ABSTRACT

We present a canonical formulation of gravity theories whose Lagrangian is an arbitrary function of the Riemann tensor, which, for example, arises in the low-energy limit of superstring theories. Our approach allows a unified treatment of various subcases and an easy identification of the degrees of freedom of the theory.

HAMILTONIAN FORMULATION OF f (Riemann) THEORIES OF GRAVITY

Yuuiti Sendouda (APC, Paris 7) with

Nathalie Deruelle, Ahmed Youssef (APC, Paris 7) Misao Sasaki, Daisuke Yamauchi (YITP, Kyoto)

Ref: Prog.Theor. Phys. 123, 169 (20 I 0), Phys. Rev. D 80084032 (2009)

- Motivations for " f (Riemann)" gravity
- Ist-order action
- Hamiltonian formulation
- Phase space reduction
- Conclusion

Motivations

- Observational evidence
- The Universe is undergoing accelerated expansion :
- Not explained by known mechanisms.
- What is responsible for the acceleration? Dark energy?

from NASA Modified gravity?

f (Riemann) GRAVITY

- Gravity theories with higher-curvature corrections

$$
S=\frac{1}{2} \int_{\mathcal{M}} \mathrm{d}^{D} x \sqrt{-g} f\left(\mathcal{R}_{a b c d}\right)
$$

- Much more than currently fashionable $f(\mathcal{R})$.
- Various motivations from high-energy (quantum) physics :
- As counterterms to regularise $\left\langle T_{a b}\right\rangle$ on curved spaces [Utiyama \& DeWitt (1962)]
- Einstein-Hilbert action itself is not renormalisable ['t Hooft \& Veltman (I974)]
- String theories predict this kind of modifications ...
- String theories are still under development and their predictions are not secure. Cosmologists may have a chance to determine the true form of gravity from observations prior to particle physicists.

BASIC kNOWLEDGES

- Generally, the eom for the metric is 4th-order:

$$
\mathcal{R}^{(a}{ }_{c d e} \frac{\partial f}{\partial \mathcal{R}_{b) c d e}}+2 \nabla_{c} \nabla_{d} \frac{\partial f}{\partial \mathcal{R}_{(a|c| b) d}}-\frac{1}{2} f g^{a b}=\kappa T^{a b}
$$

- Because Riemann curvature tensor contains 2nd derivatives of metric.
- New dynamical dofs other than the metric will appear.
- Some "landscape" of f (Riemann) :
- $f=f(\mathcal{R})$: Metric + scalar on arbitrary background, any D Classical argument
- "Equivalent" to scalar-tensor gravity [Teyssandier \& Tourrenc (1983), Maeda (1989)]
- Used to explain accelerating expansion [$R+R^{2}$ Starobinsky (I980); $R+R^{-n}$ Capozziello et al. (2003), Carroll et al. (2004); etc.]
- $f=\mathcal{R}^{2}+$ Weyl 2 : Metric+scalar+traceless tensor on $D=4$ Minkowski [Stelle (1978)]
- Tensor has negative kinetic term :"ghost"
- Lovelock : 2nd-order eom, no extra dof [Lovelock (198?)] ...

WHATTO DO

- Questions to answer :
- How do we treat various sub-classes of f (Riemann) in a unified manner?
- How is the form of f reflected by the gravitational dynamics?
- How do we control the ghost? ...
- As a first step, we construct

$$
\text { Hamiltonian (I st-order) formulation of } f \text { (Riemann) gravity }
$$

- Dynamical (time-evolutional) properties become more transparent.
- Useful for stability analysis ...
- We will keep f to be arbitrary as possible, but let me exclude Lovelock terms for a while ...

I ST-ORDER f (Riemann) ACTION

BASIC IDEA

- We need an action consists of (at most) I st derivatives.
- Remove 2nd derivatives

$$
\begin{aligned}
& L=f(\phi, \dot{\phi}, \ddot{\phi}) \\
& L=f(\phi, \dot{\phi}, \Omega)+\psi(\Omega-\ddot{\phi}) \quad \text { Auxiliary field } \\
& L=f(\phi, \dot{\phi}, \Omega)+\psi \Omega+\dot{\psi} \dot{\phi} \quad \text { Integration by parts }
\end{aligned}
$$

- $\boldsymbol{\Omega}$ is determined (implicitly) in terms of ψ via

$$
\frac{\partial f}{\partial \Omega}[\phi, \dot{\phi}, \Omega(\phi, \dot{\phi}, \psi)]+\psi=0
$$

- Possible only when f is non-linear (non-degenerate) in the 2nd derivative.
- 2 dynamical dofs φ, ψ

$$
L=f[\phi, \dot{\phi}, \Omega(\phi, \dot{\phi}, \psi)]+\psi \Omega(\phi, \dot{\phi}, \psi)+\dot{\psi} \dot{\phi}
$$

- Although the real story is a bit more complicated...

AUXILIARY FIELDS

- We can first lower the order of derivative from 4 to 2 .
- Eom contains higher-derivative (4th-order) due to nonlinearity of curvature (2nd derivative of metric) :

$$
S_{\mathrm{g}}\left[g_{a b}\right]=\frac{1}{2} \int_{\mathcal{M}} \mathrm{d}^{D} x \sqrt{-g} f\left(\mathcal{R}_{a b c d}\right)
$$

- An equivalent action being linear in curvature

$$
S\left[g_{a b}, \varrho_{a b c d}, \varphi^{a b c d}\right]=\frac{1}{2} \int_{\mathcal{M}} \mathrm{d}^{D} x \sqrt{-g}\left[f\left(\varrho_{a b c d}\right)+\varphi^{a b c d}\left(\mathcal{R}_{a b c d}-\varrho_{a b c d}\right)\right]
$$

gives two 2nd-order eoms \& one constraint equivalent to the 4th-order one :

$$
\frac{\delta S}{\delta g_{a b}}=\frac{\delta S}{\delta \varrho_{a b c d}}=\frac{\delta S}{\delta \varphi^{a b c d}}=0 \quad \frac{\delta S_{\mathrm{g}}}{\delta g_{a b}}=0
$$

ADM DECOMPOSITION

- A geometrical way to define time [Arnowitt, Deser \& Misner (1962)]
- Metric is decomposed into dynamical/non-dynamical parts:

$$
\begin{aligned}
\gamma_{a b} & =g_{a b}-\epsilon n_{a} n_{b} \\
N & =\epsilon n_{a} t^{a} \quad \epsilon=n^{a} n_{a} \\
\beta^{a} & =\gamma^{a}{ }_{b} t^{b} \\
\left(t^{a}\right. & \left.=N n^{a}+\beta^{a}\right)
\end{aligned}
$$

- Spacetime tensors will be

orthogonally decomposed using induced metric and normal vector.

DECOMPOSTITION OFACTION

- ADM decomposition of 2 nd-order action :
\perp : Projection by $\gamma_{a}{ }^{b}$
\mathbf{n} : Contraction with n^{a}

$$
S=\frac{1}{2} \int_{\mathcal{M}} \mathrm{d}^{D} x \sqrt{-g}\left[f\left(\varrho_{a b c d}\right)+\varphi^{a b c d}\left(\mathcal{R}_{a b c d}-\varrho_{a b c d}\right)\right]
$$

${ }_{\perp} \varphi^{a b c d}\left({ }_{\perp} \mathcal{R}_{a b c d}-{ }_{\perp} \varrho_{a b c d}\right)+4 \epsilon_{\perp} \varphi^{a b c \mathbf{n}}\left({ }_{\perp} \mathcal{R}_{a b c \mathbf{n}}-{ }_{\perp} \varrho_{a b c \mathbf{n}}\right)+2 \epsilon \Psi^{a b}\left({ }_{\perp} \mathcal{R}_{a \mathbf{n} b \mathbf{n}}-\Omega_{a b}\right)$
where $\quad \Psi^{a b} \equiv 2 \epsilon_{\perp} \varphi^{a \mathbf{n} b \mathbf{n}}, \quad \Omega_{a b} \equiv \varrho_{a \mathbf{n} b \mathbf{n}}$

- Two eoms immediately determine the redundant components of auxiliary field :

$$
\delta_{\perp} \varphi^{a b c d}: \varrho_{a b c d}={ }_{\perp} \mathcal{R}_{a b c d}, \quad \delta_{\perp} \varphi^{a b c \mathbf{n}}: \varrho_{a b c \mathbf{n}}={ }_{\perp} \mathcal{R}_{a b c \mathbf{n}}
$$

- Then we get

$$
S=\frac{1}{2} \int_{\mathcal{M}} \sqrt{-g}\left[f+2 \epsilon \Psi^{a b}\left(\mathcal{R}_{a \mathbf{n} b \mathbf{n}}-\Omega_{a b}\right)\right]
$$

GEOMETRICAL RELATIONS

- Extrinsic curvature is the "velocity" of metric:

$$
K_{a b}=\gamma_{a}{ }^{c} \nabla_{c} n_{b}=\frac{1}{2 N}\left(\dot{\gamma}_{a b}+2 D_{(a} \beta_{b)}\right)
$$

- We have
- Gauss

$$
\gamma_{a}^{e} \gamma_{b}^{f} \gamma_{c}{ }^{g} \gamma_{d}{ }^{h} \mathcal{R}_{e f g h}=-2 \epsilon K_{a[c} K_{d] b}+R_{a b c d}[\gamma]
$$

- Codazzi

$$
\gamma_{a}{ }^{d} \gamma_{b}^{e} \gamma_{c}{ }^{f} n^{g} \mathcal{R}_{\text {defg }}=2 D_{[a} K_{b] c} \quad \begin{aligned}
& \text { I st (time) } \\
& \text { derivatives }
\end{aligned}
$$

- and Ricci relations

$$
\begin{aligned}
& \gamma_{a}{ }^{c} n^{d} \gamma_{b}{ }^{e} n^{f} \mathcal{R}_{\text {cdef }}=-\underbrace{}_{n} K_{a b}+K_{a c} K_{b}{ }^{c}-\epsilon D_{a} D_{b} N \\
& \begin{array}{l}
\text { 2nd (time) } \\
\text { derivative }
\end{array}
\end{aligned}
$$

- Integrating by parts, Ψ appears to be dynamical :

$$
\begin{aligned}
& S=\int_{\mathcal{M}} \sqrt{|\gamma|} N\left[\epsilon \Psi^{a b}\left(K K_{a b}+K_{a c} K_{b}^{c}-\epsilon N^{-1} D_{a} D_{b} N-\Omega_{a b}\right)\right. \\
&\left.+\epsilon N^{-1} K_{a b} £_{t-\beta} \Psi^{a b}-\epsilon \nabla_{c}\left(n^{c} \Psi^{a b} K_{a b}\right)+\frac{1}{2} f\right]
\end{aligned}
$$

- Divergence is canceled by the surface term :

$$
\bar{S}=\epsilon \oint_{\partial \mathcal{M}} \mathrm{d} \Sigma_{a} n^{a} \Psi^{b c} K_{b c}
$$

- No 2nd derivatives in the total action $S+\bar{S}$
- To be discussed : Eom for $\boldsymbol{\Omega}$ determines \# of DOFs.

$$
2 \epsilon \Psi^{a b}=\frac{\partial f}{\partial \Omega_{a b}}
$$

Hamiltonian formulation

- Canonical momenta defined as

$$
p^{a b} \equiv \frac{\delta(S+\bar{S})}{\delta \dot{\gamma}_{a b}}, \quad \Pi_{a b} \equiv \frac{\delta(S+\bar{S})}{\delta \dot{\Psi}^{a b}}
$$

- Canonical action found via Legendre transformation

$$
S+\bar{S}=\int \mathrm{d} t L=\int \mathrm{d} t\left[\int_{\Sigma_{t}} \mathrm{~d}^{D-1} x \sqrt{|\gamma|}(p \cdot \dot{\gamma}+\Pi \cdot \dot{\Psi})-H\right]
$$

where

$$
H=H\left[\gamma_{a b}, p^{a b}, \Psi^{a b}, \Pi_{a b}, \Omega_{a b}, N, \beta^{a}\right]=\int_{\Sigma_{t}}\left(N C+\beta^{a} C_{a}\right)
$$

is the Hamiltonian, where Hamiltonian and momentum constraints are $C=-\epsilon \frac{2}{\sqrt{|\gamma|}}\left(\gamma^{a(b} \Psi^{c) d} \Pi_{a b} \Pi_{c d}-p \cdot \Pi\right)-\frac{\sqrt{|\gamma|}}{2}\left(-2 \epsilon \Psi \cdot \Omega+f-2 D_{a} D_{b} \Psi^{a b}\right)$
$C_{a}=-2 \sqrt{|\gamma|} D_{c}\left(\gamma_{a b} \frac{p^{b c}}{\sqrt{|\gamma|}}-\Psi^{b c} \frac{\Pi_{a b}}{\sqrt{|\gamma|}}\right)+\Pi_{b c} D_{a} \Psi^{b c}$

EOMS AND CONSTRAINTS

- Constraints from variations wrt multipliers :

$$
\delta N: C=0, \quad \delta \beta^{a}: C_{a}=0
$$

- will (after second-class constraints are inserted into the action) turn to be first-class.
- Constraint from auxiliary field

$$
\delta \Omega_{a b}: 2 \epsilon \Psi^{a b}=\frac{\partial f}{\partial \Omega_{a b}}\left[\gamma_{a b}, \Pi_{a b}, \Omega_{a b}\right]
$$

- will be used to reduce \# of non-dynamical variables.
- Canonical eoms from variations wrt dynamical variables:

$$
\begin{array}{cc}
\dot{\gamma}_{a b}=\frac{\delta H}{\delta p^{a b}}, & \dot{\Psi}^{a b}=\frac{\delta H}{\delta \Pi_{a b}} \\
\dot{p}^{a b}=-\frac{\delta H}{\delta \gamma_{a b}}, & \dot{\Pi}_{a b}=-\frac{\delta H}{\delta \Psi^{a b}}
\end{array}
$$

These 7 eqs recover the original 4th-order eom.

TRACE DECOMPOSITION

- Ψ can be decomposed into the trace and traceless parts :

$$
\Phi \equiv \frac{\gamma \cdot \Psi}{D-1}, \quad \psi^{a b} \equiv{ }_{\mathbb{T}} \Psi^{a b} \equiv \Psi^{a b}-\frac{\gamma \cdot \Psi}{D-1} \gamma^{a b}
$$

Traceless

- There are (most generically) a scalar and (traceless) tensor degrees of freedom :

$$
\begin{aligned}
L & =\int_{\Sigma_{t}}(p \cdot \dot{\gamma}+\Pi \cdot \dot{\Psi})-H\left[\gamma_{a b}, p^{a b}, \Psi^{a b}, \Pi_{a b}, \Omega_{a b}, N, \beta^{a}\right] \\
& =\int_{\Sigma_{t}}(\tilde{p} \cdot \dot{\gamma}+\Pi \dot{\Phi}+\pi \cdot \dot{\psi})-H\left[\gamma_{a b}, \tilde{p}^{a b}, \Phi, \Pi, \psi^{a b}, \pi_{a b}, \Omega_{a b}, N, \beta^{a}\right]
\end{aligned}
$$

where

$$
\begin{aligned}
& \tilde{p}^{a b} \equiv p^{a b}-\frac{1}{D-1}\left(\gamma \cdot \Pi \Psi^{a b}+\gamma \cdot \Psi_{\mathbb{T}}\left(\gamma^{a c} \gamma^{b d} \Pi_{c d}\right)\right), \\
& \Pi \equiv \gamma \cdot \Pi, \quad \pi_{a b} \equiv{ }_{\mathbb{T}} \Pi_{a b}
\end{aligned}
$$

DONE

- We've obtained canonical eoms and constraints for f (Riemann) in the most generic form.

What To see below

- Any symmetries of f give rise to additional constraints.
 unnecessary variables.
- One exceptional case is of conformal gravity where conformal (gauge) transformation is generated by a constraint.

PHASE SPACE REDUCTION

PROCEDURE

- Our generic Hamiltonian is still reducible in presence of 2nd-class constraints.
- The roles of the constraint eq :

$$
\delta \Omega_{a b}: 2 \epsilon \Psi^{a b}=\frac{\partial f}{\partial \Omega_{a b}}\left[\gamma_{a b}, \Pi_{a b}, \Omega_{a b}\right]
$$

A) $\boldsymbol{\Omega}$ determined (f is nonlinear in $\boldsymbol{\Omega}$) : Ψ dynamical ... nothing happens
B) Ω undetermined (f is at most linear in Ω) : Ψ non-dynamical

- Precisely, a scalar may arise from non-linearity of the trace while a tensor may arise from that of the traceless part of the second derivative.

$$
\Omega_{a b}=\frac{\Omega}{D-1} \gamma_{a b}+\omega_{a b}
$$

I sT CLASS, 2ND CLASS

- Way to reduce action/Hamiltonian :
I. Take time derivative of the above "primary" constraint to find a "secondary" constraint (Dirac)

2. If they are 2nd-class, insert them into the canonical action to reduce action/ Hamiltonian (Faddeev \& Jackiw)

- Ist class constraints
- commute with all the other constraints (modulo constraints),
- generate gauge transformations ("Dirac conjecture").
- should be kept to make gauge symmetries of the system explicit.
- 2nd class constraints
- do not commute with at least one other constraint,
- are safely inserted into the action to eliminate non-dynamical dofs.

EXAMPLE I: EINSTEIN

- Action

$$
f=\mathcal{R} \quad \Rightarrow \quad \delta \Omega_{a b}: \Psi^{a b}=\gamma^{a b}
$$

- Constraints
- Primary: $\Psi^{a b}=\gamma^{a b} \quad$ (2nd-class)
- Secondary: $\Pi_{a b}=2 p_{a b}-\frac{2 \gamma \cdot p}{D} \gamma_{a b} \quad$ (2nd-class)
- Action/Hamiltonian reduce into ADM's

$$
L=\int_{\Sigma_{t}} \tilde{p} \cdot \dot{\gamma}-H\left[\gamma_{a b}, \tilde{p}^{a b}, N, \beta^{a}\right]
$$

where

$$
\tilde{p}^{a b}=-p^{a b}+\frac{2 \gamma \cdot p}{D} \gamma^{a b}
$$

- No extra dof.

EXAMPLE $2: f(\mathcal{R})$

- Action

$$
f=f(\mathcal{R}) \quad \Longrightarrow \quad \delta \Omega_{a b}: \Psi^{a b}=f^{\prime} \gamma^{a b}
$$

- Constraints
- Primary: ${ }_{T} \Psi^{a b}=0 \quad$ (2nd-class)
- Secondary: $\mathbb{T} \Pi_{a b}=\frac{2}{\Phi} \gamma_{a c} \gamma_{b d} \mathbb{T} p^{c d}$ (2nd-class) $\quad \Phi \equiv \frac{\gamma \cdot \Psi}{D-1}=f^{\prime}$
- Reduced action/Hamiltonian

$$
L=\int_{\Sigma_{t}}(\tilde{p} \cdot \dot{\gamma}+\Pi \dot{\Phi})-H\left[\gamma_{a b}, \tilde{p}^{a b}, \Phi, \Pi, N, \beta^{a}\right]
$$

where

$$
\tilde{p}^{a b}=p^{a b}-\Phi \gamma^{a c} \gamma^{b d} \Pi_{c d}
$$

- Extra scalar dof.
- Agrees with the independent result [Deruelle, YS, Youssef (2009)].

EXAMPLE 3: C^{2}

- Action

$$
f=\mathcal{C}_{a b c d} C^{a b c d}=\mathcal{R}_{a b c d} \mathcal{R}^{a b c d}-\frac{4}{D-2} \mathcal{R}_{a b} \mathcal{R}^{a b}+\frac{2}{(D-1)(D-2)} \mathcal{R}^{2}
$$

$$
\delta \Omega_{a b}: \Psi^{a b}=-\frac{4}{D-2}\left[(D-3)_{\mathbb{T}} \Omega^{a b}+\mathbb{T} \rho^{a b}\right]
$$

- Constraints

$$
\rho_{a b} \equiv \frac{\Pi \Pi_{a b}-(\Pi \cdot \Pi)_{a b}}{|\gamma|}+R_{a b}[\gamma]
$$

- Primary: $\gamma \cdot \Psi=0$ (2nd-class)
- Secondary : $\gamma \cdot p-\frac{D}{2} \mathbb{T} \Psi \cdot \mathbb{T} \Pi=0$ (depends on whether $D=4$ or not)
- The secondary constraint can be Ist-class depending on \# of dimensions. This moment we only use the primary constraint.
- Action is reduced to be

$$
L=\int_{\Sigma_{t}}(\tilde{p} \cdot \dot{\gamma}+\pi \cdot \dot{\psi})-H\left[\gamma_{a b}, \tilde{p}^{a b}, \psi^{a b}, \pi_{a b}, \Pi, N, \beta^{a}\right]
$$

where

$$
\tilde{p}^{a b} \equiv p^{a b}-\frac{\gamma \cdot \Pi}{D-1} \psi^{a b}, \quad \psi^{a b} \equiv \mathbb{T}^{a b}, \quad \pi_{a b} \equiv{ }_{\mathbb{T}} \Pi_{a b}, \quad \Pi \equiv \gamma \cdot \Pi
$$

- Extra traceless tensor dof (but see below).
- Hamiltonian

$$
H=\int_{\Sigma_{t}}\left(N C+\beta^{a} C_{a}+\Pi C_{\Pi}\right)
$$

where Π works as a Lagrange multiplier and

$$
C_{\Pi} \propto \gamma \cdot p-\frac{D}{2} \psi \cdot \pi
$$

- In $D=4, C_{\Pi}$ is the generator of conformal transformation and commute with other constraints. [Boulware (I984)]
- If $D>4$, more secondary constraints may arise. They might be used to further eliminate dofs (undone).

SUMMARY OFTHIS PART

- Non-linearity of the second derivative determines what types of extra dofs arise :

	Tr part	Tr-less part	Extra dofs	Extra gauge sym.
\mathcal{R}	Linear	-	-	-
$f(\mathcal{R})$	NL	-	Scalar	-
C^{2}	-	NL	Tensor	Conformal $(D=4)$

CONCLUSION

CONCLUSION+

- Achievements
- Hamiltonian formulation of f (Riemann) gravity has been established.
- Effective \& simple way to reduce generic Hamiltonian to those of typical sub-cases $\left(\mathcal{R}, f(\mathcal{R}), C^{2}\right)$ was shown.
- Plans for the future [all in progress]
- Properties of Ψ on various non-trivial backgrounds (e.g. FLRW, black holes) : Is there always "ghost"? If yes, what makes it harmless?
- Lovelock terms
- Energy in higher-derivative gravity theories
- Coupling to matter, Surface term: e.g. Junction conditions for braneworld
- Feedback to fundamental theories from phenomenological view point of gravity

