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Lorentz Preserving Massive Gravity

» Linearized GR in Minkowski:
Spin 2, Lorentz invariant, long range (massless).

V(T) ~ [Tllw (nu(anp)u - 1/277uu770p) TQPU] 7“71

> Graviton Mass: £ = L3) + m2(hu, " — ah?)

Unitary only for a =1

—mr, . —1

V(r)a=1 ~ [T (MuoNpyw — 1/30unop) T57] €™ r

vDVZ'72
e Gravity weaker at large distances, with different tensor

structure (vDVZ discontinuity: PN destroyed)

e Way out: for a source M, linear analysis valid up to
Ty ~ (Mm=2M52)4/? Vainshtein'72 (BDR'08)

e Strong coupling problem: low cut-off A, ~ (m2Mp)'/3  awo
A\ Alternatives: non-trivial backgrounds; breaking Lorentz sym.; m(0J).
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Massive Gravity in Curved Backgrounds

» de Sitter:

—6y/gH? + /gm*(hyu W™ — agsh?)
e No vDVZ: H regulates the strong coupling (also in AdS)
e No unitary for m? < 2H? (ok in AdS) Higuchi's7

e For m = 2H?, no scalar degrees of freedom DeserWaldrom'01

» General Background Effects
e In general 6 DOF. 5 DOF at linear level in certain cases
e The extra DOF is always a ghost
e A Lagrangian with aps = 1 will in general produce aqg # 1:

h~ B+ h, h20Oh ~ h*0OB

strong coupling

A Fine tuned (not if gauge invariance) situation buwowskyos [ Hidden (K = 0)
/\ Theories with well behaved 6 mode
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Choice of the Background & Linear Action

» Background: g, = a(n)nw
e For pure GR only dS is a solution

e Modified gravity: modified Friedman equation Scalar or vector
condensates, bigravity, extra-dimensions... DTT'05,BDG'07

e Definite energy as a sign of stability for w?, A < H

» Linear action: Covariant breaking mass term (LB)
Lo = a(n)* (mo*hoohoo + 2ma®hoiho; — ma®hyhy + mihizhy; — QWZhoohii)

e Only gravitational perturbations

o mi(n)
e Facts for Minkowski with constant masses (to change):
Rubakov'04,Dubovsky’04,RubakovTinyakov'08

my # 0 and mg # 0 : 6 DOF including a ghost
mp = 0:5 DOF which may be ghost-free
my = 0: 2 DOF (massive GW), mr correction to Newton's law



General case
Unbroken SO(3): decoupling of tensor, vectors and scalars.

Potential: High momentum (A — oo) stable for

a2
o m
Haotl<-— |2

‘ 2
(m? — 2m?) ,
— | <0
4 - 16m?
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General case

Unbroken SO(3): decoupling of tensor, vectors and scalars.
» Tensor and Vector modes
e Massive GW (m = my)
e Massive, LB vectors with cutoff A, ~ av/mi Mp
» Scalar modes:
Kinetic term of the Hamiltonian: Two DOF

N
(1, mo) K1 <W1> _ (m,m) T (Wl

0 o 2
2 M2a? -2 %12— up
0

e Positive eigenstates for m;% > 0, 6H? > m2 > 0
e H — 0 with fixed mq: hit det £ = 0 (strong coupling)
e Otherwise the eigenvalues can be O(1).
Potential: High momentum (A — o0) stable for
2
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General case
» Tensor and Vector modes

Unbroken SO(3): decoupling of tensor, vectors and scalars.
e Massive GW (m = ms)

e Massive, LB vectors with cutoff A, ~ a
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mlMp
Kinetic term of the Hamiltonian: Two DOF

3 _ _4A
7 IC_l 1 _ (7T17 7T2)
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e Positive eigenstates for m;% > 0, 6H? > m2 > 0

e H — 0 with fixed mg: hit det K = 0 (strong coupling)

e Otherwise the eigenvalues can be O(1).
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Scalar DOF for Particular cases |

> mg =0 (my £ 0):
At most ONE scalar DOF (similar to aps = 1). Kinetic part

K o [— [ami(mi — m3) + mi H'] A+a(mi + 2H?m}) +2mi H' — 2H(mj)']/P

A B

e Ghost free for A > 0 (large A) B > 0 (also in Minkowski)

e Can be singular A =0, B = 0. NO scalar DOF. Related to a
gauge invariance (conformal invariance in LI limit)

e For the FP limit only works for dS and
2H?*m?
m? + (2H? — m?)a(n)

m?(n) =

» Potential: No high momentum instabilities for m3 > m3

Tachyons can also be avoided, but tachyons are not so dangerous
in FRW (even interesting)



Scalar DOF for Particular cases Il
» my; = 0:

At most ONE scalar DOF (related to ghost-condensate,
bigravity). Lagrangian

M3a? my H'
r—2p n 2 {—A M2] 2
H? {2(m22 — m§)¢ a + v

e Singular Minkowski limit (one less DOF)

e m, = 0: No DOF (singular case in Mink)

e For dS, also singular: expected corrections from backgrounds
and/or higher order:

w?(1+4 B) = Bp? —|—A2p
e FRW: 4 ordinary DOF
» Potential strong coupling scales:
Mgmy MZH'
Ay~

e/ B ) il
2H2(m3 —m3)" H?



Scalar DOF for Particular cases Il
» my; = 0:

At most ONE scalar DOF (related to ghost-condensate,
bigravity). Lagrangian

_MI%aQ m,ﬁf ” ' 2| 92
c==k {2( A —[7A+M]¢

e Singular Minkowski limit (one less DOF)

e m, = 0: No DOF (singular case in Mink)

e For dS, also singular: expected corrections from backgrounds
and/or higher order:

w?(1+4 B) = Bp? —|—A2p
e FRW: 4 ordinary DOF
» Potential strong coupling scales:
M m MQH/
Aj ~ P—2 A, ~ 2L
2H?(m3 — m3)’ H?



Newtonian Potentials for Conserved
Sources

» Coupling to a conserved point-like source:
L= To® + T;V, Too=—HToo, Tij=T;=0

» GR: (I)GR:\IJGR:MLQ

PT‘

/A General case: TWO DOF (which can be stable).
e Static limit: Small distances (A > anything) at small times

b =dgp (1 + a12r2 + O(ﬂl’l“Q)) , UV=VUgp (1 + (J522’I“2 + 0(627“2))

e No vDVZ m; — 0 implies a;2 — 0
e At a;’r? ~ 1, linear aproximation OK (even at r — o)
®=2Qgr(1+ B[ —1])
e Breaks down in degenerate cases:
(also mg = mg, for which 2m3¥ = m?®: vDVZ)



Newtonian Potentials in Degenerate Cases
» m; =0: 1 DOF ¢

2aHm§m§w+mﬁl’¢'
\IJ_\IIGR—'_a( 2AH(m3 —m3) '
2a H(m3 — 3m2) ¢ — mj ¢/
<I>:\I'—|—am2< 2 3 4 ,
A\ aEmE -
with
2(m2 — m3)H’
Y = M(Too—MIQDAW—FQ1(mi,H)¢+(I1(mi,H)¢/-

4072
amnMP

[ TOO = MI%A’QZJ + O(m)
e For not conserved sources, and strong coupling

Exact linear solution confirms this (compare to Minkowski)

D =dgp [14—0&(6_}“”—1)}, (®y = Pgr [l + arir])



Newtonian Potentials in Degenerate Cases
> my =0: 1 DOF %

2a Hm3m3 ¢ + m o’
U=y i
Gr o < 2AH(m3 — m3) ’
2a H(m3 — 3m2) ¢ — mj ¢/
(b — \I’ 4 amQ < 2 3 4 ,
: AH(m3 —m3)
with
" 2(m% _m?%)H/ r2 / /
V' = ————(Too — MpAY) + qi(mi, H) Y + qi(my, H) 9.

4072
amnMP

o Too = MEAY + O(m)
e For not conserved sources, vDVZ and strong coupling

Exact linear solution confirms this (compare to Minkowski)

D =dgp [1—|—Oé(e_mn—1)}, (®y = Pgr [l + arir])



Newtonian Potentials in Degenerate Cases
» my =0, m; = 0: No DOF (singular in Minkowski)

My
b =7 1+ —— (e *" — 1+ Myre ®"
GR[+<m§—m§>(e M),
a2m2m2
U =V 14— 274  (o=nr _q
GR{ +(m%—m§)u2 (e )}

25 __ P
® pm X (mgfmg)H’

o Il defined dS limit (strong coupling)
A The FRW ALWAYS produces small perturbations at r — oo
without discontinuity for m; — 0 (no vDVZ)
> my = O
e In general 1 DOF and no vDVZ
e For the case without scalar DOF no vDVZ but

= dgp (1+p°r7)



Summary and Outlook

LI Massive gravity in Minkowski is problematic
Some problems disappear in curved backgrounds or in LB
theories

For LB mass terms, the 6 polarizations of the metric can be
stable for H' < 0 (H' — 0 singular) and good GR limit

There are situations with 5, 4, 3, 2 DOF without neither
instabilities nor discontinuity (fine-tuned background)

Different masses can be constraint from experiments:

» Graviton mass: pulsar timing, binary pulsar energy loss Arunwiiro
» Vector mass: CMB, A, > Ayys

» Scalar mass: Solar System, structure formation
No trace of the corrections 1/7* of the non-linear solution

Look for concrete backgrounds and cosmological evolution
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