Cargese Workshop

Modify Gravity?

Luigi Pilo
University of L'Aquila and INFN

Einstein's GR

> A 90 year-long successful story:
> No free parameter and it works !

Q equiv. principle 10^{-12} level
© Solar tests (weak field) 10^{-4} level
© Strong field (binary pulsar) 10^{-3} level
c Tested in the range $10^{-1} \mathrm{~mm}$ up to $10^{16} \mathrm{~mm}$

However there is a dark side

However

there is a dark side

- Rotation galaxy curves require Dark matter problems: cusps, Tully-Fisher law, nature of DM

there is a dark side

- Rotation galaxy curves require

Dark matter problems: cusps, Tully-Fisher law, nature of DM

- CMB + supernovae data need Dark energy at the best we have to explain a tiny cosmological constant $\Lambda \sim\left(10^{-4} \mathrm{eV}\right)^{4}$ deal with a bizarre fluid:

$$
p=w p, \quad w<-0.78
$$

there is a dark side

- Rotation galaxy curves require

Dark matter problems: cusps, Tully-Fisher law, nature of DM

- CMB + supernovae data need Dark energy at the best we have to explain a tiny cosmological constant $\Lambda \sim\left(10^{-4} \mathrm{eV}\right)^{4}$ deal with a bizarre fluid:

$$
p=w p, \quad w<-0.78
$$

perhaps, the nature of gravity at large scales needs
to be revised

Modifying GR ? Tough Job !

Modifying GR ? Tough Job !

© Can we build up a version of GR, modified in IR regime (large distances) consistent with experiments?

Modifying GR ? Tough Job !

© Can we build up a version of GR, modified in IR regime (large distances) consistent with experiments?
© The task is not an easy one!

Modifying GR ? Tough Job

© Can we build up a version of GR, modified in IR regime (large distances) consistent with experiments?
© The task is not an easy one!
e First attempt: Fierz-Pauli 1939

Modifying GR ? Tough Job

- Can we build up a version of GR, modified in IR regime (large distances) consistent with experiments?
© The task is not an easy one!
© First attempt: Fierz-Pauli 1939
- Recently a number of attempts: GRS, DGP, bigravity revisited,

Modifying GR ? Tough Job

- Can we build up a version of GR, modified in IR regime (large distances) consistent with experiments?
© The task is not an easy one!
© First attempt: Fierz-Pauli 1939
- Recently a number of attempts: GRS, DGP, bigravity revisited,
- This talk mainly focused on exact solutions

Massless and Massive Gravity

Massless and Massive Gravity

GR: dynamical field Guv D.o.F $=10-2 \times 4=2$
4 gauge invariance (Diffs) Linearized analysis

$$
\begin{array}{cc}
g_{\mu \nu}=\eta_{\mu \nu} & \bar{h}_{\mu \nu}=h_{\mu \nu}-\frac{h}{2} \eta_{\mu \nu} \quad \partial_{\nu} \bar{h}_{\mu \nu}=0 \\
\bar{h}_{\mu \nu}=-16 \pi G T_{\mu \nu} & \text { Lin. Einstein eqs } \\
\text { spin } 2 \text { in Minkowski }
\end{array}
$$

Massless and Massive Gravity

GR: dynamical field $\mathrm{g}_{\mu \nu}$ D.o.F $=10-2 \times 4=2$
4 gauge invariance (Diffs)
Linearized analysis

$$
\begin{array}{lc}
g_{\mu \nu}=\eta_{\mu \nu} \quad \bar{h}_{\mu \nu}=h_{\mu \nu}-\frac{h}{2} \eta_{\mu \nu} \quad \partial_{\nu} \bar{h}_{\mu \nu}=0 \\
\bar{h}_{\mu \nu}=-16 \pi G T_{\mu \nu} & \text { Lin. Einstein eqs } \\
\text { spin } 2 \text { in Minkowski }
\end{array}
$$

Massive GR: dynamical field $\mathrm{g}_{\mu \nu}$ D.o.F $=10-4=6$ 4 constraints

$$
\begin{aligned}
& \partial^{\alpha} \partial_{(\mu} h_{\nu) \alpha}-\frac{1}{2} \square h_{\mu \nu}-\partial_{\mu} \partial_{\nu} h+\frac{1}{2} g_{\mu \nu}\left(\square h-\partial^{\alpha} \partial^{\beta} h_{\alpha \beta}\right)-\frac{m_{g}^{2} M^{2}}{2}\left(b h \eta_{\mu \nu}+a h_{\mu \nu}\right) \\
& =8 \pi G T_{\mu \nu} . \quad \text { massive spin } 2 \text { in Minkowski } \approx 5 \text { D.o.F. } \\
& \text { one extra mode! }
\end{aligned}
$$

Issues with Lorentz Inv. massive gravity

$$
\mathcal{L}=\mathcal{L}_{\mathrm{spin} 2}^{\mathrm{kin}}-\frac{m_{g}^{2} M^{2}}{4}\left(a h_{\mu \nu} h^{\mu \nu}+b h^{2}\right)+\cdots
$$

Issues with Lorentz Inv. massive gravity

$$
\mathcal{L}=\mathcal{L}_{\text {spin } 2}^{\mathrm{kin}}-\frac{m_{g}^{2} M^{2}}{4}\left(a h_{\mu \nu} h^{\mu \nu}+b h^{2}\right)+\cdots
$$

- When $a \neq b$ there is a ghost in the spectrum. No good!

Issues with Lorentz Inv. massive gravity

$$
\mathcal{L}=\mathcal{L}_{\mathrm{spin} 2}^{\operatorname{kin}}-\frac{m_{g}^{2} M^{2}}{4}\left(a h_{\mu \nu} h^{\mu \nu}+b h^{2}\right)+\cdots
$$

c When $a \neq b$ there is a ghost in the spectrum. No good!
e Fierz-Pauli (FP) a=b. In flat space, no 6th mode; 5 healthy D.o.F.

Issues with Lorentz Inv. massive gravity

$$
\mathcal{L}=\mathcal{L}_{\text {spin } 2}^{\mathrm{kin}}-\frac{m_{g}^{2} M^{2}}{4}\left(a h_{\mu \nu} h^{\mu \nu}+b h^{2}\right)+\cdots
$$

- When $a \neq b$ there is a ghost in the spectrum. No good!
e Fierz-Pauli (FP) a=b. In flat space, no 6th mode; 5 healthy D.o.F.
- Yukawa type modification of Newton force: gravity shuts off for $r \gg 1 / m_{g}$

Issues with Lorentz Inv. massive gravity

$$
\mathcal{L}=\mathcal{L}_{\mathrm{spin} 2}^{\mathrm{kin}}-\frac{m_{g}^{2} M^{2}}{4}\left(a h_{\mu \nu} h^{\mu \nu}+b h^{2}\right)+\cdots
$$

e When $a \neq b$ there is a ghost in the spectrum. No good!
e Fierz-Pauli (FP) a=b. In flat space, no 6th mode; 5 healthy D.o.F.

- Yukawa type modification of Newton force: gravity shuts off for $r \gg 1 / m_{g}$
- However for FP: fails to reproduce light bending (out of 25%, experimental accuracy < 10^{-4}). VDZ discontinuity

Issues with Lorentz Inv. massive gravity

$$
\mathcal{L}=\mathcal{L}_{\text {spin } 2}^{\mathrm{kin}}-\frac{m_{g}^{2} M^{2}}{4}\left(a h_{\mu \nu} h^{\mu \nu}+b h^{2}\right)+\cdots
$$

- When $a \neq b$ there is a ghost in the spectrum. No good!
e Fierz-Pauli (FP) a=b. In flat space, no 6th mode; 5 healthy D.o.F.
- Yukawa type modification of Newton force: gravity shuts off for $r \gg 1 / m_{g}$
- However for FP: fails to reproduce light bending (out of 25%, experimental accuracy < 10^{-4}. VDZ discontinuity
- the ghost is needed for the light bending

Issues with Lorentz Inv. massive gravity

$$
\mathcal{L}=\mathcal{L}_{\mathrm{spin} 2}^{\mathrm{kin}}-\frac{m_{g}^{2} M^{2}}{4}\left(a h_{\mu \nu} h^{\mu \nu}+b h^{2}\right)+\cdots
$$

- When $a \neq b$ there is a ghost in the spectrum. No good!
e Fierz-Pauli (FP) a=b. In flat space, no 6th mode; 5 healthy D.o.F.
- Yukawa type modification of Newton force: gravity shuts off for $r \gg 1 / m_{g}$
- However for FP: fails to reproduce light bending (out of 25%, experimental accuracy $<10^{-4}$. VDZ discontinuity
- the ghost is needed for the light bending
- Out of Minkowski the 6th mode (ghost) propagates !

VDZ discontinuity

- GR: 2 states (massless spin 2)

VDZ discontinuity

- GR: 2 states (massless spin 2)

VDZ discontinuity

- GR: 2 states (massless spin 2)

Extra states

VDZ discontinuity

- GR: 2 states (massless spin 2)

Extra states

Static potential

VDZ discontinuity

- GR: 2 states (massless spin 2)

Extra states

Static potential

$$
\begin{aligned}
h_{\mu \nu}^{\mathrm{GR}} & =\frac{\left(\eta_{\mu \alpha} \eta_{\nu \beta}+\eta_{\mu \beta} \eta_{v \alpha}-\frac{1}{2} \eta_{\mu \nu} \eta_{\alpha \beta}\right)}{-p^{2}} \\
h_{\mu v_{m \rightarrow 0}} & =\frac{\left(\eta_{\mu \alpha} \eta_{\nu \beta}+\eta_{\mu \beta} \eta_{v \alpha}-\frac{1}{3} \eta_{\mu \nu} \eta_{\alpha \beta}\right)}{-p^{2}}
\end{aligned}
$$

VDZ discontinuity

- GR: 2 states (massless spin 2)

Extra states

GR
Static potential

$$
h_{\mu \nu}^{\mathrm{GR}}=\frac{\left(\eta_{\mu \alpha} \eta_{\nu \beta}+\eta_{\mu \beta} \eta_{v \alpha}-\frac{1}{2} \eta_{\mu \nu} \eta_{\alpha \beta}\right)}{-p^{2}}
$$

$$
h_{\mu v_{m \rightarrow 0}}=\frac{\left(\eta_{\mu \alpha} \eta_{\nu \beta}+\eta_{\mu \beta} \eta_{v \alpha}-\frac{1}{3} \eta_{\mu \nu} \eta_{\alpha \beta}\right)}{-p^{2}}
$$

Potential (loc. masses):
Potential: (loc. mass, photon)
$V=-G m_{1} m_{2} \frac{e^{m_{g} r}}{r}$

$$
V_{\gamma}=-\frac{3}{2} G m_{1} E \frac{e^{m_{g} r}}{r}
$$

VDZ discontinuity

- GR: 2 states (massless spin 2)

Extra states

GR
Static potential

$$
h_{\mu \nu}^{\mathrm{GR}}=\frac{\left(\eta_{\mu \alpha} \eta_{\nu \beta}+\eta_{\mu \beta} \eta_{v \alpha}-\frac{1}{2} \eta_{\mu \nu} \eta_{\alpha \beta}\right)}{-p^{2}}
$$

$$
h_{\mu v_{m \rightarrow 0}}=\frac{\left(\eta_{\mu \alpha} \eta_{\nu \beta}+\eta_{\mu \beta} \eta_{v \alpha}-\frac{1}{3} \eta_{\mu \nu} \eta_{\alpha \beta}\right)}{-p^{2}}
$$

Potential (loc. masses):
Potential: (loc. mass, photon)

$$
V=-G m_{1} m_{2} \frac{e^{m_{g} r}}{r}
$$

$$
V_{\gamma}=-\frac{3}{2} G m_{1} E \frac{e^{m_{g} r}}{r}
$$

The ghost strikes back !

Strong coupling and quantum effects

Strong coupling and quantum effects

Non-linear extensions of FP theory as EFT

Strong coupling and quantum effects

Non-linear extensions of FP theory as EFT
The coupling becomes large at energy $E \sim \Lambda_{5}=\left(\mathrm{m}_{\mathrm{g}}{ }^{4} \mathrm{Mpl}^{1 / 2}\right)^{1 / 5}$

Strong coupling and quantum

effects

Non-linear extensions of FP theory as EFT
The coupling becomes large at energy $E \sim \Lambda_{5}=\left(\mathrm{m}_{\mathrm{g}}{ }^{4} \mathrm{Mpl}^{1 / 5}\right.$
Taking $1 / \mathrm{m}_{\mathrm{g}} \sim$ horizon size $\sim 10^{28} \mathrm{~cm}$
$\Lambda_{5}{ }^{-1} \sim 10^{15} \mathrm{~cm}$, bigger than the solar system scale

Strong coupling and quantum

effects

Non-linear extensions of FP theory as EFT
The coupling becomes large at energy $E \sim \Lambda_{5}=\left(\mathrm{m}_{9}{ }^{4} \mathrm{Mpl}^{1 / 5}\right.$
Taking $1 / \mathrm{m}_{\mathrm{g}} \sim$ horizon size $\sim 10^{28} \mathrm{~cm}$
$\Lambda_{5}{ }^{-1} \sim 10^{15} \mathrm{~cm}$, bigger than the solar system scale
A suitable choice of interactions allows to lower Λ down to $\Lambda_{3}=\left(m_{g}{ }^{3} \mathrm{M}\right)^{1 / 3} \sim 1000 \mathrm{Km}$, still too low

Strong coupling and quantum

effects

Non-linear extensions of FP theory as EFT
The coupling becomes large at energy $E \sim \Lambda_{5}=\left(\mathrm{m}_{\mathrm{g}}{ }^{4} \mathrm{Mpl}^{1 / 5}\right.$
Taking $1 / \mathrm{m}_{\mathrm{g}} \sim$ horizon size $\sim 10^{28} \mathrm{~cm}$
$\Lambda_{5}{ }^{-1} \sim 10^{15} \mathrm{~cm}$, bigger than the solar system scale
A suitable choice of interactions allows to lower \wedge down to $\Lambda_{3}=\left(m_{g}{ }^{3} \mathrm{M}\right)^{1 / 3} \sim 1000 \mathrm{Km}$, still too low

FP theory and its extension is not valid inside the solar system. UV completion is needed.

Breaking of Lin. Approx.

c In the presence of an heavy mass source the one-graviton exchange approximation may fail at the scale

$$
r_{v}=\Lambda_{5}^{-1}\left(M / M_{p}\right)^{1 / 3} \sim\left(G M m_{g}^{-4}\right)^{1 / 5}>\Lambda_{5}^{-1}
$$

Breaking of Lin. Approx.

© In the presence of an heavy mass source the one-graviton exchange approximation may fail at the scale
$r_{V}=\Lambda_{5}^{-1}\left(M / M_{p}\right)^{1 / 3} \sim\left(G M m_{g}^{-4}\right)^{1 / 5}>\Lambda_{5}^{-1}$
© Before quantum correction are important classical lin. approx. may fail at $r=r_{M}$

Breaking of Lin. Approx.

© In the presence of an heavy mass source the one-graviton exchange approximation may fail at the scale
$r_{V}=\Lambda_{5}^{-1}\left(M / M_{p}\right)^{1 / 3} \sim\left(G M m_{g}^{-4}\right)^{1 / 5}>\Lambda_{5}^{-1}$
© Before quantum correction are important classical lin. approx. may fail at $r=r_{M}$
© Vainshtein's picture: VDVZ is fake, continuity is recovered non-linearly

Breaking of Lin. Approx.

© In the presence of an heavy mass source the one-graviton exchange approximation may fail at the scale
$r_{V}=\Lambda_{5}^{-1}\left(M / M_{\mathrm{P}}\right)^{1 / 3} \sim\left(G M m_{9}^{-4}\right)^{1 / 5}>\Lambda_{5}^{-1}$
Q Before quantum correction are important classical lin. approx. may fail at $r=r_{M}$
© Vainshtein's picture: VDVZ is fake, continuity is recovered non-linearly
c Whether the Vainshtein's picture is correct is still an open problem

Breaking of Lin. Approx.

© In the presence of an heavy mass source the one-graviton exchange approximation may fail at the scale
$r_{v}=\Lambda_{5}^{-1}\left(\mathrm{M} / \mathrm{Mpl}^{1 / 3} \sim\left(G M m_{9}{ }^{-4}\right)^{1 / 5}>\Lambda_{5}{ }^{-1}\right.$
Q Before quantum correction are important classical lin. approx. may fail at $r=r_{M}$
© Vainshtein's picture: VDVZ is fake, continuity is recovered non-linearly

C Whether the Vainshtein's picture is correct is still an open problem

- FP theory is at least tricky classically and inconsistent as quantum EFT

Giving up Lorentz

Giving up Lorentz

The D.o.F. count for FP relies on LI what about giving it up?

$$
\mathcal{L}=\mathcal{L}_{\text {spin } 2}^{\text {kin }}+\mathcal{L}_{\text {LBmass }}+\cdots
$$

Giving up Lorentz

The D.o.F. count for FP relies on LI what about giving it up?

$$
\mathcal{L}=\mathcal{L}_{\text {spin } 2}^{\text {kin }}+\mathcal{L}_{\text {LBmass }}+\cdots
$$

$$
\mathcal{L}_{\mathrm{LBmass}}=\frac{M_{P}^{2}}{4}\left(m_{0}^{2} h_{00}^{2}+2 m_{1}^{2} h_{0 i}^{2}-m_{2}^{2} h_{i j}^{2}+m_{3}^{2} h_{i i}^{2}-2 m_{4}^{2} h_{00} h_{i i}\right)
$$

Giving up Lorentz

The D.o.F. count for FP relies on LI

 what about giving it up?$$
\mathcal{L}=\mathcal{L}_{\text {spin } 2}^{\text {kin }}+\mathcal{L}_{\text {LBmass }}+\cdots
$$

$$
\mathcal{L}_{\mathrm{LBmass}}=\frac{M_{P}^{2}}{4}\left(m_{0}^{2} h_{00}^{2}+2 m_{1}^{2} h_{0 i}^{2}-m_{2}^{2} h_{i j}^{2}+m_{3}^{2} h_{i i}^{2}-2 m_{4}^{2} h_{00} h_{i i}\right)
$$

Useful parametrization: SO(3) reppr.

$$
\begin{array}{lc}
h_{00}=\psi, & \partial_{i} u_{i}=0, \\
h_{0 i}=u_{i}+\partial_{i} v, & \partial_{i} s_{i}=\partial_{j} \chi_{i j}=\delta_{i j} \chi_{i j}=0 \\
h_{i j}=\chi_{i j}+\partial_{i} s_{j}+\partial_{j} s_{i}+\partial_{i} \partial_{j} \sigma+\delta_{i j} \tau,
\end{array}
$$

Giving up Lorentz

The D.o.F. count for FP relies on LI what about giving it up?

$$
\mathcal{L}=\mathcal{L}_{\text {spin } 2}^{\text {kin }}+\mathcal{L}_{\text {LBmass }}+\cdots
$$

$$
\begin{aligned}
& \mathcal{L}_{\text {LBmass }}=\frac{M_{P}^{2}}{4}\left(m_{0}^{2} h_{00}^{2}+2 m_{1}^{2} h_{0 i}^{2}-m_{2}^{2} h_{i j}^{2}+m_{3}^{2} h_{i i}^{2}-2 m_{4}^{2} h_{00} h_{i i}\right) \\
& \text { Useful parametrization: SO(3) reppr. } \\
& h_{00}=\psi, \\
& h_{0 i}=u_{i}+\partial_{i} v, \\
& h_{i j}=\chi_{i j}+\partial_{i} s_{j}+\partial_{j} s_{i}+\partial_{i} \partial_{j} \sigma+\delta_{i j} \tau, \quad \partial_{i} u_{i}=0, \\
& \partial_{i}=\partial_{j} \chi_{i j}=\delta_{i j} \chi_{i j}=0
\end{aligned}
$$

Transformation under a diff ξ^{μ}

$$
\begin{aligned}
& \delta \psi=-2 \partial_{t} \xi^{0} \quad \delta v=\Delta^{-1} \partial_{t} \partial_{m} \xi^{m}-\xi^{0}, \quad \delta u_{i}=\partial_{t} \xi_{T}^{i} \\
& \delta \chi_{i j}=0, \quad \delta S_{i}=\xi_{T}^{i}, \quad \delta \sigma=2 \Delta^{-1} \partial_{i} \xi^{i}, \quad \delta \tau=0
\end{aligned}
$$

Propagation

Propagation

Spin $2 X_{i j}$ two states propagate with mass m_{2}

Propagation

Spin $2 X_{i j}$ two states propagate with mass m_{2}
Spin $1 s_{i}$ two states propagate, unless m_{1} is zero

Propagation

Spin $2 X_{i j}$ two states propagate with mass m_{2}
Spin $1 s_{i}$ two states propagate, unless m_{1} is zero
Spin 0: T, σ, two states propagate, unless m_{1} is zero
In general σ is a ghost

Propagation

Spin $2 X_{i j}$ two states propagate with mass m_{2}
Spin $1 s_{i}$ two states propagate, unless m_{1} is zero
Spin 0: T, σ, two states propagate, unless m_{1} is zero
In general σ is a ghost
$6=10-6$ D.O.F. as expected

Propagation

Spin $2 X_{i j}$ two states propagate with mass m_{2}
Spin $1 s_{i}$ two states propagate, unless m_{1} is zero
Spin 0: T, σ, two states propagate, unless m_{1} is zero
In general σ is a ghost
$6=10-6$ D.O.F. as expected

Special phases

Propagation

Spin $2 X_{i j}$ two states propagate with mass m_{2}
Spin $1 s_{i}$ two states propagate, unless m_{1} is zero
Spin 0: T, σ, two states propagate, unless m_{1} is zero
In general σ is a ghost
$6=10-6$ D.O.F. as expected

Special phases

$\mathrm{m}_{\mathrm{o}}=0$
the ghost σ is a Lagrange multiplier $2+2+1$ healthy D.o.F. left

Propagation

Spin $2 X_{i j}$ two states propagate with mass m_{2}
Spin $1 s_{i}$ two states propagate, unless m_{1} is zero
Spin 0: T, σ, two states propagate, unless m_{1} is zero
In general σ is a ghost
$6=10-6$ D.O.F. as expected

Special phases

$\mathrm{m}_{\mathrm{o}}=0$
the ghost σ is a Lagrange multiplier $2+2+1$ healthy D.o.F. left
$m_{1}=0$ No scalar or vector propagate, just tensors 2 healthy tensor D.o.F. left

Propagation

Spin $2 X_{i j}$ two states propagate with mass m_{2}
Spin $1 s_{i}$ two states propagate, unless m_{1} is zero
Spin 0: T, σ, two states propagate, unless m_{1} is zero
In general σ is a ghost
$6=10-6$ D.O.F. as expected

Special phases

$\mathrm{m}_{\mathrm{O}}=0$
the ghost σ is a Lagrange multiplier $2+2+1$ healthy D.o.F. left
$m_{1}=0$ No scalar or vector propagate, just tensors 2 healthy tensor D.o.F. left

In both phase there is no VDZ discontinuity!

Stuckelberg Fields

Instead of adding by hand masses, one introduces scalar fields providing the required longitudinal modes

Stuckelberg Fields

Instead of adding by hand masses, one introduces scalar fields providing the required longitudinal modes

$$
\left(g^{00}\right)^{2} m_{0}^{2}=\left(\bar{g}^{00}-h^{00}+\cdots\right)^{2} m_{0}^{2} \rightarrow \partial_{\mu} \Phi^{0} \partial_{\nu} \Phi^{0} g^{\mu \nu} m_{0}^{2}
$$

Stuckelberg Fields

Instead of adding by hand masses, one introduces scalar fields providing the required longitudinal modes

$$
\left(g^{00}\right)^{2} m_{0}^{2}=\left(\bar{g}^{00}-h^{00}+\cdots\right)^{2} m_{0}^{2} \rightarrow \partial_{\mu} \Phi^{0} \partial_{\nu} \Phi^{0} g^{\mu \nu} m_{0}^{2}
$$

The wanted "tunings" like $m_{0}=0$ are casted in symmetries of the scalar sector

$$
\Phi^{0} \rightarrow \Phi^{0}+\zeta\left(\Phi^{0}, \Phi^{i}\right)
$$

Stuckelberg Fields

Instead of adding by hand masses, one introduces scalar fields providing the required longitudinal modes

$$
\left(g^{00}\right)^{2} m_{0}^{2}=\left(\bar{g}^{00}-h^{00}+\cdots\right)^{2} m_{0}^{2} \rightarrow \partial_{\mu} \Phi^{0} \partial_{\nu} \Phi^{0} g^{\mu \nu} m_{0}^{2}
$$

The wanted "tunings" like $m_{0}=0$ are casted in symmetries of the scalar sector

$$
\Phi^{0} \rightarrow \Phi^{0}+\zeta\left(\Phi^{0}, \Phi^{i}\right)
$$

The D.o.F. is the same: $(10+4)-2 \times 4=6$

Stuckelberg Fields

Instead of adding by hand masses, one introduces scalar fields providing the required longitudinal modes

$$
\left(g^{00}\right)^{2} m_{0}^{2}=\left(\bar{g}^{00}-h^{00}+\cdots\right)^{2} m_{0}^{2} \rightarrow \partial_{\mu} \Phi^{0} \partial_{\nu} \Phi^{0} g^{\mu \nu} m_{0}^{2}
$$

The wanted "tunings" like $m_{0}=0$ are casted in symmetries of the scalar sector

$$
\Phi^{0} \rightarrow \Phi^{0}+\zeta\left(\Phi^{0}, \Phi^{i}\right)
$$

The D.o.F. is the same: $(10+4)-2 \times 4=6$

$$
\Phi^{a}=\bar{\Phi}^{a}+\phi^{a} \quad \bar{\Phi}^{a} \text { Background value }
$$

Unitary gauge

$$
\phi^{a}=0 \quad \text { Unitary gauge }
$$

Stuckelberg Fields

Instead of adding by hand masses, one introduces scalar fields providing the required longitudinal modes

$$
\left(g^{00}\right)^{2} m_{0}^{2}=\left(\bar{g}^{00}-h^{00}+\cdots\right)^{2} m_{0}^{2} \rightarrow \partial_{\mu} \Phi^{0} \partial_{\nu} \Phi^{0} g^{\mu \nu} m_{0}^{2}
$$

The wanted "tunings" like $m_{0}=0$ are casted in symmetries of the scalar sector

$$
\Phi^{0} \rightarrow \Phi^{0}+\zeta\left(\Phi^{0}, \Phi^{i}\right)
$$

The D.o.F. is the same: $(10+4)-2 \times 4=6$

Action

$$
\begin{aligned}
& S=\int \sqrt{g} d^{4} x\left(M^{2} R+\mathcal{L}_{\text {matt }}\right)+\Lambda^{4} \int d^{4} x \sqrt{g} \mathcal{F}\left(\mathcal{X}, \mathcal{V}^{i}, \mathcal{Y}^{i j}\right) \\
& \mathcal{X}=-\Lambda^{-4} g^{\mu \nu} \partial_{\mu} \Phi^{0} \partial_{\nu} \Phi^{0} \quad \mathcal{V}^{i}=-\Lambda^{-4} g^{\mu \nu} \partial_{\mu} \Phi^{0} \partial_{\nu} \Phi^{i}, \\
& \mathcal{Y}^{i j}=-\Lambda^{-4} g^{\mu \nu} \partial_{\mu} \Phi^{i} \partial_{\nu} \Phi^{j}
\end{aligned}
$$

$$
\begin{aligned}
& S=\int \sqrt{g} d^{4} x\left(M^{2} R+\mathcal{L}_{\text {matt }}\right)+\Lambda^{4} \int d^{4} x \sqrt{g} \mathcal{F}\left(\mathcal{X}, \mathcal{V}^{i}, \mathcal{Y}^{i j}\right) \\
& \mathcal{X}=-\Lambda^{-4} g^{\mu \nu} \partial_{\mu} \Phi^{0} \partial_{\nu} \Phi^{0} \quad \mathcal{V}^{i}=-\Lambda^{-4} g^{\mu \nu} \partial_{\mu} \Phi^{0} \partial_{\nu} \Phi^{i} \\
& \mathcal{V}^{i j}=-\Lambda^{-4} g^{\mu \nu} \partial_{\mu} \Phi^{i} \partial_{\nu} \Phi^{j}
\end{aligned}
$$

C The function F encodes all the physics: background properties, masses, residual symmetries

$$
\begin{aligned}
& S=\int \sqrt{g} d^{4} x\left(M^{2} R+\mathcal{L}_{\text {matt }}\right)+\Lambda^{4} \int d^{4} x \sqrt{g} \mathcal{F}\left(\mathcal{X}, \mathcal{V}^{i}, \mathcal{V}^{i j}\right) \\
& \mathcal{X}=-\Lambda^{-4} g^{\mu \nu} \partial_{\mu} \Phi^{0} \partial_{\nu} \Phi^{0} \quad \mathcal{V}^{i}=-\Lambda^{-4} g^{\mu \nu} \partial_{\mu} \Phi^{0} \partial_{\nu} \Phi^{i}, \\
& \mathcal{Y}^{i j}=-\Lambda^{-4} g^{\mu \nu} \partial_{\mu} \Phi^{i} \partial_{\nu} \Phi^{j}
\end{aligned}
$$

The function F encodes all the physics: background properties, masses, residual symmetries
© When Lorentz inv. is broken the the background value of the Фs will be spacetime dependent

Spherical symmetric solution

Originally first found in bigravity

Goldstone action with the residual symmetry $\Phi^{i} \rightarrow \Phi^{i}+\Pi\left(\Phi^{0}\right)$ $\Rightarrow m_{1}=0$ in a flat background
$\mathcal{F} \equiv \mathcal{F}\left(\mathcal{X}, \mathcal{W}^{i j}\right)$

$$
\mathcal{W}^{i j}=-\Lambda^{-4} g^{\mu \nu} \partial_{\mu} \Phi^{i} \partial_{\nu} \Phi^{j}-\Lambda^{-8} \mathcal{X}^{-1} g^{\mu \nu} \partial_{\mu} \Phi^{i} \partial_{\nu} \Phi^{0} g^{\alpha \beta} \partial_{\alpha} \Phi^{0} \partial_{\beta} \Phi^{j}
$$

Lorentz breaking background

$$
g_{\mu \nu}=\eta_{\mu \nu} \quad \Phi^{0}=\Lambda^{2} t, \quad \Phi^{i}=\Lambda^{2} x^{i} \quad \text { SO(3) preserved }
$$

The goldstone EMT is zero on-shell

Spherically symm. ansatz

$$
\begin{aligned}
& d s^{2}=-J(r) d t^{2}+K(r) d r^{2}+r^{2} d \Omega^{2} \\
& \Phi^{0}=\Lambda(t+h(r)), \quad \Phi^{i}=\varphi(r) \frac{\Lambda^{2} x^{i}}{r}
\end{aligned}
$$

c0>0 stability
c0-6 cl ≥ 0 grav. non -tachyonic

Spherically symm. ansatz

$$
\begin{aligned}
& d s^{2}=-J(r) d t^{2}+K(r) d r^{2}+r^{2} d \Omega^{2} \\
& \Phi^{0}=\Lambda(t+h(r)), \quad \Phi^{i}=\varphi(r) \frac{\Lambda^{2} x^{i}}{r}
\end{aligned}
$$

General properties: exterior solution

$$
T_{\mu \nu}=T_{\mu \nu}^{\mathrm{Matt}}+T_{\mu \nu}^{\mathrm{Gold}} \equiv T_{\mu \nu}^{\mathrm{Gold}}
$$

c0>0 stability
c0-6 cl ≥ 0 grav. non -tachyonic

Spherically symm. ansatz

$$
\begin{aligned}
& d s^{2}=-J(r) d t^{2}+K(r) d r^{2}+r^{2} d \Omega^{2} \\
& \Phi^{0}=\Lambda(t+h(r)), \quad \Phi^{i}=\varphi(r) \frac{\Lambda^{2} x^{i}}{r}
\end{aligned}
$$

General properties: exterior solution

$$
T_{\mu \nu}=T_{\mu \nu}^{\mathrm{Matt}}+T_{\mu \nu}^{\mathrm{Gold}} \equiv T_{\mu \nu}^{\mathrm{Gold}}
$$

Einst. tensor is diagonal \rightarrow EMT Gold. is diagonal

$$
\Rightarrow T^{\text {Gold }}+t=T^{\text {Gold }} r r \Rightarrow E_{t t}=E_{r r} \Rightarrow K=1 / J
$$

Spherically symm. ansatz

$$
\begin{aligned}
& d s^{2}=-J(r) d t^{2}+K(r) d r^{2}+r^{2} d \Omega^{2} \\
& \Phi^{0}=\Lambda(t+h(r)), \quad \Phi^{i}=\varphi(r) \frac{\Lambda^{2} x^{i}}{r}
\end{aligned}
$$

General properties: exterior solution

$$
T_{\mu \nu}=T_{\mu \nu}^{\text {Matt }}+T_{\mu \nu}^{\text {Gold }} \equiv T_{\mu \nu}^{\text {Gold }}
$$

Einst. tensor is diagonal \rightarrow EMT Gold. is diagonal

$$
\Rightarrow T^{\text {Gold }_{t+}}=T^{\text {Gold }_{r r}} \Rightarrow E_{t+}=E_{r r} \Rightarrow K=1 / \mathrm{J}
$$

Analitycally solvable example

$\mathcal{F}=c_{0}\left(\mathcal{X}^{-1}+\mathcal{W}_{1}\right)+c_{1}\left(\mathcal{W}_{1}^{3}-3 \mathcal{W}_{1} \mathcal{W}_{2}-6 \mathcal{W}_{1}+2 \mathcal{W}_{3}-12\right)$
$\mathcal{W}_{n}=\operatorname{Tr}\left(\mathcal{W}^{n}\right)$

Spherically symm. ansatz

$$
\begin{aligned}
& d s^{2}=-J(r) d t^{2}+K(r) d r^{2}+r^{2} d \Omega^{2} \\
& \Phi^{0}=\Lambda(t+h(r)), \quad \Phi^{i}=\varphi(r) \frac{\Lambda^{2} x^{i}}{r}
\end{aligned}
$$

General properties: exterior solution

$$
T_{\mu \nu}=T_{\mu \nu}^{\mathrm{Matt}}+T_{\mu \nu}^{\mathrm{Gold}} \equiv T_{\mu \nu}^{\mathrm{Gold}}
$$

Einst. tensor is diagonal \rightarrow EMT Gold. is diagonal

$$
\Rightarrow T^{\text {Gold }_{t+}}=T^{\text {Gold }_{r r}} \Rightarrow E_{t+}=E_{r r} \Rightarrow K=1 / \mathrm{J}
$$

Analitycally solvable example

$\mathcal{F}=c_{0}\left(\mathcal{X}^{-1}+\mathcal{W}_{1}\right)+c_{1}\left(\mathcal{W}_{1}^{3}-3 \mathcal{W}_{1} \mathcal{W}_{2}-6 \mathcal{W}_{1}+2 \mathcal{W}_{3}-12\right)$
$\mathcal{W}_{n}=\operatorname{Tr}\left(\mathcal{W}^{n}\right)$
$T^{\text {Gold }}{ }_{t r}=0 \Rightarrow \varphi=b r$
the value of b depends on c_{0} and c_{1}

$$
T^{\text {Gold }_{t r}}=0 \Rightarrow \varphi=b r
$$

the value of b depends on c_{0} and c_{1}

$$
\begin{aligned}
& J(r)=1-\frac{2 G M_{S}}{r}+2 \Lambda r^{2}+2 G S r^{\gamma} \quad \Lambda \sim c_{1} m^{8}\left(b^{2}-1\right) \\
& \gamma=12 \frac{c_{1}}{c_{0}} \quad \text { for } \mathrm{b}=1
\end{aligned}
$$

$$
T^{\text {Gold }} \text { tr }=0 \Rightarrow \varphi=b r
$$

the value of b depends on c_{0} and c_{1}

$$
\begin{aligned}
& J(r)=1-\frac{2 G M_{S}}{r}+2 \Lambda r^{2}+2 G S r^{\gamma} \quad \Lambda \sim c_{1} m^{8}\left(b^{2}-1\right) \\
& \gamma=12 \frac{c_{1}}{c_{0}} \quad \text { for } \mathrm{b}=1
\end{aligned}
$$

Total Energy (Komar, ADM) in a shell of radius r

$$
E(r)=M_{s}+s \gamma r^{\gamma+1}
$$

$$
T^{\text {Gold }}+r=0 \Rightarrow \varphi=b r
$$

the value of b depends on c_{0} and c_{1}
$J(r)=1-\frac{2 G M_{S}}{r}+2 \Lambda r^{2}+2 G S r^{\gamma} \quad \Lambda \sim c_{1} m^{8}\left(b^{2}-1\right)$
$\gamma=12 \frac{c_{1}}{c_{0}} \quad$ for $\mathrm{b}=1$
Total Energy (Komar, ADM) in a shell of radius r

$$
E(r)=M s+S \gamma r^{\gamma+1}
$$

When $\gamma+1<0$ the energy is finite but gravity is modified

$$
T^{\text {Gold }}+r=0 \Rightarrow \varphi=b r
$$

the value of b depends on c_{0} and c_{1}

$$
\begin{aligned}
& J(r)=1-\frac{2 G M_{S}}{r}+2 \Lambda r^{2}+2 G S r^{\gamma} \quad \Lambda \sim c_{1} m^{8}\left(b^{2}-1\right) \\
& \gamma=12 \frac{c_{1}}{c_{0}} \quad \text { for } \mathrm{b}=1
\end{aligned}
$$

Total Energy (Komar, ADM) in a shell of radius r

$$
E(r)=M s+S \gamma r^{\gamma+1}
$$

When $\gamma+1<0$ the energy is finite but gravity is modified

$$
T_{t t}^{\mathrm{Gold}}=-S \frac{(1+\gamma)}{4 \pi} r^{\gamma-2} J(r)
$$

$$
T^{\text {Gold }}{ }_{t r}=0 \Rightarrow \varphi=b r
$$

the value of b depends on c_{0} and c_{1}

$$
\begin{aligned}
& J(r)=1-\frac{2 G M_{S}}{r}+2 \Lambda r^{2}+2 G S r^{\gamma} \quad \Lambda \sim c_{1} m^{8}\left(b^{2}-1\right) \\
& \gamma=12 \frac{c_{1}}{c_{0}} \quad \text { for } b=1
\end{aligned}
$$

Total Energy (Komar, ADM) in a shell of radius r

$$
E(r)=M s+S \gamma r^{\gamma+1}
$$

When $\gamma+1<0$ the energy is finite but gravity is modified

$$
T_{t t}^{\mathrm{Gold}}=-S \frac{(1+\gamma)}{4 \pi} r^{\gamma-2} J(r)
$$

On-shell Golstones'
EMT tensor: WEC violated when $\gamma+1>0$

Can be the exterior part of a star?

Can be the exterior part of a star?

Add matter EMT (perfect fluid), solve E.o.M. in the inner part and then match with the exterior solution

Can be the exterior part of a star?

Add matter EMT (perfect fluid), solve E.o.M. in the inner part and then match with the exterior solution

Even for constant density it's hard, we use perturbation theory (weak gravity)

Can be the exterior part of a star?

Add matter EMT (perfect fluid), solve E.o.M. in the inner part and then match with the exterior solution

Even for constant density it's hard, we use perturbation theory (weak gravity)

Consistency requires a non-democratic perturbation

$$
\begin{aligned}
& J=1+\epsilon J_{1}(r), \quad J=1+\epsilon K_{1}(r), \quad \varphi=r+\epsilon \varphi_{1}(r), \quad h=\epsilon^{1 / 2} h_{1}(r) \\
& \rho=\epsilon \rho_{0}, \quad p=\epsilon^{2} p_{2}(r)
\end{aligned}
$$

Can be the exterior part of a star?

Add matter EMT (perfect fluid), solve E.o.M. in the inner part and then match with the exterior solution

Even for constant density it's hard, we use perturbation theory (weak gravity)

Consistency requires a non-democratic perturbation

$$
\begin{aligned}
& J=1+\epsilon J_{1}(r), \quad J=1+\epsilon K_{1}(r), \quad \varphi=r+\epsilon \varphi_{1}(r), \quad h=\epsilon^{1 / 2} h_{1}(r) \\
& \rho=\epsilon \rho_{0}, \quad p=\epsilon^{2} p_{2}(r)
\end{aligned}
$$

Can be the exterior part of a star?

Add matter EMT (perfect fluid), solve E.o.M. in the inner part and then match with the exterior solution

Even for constant density it's hard, we use perturbation theory (weak gravity)

Consistency requires a non-democratic perturbation

$$
\begin{aligned}
& J=1+\epsilon J_{1}(r), \quad J=1+\epsilon K_{1}(r), \quad \varphi=r+\epsilon \varphi_{1}(r), \quad h=\epsilon^{1 / 2} h_{1}(r) \\
& \rho=\epsilon \rho_{0}, \quad p=\epsilon^{2} p_{2}(r)
\end{aligned}
$$

The solution can be found and the matching with the ext. solution gives

$$
M_{s}=\frac{4}{3} \pi R^{3} \rho_{0}+\Delta M_{S} \equiv M_{S b}+\Delta M_{S} \quad \Delta M_{s}=-\frac{18 m^{2} M_{S b} R^{2}}{5(1+\gamma)}
$$

$$
S=-\frac{72 \pi m^{2} \rho_{0} R^{4-\gamma}}{2 \gamma^{3}-7 \gamma^{2}-5 \gamma+4}
$$

Can be the exterior part of a star?

Add matter EMT (perfect fluid), solve E.o.M. in the inner part and then match with the exterior solution

Even for constant density it's hard, we use perturbation theory (weak gravity)

Consistency requires a non-democratic perturbation

$$
\begin{aligned}
& J=1+\epsilon J_{1}(r), \quad J=1+\epsilon K_{1}(r), \quad \varphi=r+\epsilon \varphi_{1}(r), \quad h=\epsilon^{1 / 2} h_{1}(r) \\
& \rho=\epsilon \rho_{0}, \quad p=\epsilon^{2} p_{2}(r)
\end{aligned}
$$

The solution can be found and the matching with the ext. solution gives

$$
M_{s}=\frac{4}{3} \pi R^{3} \rho_{0}+\Delta M_{S} \equiv M_{S b}+\Delta M_{S} \quad \Delta M_{s}=-\frac{18 m^{2} M_{S b} R^{2}}{5(1+\gamma)}
$$

$$
S=-\frac{72 \pi m^{2} \rho_{0} R^{4-\gamma}}{2 \gamma^{3}-7 \gamma^{2}-5 \gamma+4}
$$

Can be the exterior part of a star?

Add matter EMT (perfect fluid), solve E.o.M. in the inner part and then match with the exterior solution

Even for constant density it's hard, we use perturbation theory (weak gravity)

Consistency requires a non-democratic perturbation

$$
\begin{aligned}
& J=1+\epsilon J_{1}(r), \quad J=1+\epsilon K_{1}(r), \quad \varphi=r+\epsilon \varphi_{1}(r), \quad h=\epsilon^{1 / 2} h_{1}(r) \\
& \rho=\epsilon \rho_{0}, \quad p=\epsilon^{2} p_{2}(r)
\end{aligned}
$$

The solution can be found and the matching with the ext. solution gives

$$
M_{s}=\frac{4}{3} \pi R^{3} \rho_{0}+\Delta M_{S} \equiv M_{S b}+\Delta M_{S} \quad \Delta M_{s}=-\frac{18 m^{2} M_{S b} R^{2}}{5(1+\gamma)}
$$

$$
S=-\frac{72 \pi m^{2} \rho_{0} R^{4-\gamma}}{2 \gamma^{3}-7 \gamma^{2}-5 \gamma+4}
$$

Totally different from
Bebronne, Tinyakov 09' $\mathrm{S}=0$????

Energy, slight return

Integral form of Komar energy with a time-like Killing vector

Energy, slight return

Integral form of Komar energy with a time-like Killing vector

$$
\begin{aligned}
& E\left(r_{\mathrm{ext}}\right)=-2 \int_{\mathrm{t}=\mathrm{const}}\left(T_{\mu}^{\nu}-\frac{1}{2} T\right) \xi^{\mu} n_{\nu} \sqrt{h} d^{3} x \\
& \equiv E_{\mathrm{int}}+E_{\mathrm{ext}}=M_{S b}+\Delta M_{S}+S \gamma r_{\mathrm{ext}}^{1+\gamma}
\end{aligned}
$$

Energy, slight return

Integral form of Komar energy with a time-like Killing vector

$$
\begin{aligned}
& E\left(r_{\text {ext }}\right)=-2 \int_{\mathrm{t}=\text { const }}\left(T_{\mu}^{\nu}-\frac{1}{2} T\right) \xi^{\mu} n_{\nu} \sqrt{h} d^{3} x \\
& \equiv E_{\text {int }}+E_{\text {ext }}=M_{S b}+\Delta M_{S}+S \gamma r_{\text {ext }}^{1+\gamma}
\end{aligned}
$$

Energy, slight return

Integral form of Komar energy with a time-like Killing vector

$$
\begin{aligned}
& E\left(r_{\mathrm{ext}}\right)=-2 \int_{\mathrm{t}=\mathrm{const}}\left(T_{\mu}^{\nu}-\frac{1}{2} T\right) \xi^{\mu} n_{\nu} \sqrt{h} d^{3} x \\
& \equiv E_{\mathrm{int}}+E_{\mathrm{ext}}=M_{S b}+\Delta M_{S}+S \gamma r_{\mathrm{ext}}^{1+\gamma}
\end{aligned}
$$

Energy, slight return

Integral form of Komar energy with a time-like Killing vector

$$
\begin{aligned}
& E\left(r_{\mathrm{ext}}\right)=-2 \int_{\mathrm{t}=\mathrm{const}}\left(T_{\mu}^{\nu}-\frac{1}{2} T\right) \xi^{\mu} n_{\nu} \sqrt{h} d^{3} x \\
& \equiv E_{\mathrm{int}}+E_{\mathrm{ext}}=M_{S b}+\Delta M_{S}+S \gamma r_{\mathrm{ext}}^{1+\gamma}
\end{aligned}
$$

The interior non-democratic linearized solution have checked numerically

Conclusions

C The phase $m_{1}=0$ is rather interesting
© Modified spherically symmetric solutions with screening or anti-screening of the "bare" mass
C Perturbation theory around flat space is difficult: the "naive" perturbation expansion is far form the exact solution

To be done: in progress ...

C What happens to the missing modes, propagate in generic backgrounds; healthy?

- The missing modes may by relevant in the growth of cosmological perturbation

