}}+\phi_{\mathbf{c}}(\mathbf{r}, \mathbf{t})$

- Black-Hole dominated dynamics, hence essentially Keplerian motion perturbed by cluster potential. Replace orbits by rings, with mass distributed inversely proportional to time spent on orbit (Averaging, Gauss)
- Consequence of Averaging: $L \sim \sqrt{G M_{\bullet} a}$ conserved, leaving precession (periapsis, node) and eccentricity/inclination dynamics of Gaussian ring, in averaged cluster potential: $f_{\text {ave }}(L, G, H, g, h, t)$


## Secular (Orbit Averaged), CBE-Poisson Dynamics

The three actions are:

- $I_{a}=\sqrt{G M a}$;
- $L_{a}=|\boldsymbol{r} \times \boldsymbol{v}|$, the magnitude of the orbital angular momentum;
- $L_{a z}=(\hat{z} \cdot \boldsymbol{r} \times \boldsymbol{v})$, the $z$-component of the orbital angular momentum.

The angles conjugate to them:

- $w_{a}$, the orbital phase;
- $g_{a}$, the angle to periapse from the ascending node;
- $h_{a}$, the longitude of the ascending node.

In these Variabes:

$$
H_{\text {kepler }}\left(I_{a}\right)=-1 / 2\left(G M / I_{a}\right)^{2}
$$

Trivial Dynamics:

- All variables constant except, $w_{a}$;
- $w_{a}$ advancing at constant keplerian rate: $\Omega_{k}=\left(\partial H_{k} / \partial I_{a}\right)=(G M)^{2} / I_{a}^{3}$


## Secular Collisionless Boltzmann

Consequences on Forces:

- Potential: $\Phi\left(I, L, L_{z}, g, h, t\right)=-G \oint \frac{d w}{2 \pi} \int d^{3} r^{\prime} d^{3} v^{\prime} \frac{F\left(I^{\prime}, L^{\prime}, L_{z}^{\prime}, g^{\prime}, h^{\prime}, t\right)}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|}$
- Non Inertial Forces:

$$
\boldsymbol{a}(t)=G \int d^{3} r d^{3} v F \frac{\hat{\boldsymbol{r}}}{r^{2}}=G \int d I d L d L_{z} d g d h F\left(I, L, L_{z}, g, h, t\right) \oint d w \frac{\hat{\boldsymbol{r}}}{r^{2}}
$$

which averages to zero over a Keplerian orbit!
Slow Dynamics, Equations:

$$
\frac{d L}{d t}=-\frac{\partial \Phi}{\partial g}, \quad \frac{d g}{d t}=\frac{\partial \Phi}{\partial L} ; \quad \frac{d L_{z}}{d t}=-\frac{\partial \Phi}{\partial h}, \quad \frac{d h}{d t}=\frac{\partial \Phi}{\partial L_{z}}
$$

Slow Dynamics, CBE:

$$
\frac{d F}{d t} \equiv \frac{\partial F}{\partial t}-\frac{\partial \Phi}{\partial g} \frac{\partial F}{\partial L}+\frac{\partial \Phi}{\partial L} \frac{\partial F}{\partial g}-\frac{\partial \Phi}{\partial h} \frac{\partial F}{\partial L_{z}}+\frac{\partial \Phi}{\partial L_{z}} \frac{\partial F}{\partial h}=\frac{\partial F}{\partial t}+[F, \Phi]=0
$$



Figure 1: Instability in 2D: Density in Time

## Single Particle Phase-Space

Restricting to Planar configurations:

- Cluster Mean Field: $\Phi(r, \theta, t)=\Phi_{0}(r, t)+\Phi_{1}(r, t) \cos [\theta+\phi(r, t)]$
- Single Particle Hamiltonian:: $H=\frac{v^{2}}{2}-\frac{G M}{r}+\Phi(r, \theta, t)$
- Softened Black Hole :: $H=\frac{v^{2}}{2}-\frac{G M}{r}+\left[\frac{G M}{r}-\frac{G M}{\sqrt{r^{2}+b^{2}}}\right]+\Phi(r, \theta, t)$
- Averaging over Keplerian ring: $x=a\left[\cos (g)\left(\cos (E)-\sqrt{1-e^{2}}\right)-l \sin (g) \sin (E)\right]$, $y=a\left[\sin (g)\left(\cos (E)-\sqrt{1-e^{2}}\right)+l \cos (g) \sin (E)\right] ;$
- Averaged Hamiltonian: $H_{\text {ave }}=\Phi_{0}(a, l, t)+\Phi_{1}(a, l, t) \cos (g)-\Omega(t) l$
- $\bar{\Phi}_{0} \propto e^{2}$ undergoes slight variations; $\bar{\Phi}_{1}(a, l, t) \propto e$ increases significantly; $\Omega(t)$ increases to a maximum of $60 \mathrm{kms}^{-1} \mathrm{pc}^{-1}$, before saturating at half that value;


Figure 3: Instability in 2D: Prograde in xy-plane, $a=0.9 \mathrm{pc}$


Figure 2: Instability in 2D: Retrograde in xy-plane, $a=0.9 \mathrm{pc}$


Figure 6: Instability in 2D: Retrograde in lg-plane, $a=0.9 \mathrm{pc}$


Figure 4: Instability in 2D: Retrograde in xy-plane, $a=0.9 \mathrm{pc}$


Figure 5: Instability in 2D: Retrograde in xy-plane, $a=0.9 \mathrm{pc}$


Figure 7: Instability in 2D: Sphere and Phase Plane $a=0.9 \mathrm{pc}$


Figure 1: Particle Centroid vs Model Equilibrium: Prograde Population at various semi-major axis


Figure 2: Particle Centroid vs Model Equilibrium: Retrograde Populations at $a=0.9 \mathrm{pc}$


Figure 4: Instability in 2D: Equilibria and Separatrix


Figure 3: $\Phi_{0}$ and $\Phi_{1}$ before and after Averaging

## Model Hamiltonian

- Averaged Hamiltonian: $H_{\text {ave }}=\Phi_{0}(a, l, t)+\Phi_{1}(a, l, t) \cos (g)-\Omega(t) l$
- For moderate eccentricity: $\bar{\Phi}_{0} \propto e^{2}$, and $\bar{\Phi}_{1}(a, l, t) \propto e\left(\sqrt{1-l^{2}}\right)$
- Model Hamiltonian: $H=-\frac{1}{2} f_{0}(t) l^{2}+f_{1}(t) \sqrt{1-l^{2}} \cos (g)-\Omega(t) l$
- Adiabatic Limit: $t_{\text {prec }} \gg t_{\text {growth }}$, hence work with time-frozen Hamiltonian: $H_{\text {freeze }}=-\frac{1}{2} f_{0} l^{2}+f_{1} \sqrt{1-l^{2}} \cos g-\Omega l$
- Rescale by $f_{0}: \frac{H}{f_{0}}=-\frac{1}{2} l^{2}+\alpha \sqrt{1-l^{2}} \cos g-\beta l$ with $\alpha=f_{1} / f_{0}$ and $\beta=\Omega / f_{0}$;
- One degree of freedom, with slowly varying parameters:
$H_{s}=-\frac{1}{2}[l+\beta]^{2}+\alpha \sqrt{1-l^{2}} \cos g$


## Equations of Motion

Precession:

$$
\frac{d g}{d t}=\frac{\partial H_{s}}{\partial l}=-l-\beta-\alpha \frac{l}{\sqrt{1-l^{2}}} \cos (g)
$$

Torque (change in e):

$$
\frac{d l}{d t}=-\frac{\partial H_{s}}{\partial g}=\alpha \sqrt{1-l^{2}} \sin g
$$

or

$$
\begin{gathered}
\frac{d g}{d t}=-l-\beta-\alpha \frac{l}{e} \cos (g) \\
\frac{d l}{d t}=\alpha e \sin g
\end{gathered}
$$

with $\alpha, \beta>0$

## Qualitative Features

- Increasing $\alpha$ : pattern is more lopsided, with stronger torques;
- Increasing $\beta$ : faster pattern speed; prograde needs to decrease eccentricity (increase I) to keep up, if at all; and the reverse is true;
- Prograde ( $l \geq 0$ ), aligned equilibrium: For increasing $\alpha$ (mode strength), $e$ needs to increase to maintain equilibrium at fixed $\beta$; similarly if $\beta$ were to decrease higher eccentricity would be required to maintain the equilibrium; indication of likelihood of capture;
- Increasing $\alpha$ : stronger mode, larger torques; positive torque increases eccentricity of retrograde ( $l<0, \Delta l>0$ ), and decreases eccentricity of prograde orbit; negative torque works in reverse;


## Qualitative Features

- Prograde $(l \geq 0)$ : retro-precession from axisymmetric mean field, modulated by contributions from lopsided field; for $g$ around $\pi$ (aligned orbits), pro-precession from $m=1$ lump, and the possibility of reversing effect of axisymmetric $\Phi_{0}$ to get a star to precess with prograde pattern;
- Retrograde ( $l \leq 0$ ): pro-precession from axisymmetric mean field, modulated by contributions from lopsided field; for $g$ around $\pi$ (aligned orbits), retro-precession from $m=1$ lump, and the possibility of reversing the effect $\Phi_{0}$, to pull a star into retrograde precession;


## Capture into and Escape From Resonance

Time variation of model parameters, $\alpha(t)$ and $\beta(t)$ :

- Adiabatic Regime: variations slow when compared to orbital periods (precession due to $\Phi_{0}(t)$;
- A Sequence of time frozen Hamiltonians: Critical behavior around separatrices;
- Capture and Escape: Likelihood of excitation of $l>0$ populations, likelihood of capture and excitation of $l<0$;
- The Picture is modified by the self-consistent requirement in which $\alpha(t)$ and $\beta(t)$ are functions of the evolving distributions;



Figure 1: Model Hamiltonian: $\beta=0.6$, and $\alpha$ varying between 0.01 and 0.4.


Figure 2: Model Hamiltonian: Prograde Dynamics for $\beta=0.6$, and $\alpha$ varying between 0.01 and 0.4 .


Figure 3: Model Hamiltonian: Prograde Dynamics for $\beta=0.6$, and $\alpha$ varying between 0.01 and 0.4 .

## Summary

- Violent instabilities in Hot, Counter-Rotating, Stellar systems, which promote growth of eccentricities and inclinations on rather short timescales
- Unstable configurations saturate into puffy $m=1$ equilibria: At least the $m=1$ part comes out naturally as a negative temperature thermodynamic equilibrium of counter-rotating clusters.
- Saturation is associated with the dispersal the (lighter), counter-rotating perturber: in 3D, via eccentricity/inclination instability; in 2D via filling of the full (prograde and retrograde) phase space.


## Plan of Action

- In 2D: Construct a self-consistent model for the time-varying parameters that enter into our averaged, adiabatic dynamics;
- In 3D: Identify the source of eccentricity-inclination instability, and generalize current, 2D treatment, to the full 4D phase-space;
- For both limits: Study the workings of relaxation (mainly resonant) on the saturated mode;
- Secure the link between micro-canonical equilibria, and our global modes.

